Marsin järistykset ja tuoreet törmäykset
Planetaarinen seismologia
Maanjäristysten ja niitä synnyttävien seismisten aaltojen tutkimus eli seismologia on paras tapa saada selkoa maapallon sisäosien rakenteesta. Siksi myös lähiplaneettoja on yritetty tutkia seismisin keinoin lähes yhtä kauan kuin niille on pystytty tekemään pehmeitä laskeutumisia. Tulokset ovat kuitenkin olleet melkoisen vaihtelevia.
Kaikkien kuuden Kuuhun laskeutuneen Apollo-aluksen mittalaitearsenaaliin kuului erilaisia seismometrejä. Ne myös enimmäkseen toimivat erinomaisesti aina siihen asti, kun ne pikkurahan säästämiseksi sammutettiin vuonna 1977. Apollo-seismometreistä suurelta osin johtuu, että Kuun sisärakenne tunnetaan nykyisin Maan jälkeen parhaiten.
Myös Marsia haluttiin tutkia seismisin menetelmin, joten vuonna 1976 Marsiin saapuneissa Viking 1 ja 2 -laskeutujissa oli seismometrit mukana. Viking 1:n seismometri ei kuitenkaan toiminut eikä Viking 2:n mittausaineistosta löydetty ainuttakaan varmaa järistystä. Osittain tämä oli seurausta siitä, että laskeutujien päätehtävänä oli elämän merkkien etsintä. Siihen keskittyneet laitteet saivat etusijan, minkä vuoksi seismometrit sijoitettiin mittausten kannalta epäedulliseen paikkaan laskeutujissa.
Täysin hyödyttömiä Viking 2:n seismometrin mittaukset eivät kuitenkaan olleet, sillä insinöörejä kiinnostaneiden laskeutujan omien kolinoiden ja tärinöiden lisäksi se mittasi säätilan vaihtelujen synnyttämää värinää täydentäen näin varsinaisia meteorologisia mittauksia. Tarttuipa mukaan myös yksi todennäköinen pölypyörrekin.
Hieman yllättäen myös vuonna 1982 Venuksen pinnalle laskeutuneissa neuvostoliittolaisissa Venera 13 ja 14 -aluksissa oli mukana seismometrit. Yllättävää tämä on siksi, että Venuksen hurjissa oloissa laskeutujien oli suunniteltu kestävän puolisen tuntia, ja todellisuudessa ne sinnittelivät tunnin–pari. Näin lyhyenä aikana kukaan ei kuvitellut tapahtuvan sellaista ihmettä, että voimakas Venuksen järistys jäisi haaviin. Seismometrit olikin suunniteltu mittaamaan mikroseismistä värinää. Tulokset jäivät kuitenkin monitulkintaisiksi ja todennäköisintä on, että Viking 2:n tapaan myös Venera 13:n ja 14:n seismometrit mittasivat laskeutujan tärähtelyä tuulessa.
InSight
Veneroiden jälkeen toisilta planeetoilta uutta seismistä dataa halajavat tutkijat joutuivat odottamaan kauan. Hyvää kuitenkin kannatti odottaakin: neljä vuotta sitten Elysiumin tasangolle Marsiin laskeutunut NASAn InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) on ylivoimaisesti merkittävin toista taivaankappaletta seismisin keinoin tutkinut laskeutuja sitten Apollo-aikojen. InSightin on arveltu uuvahtavan aurinkopaneeleihin kertyvän pölyn aiheuttamaan sähkön puutteeseen nyt joulukuuhun mennessä, mutta toistaiseksi se on pysynyt vielä joten kuten toimintakuntoisena.
Neljän toimintavuotensa aikana se on mitannut yli 1300 järistystä. Niistä yli 50 on ollut riittävän voimakkaita, jotta niiden syntypaikka – yleensä Cerberus Fossaen geologisesti hyvin nuori alue InSightin koillispuolella – on saatu määritettyä. Suurin mitattu Marsin järistys tapahtui viime toukokuun alussa, kun InSight oli jo pahasti hiipumassa.
Sen lisäksi, että InSightin ranskalaisvalmisteinen seismometri nimeltään SEIS (Seismic Experiment for Interior Structure) on saanut määriteltyä Cerberus Fossaen Marsin seismisesti aktiivisimmaksi alueeksi, on käsitys Marsin sisärakenteesta nyt merkittävästi aiempaa tarkempi. InSightin ansiosta tiedämme, että Marsilla on sula ydin, jonka halkaisija on 3660 ± 80 km. Raudan ja nikkelin lisäksi se sisältää oletettua enemmän myös keveämpiä alkuaineita. Vaippakerroksen paksuus puolestaan on noin 1500 km, eli suunnilleen puolet maapallon vaipan paksuudesta. Marsin kuoren paksuus, 24–72 km, taas vastaa Maan mantereisen kuoren paksuutta.
Marsin järistykset ovat pääosin sisäsyntyisiä, eli ne syntyvät joko tektonisten voimien nitkuttaessa kalliota tai osittain sulan kiviaineksen liikkeistä magmasäiliöissä. Osa järistyksistä on kuitenkin ulkoisten tekijöiden aiheuttamia, eli peräisin pienten asteroidien törmäyksistä Marsin pintaan. Sellaiset antavat mahdollisuuden hieman erilaiseen seismiseen tutkimukseen. Lokakuun lopulla aiheesta julkaistiin parikin artikkelia Science-lehdessä.
Marsin sisärakennetta on saatu tutkittua niin kutsuttujen runkoaaltojen (engl. body waves) avulla. Näitä ovat pitkittäiset P- eli primääriaallot ja poikittaiset S- eli sekundääriaallot. Niiden lisäksi maanjäristyksissä syntyy usein myös pinta-aaltoja. Pinta-aaltoja ei kuitenkaan oltu onnistuttu Marsissa havaitsemaan, sillä järistykset tapahtuivat liian syvällä ollakseen tehokkaita pinta-aaltojen muodostajia. Tilanne muuttui 18.9.2021, jolloin InSight rekisteröi poikkeuksellisen voimakkaan järistyksen.
Tarkemmissa tutkimuksissa järistyksen alkupiste tarkentui Tempe Terran alueelle. Mars Reconnaissance Orbiter (MRO) -luotaimen kameroiden kuvista hyvin läheltä ennustettua paikkaa löytyi tuoreiden kraattereiden rypäs. Suurimman yksittäisen kraatterin (38,11°N 280,12°E) läpimitta oli 130 ± 12 m. Se oli tuolloin suurin tunnistettu vastasyntynyt kraatteri. Kraatterin etäisyys InSight-laskeutujasta on noin 7455 km.
Tempe Terran kraatteriryppään synty aiheutti järistyksen, jonka voimakkuus oli noin neljä magnitudia. Tämä vertautuu varsin hyvin Suomen mittaushistorian voimakkaimpaan maanjäristykseen eli magnitudin 3,8 Väinön värinään, joka tapahtui 17.2.1979 Lappajärven törmäyskraatterin itäisellä reunalla.
Joulukraatteri
Tempe Terran kraatteri ei kuitenkaan saanut pitää ennätystään kovinkaan kauaa. Jouluaattona 2021 InSightin seismometri rekisteröi nimittäin jälleen poikkeuksellisen järistyksen. Se tapahtui huomattavasti lähempänä, 3460 km:n päässä Amazonis Planitialla (34,80°N 189,92°E). Sen aiheuttanut törmäys synnytti myös noin neljännen magnitudin järistyksen ja samalla toistaiseksi suurimman tunnetun tuoreen kraatterin.
Tämä 150 ± 10 m:n läpimittainen ja 21 m syvä kraatteri on vähintään kolmesta näkökulmasta erittäin mielenkiintoinen tapaus. Kraatteritutkijan silmin tarkasteltuna kraatterissa viehättää sen kauniin epäsymmetrinen heittelekenttä. Kraatterista lounaaseen ulottuu ainakin kymmenkunta kilometriä pitkä kiilamainen alue, jossa ei ole heittelettä oikeastaan lainkaan. Tämä on loivakulmaisten törmäysten tunnusomainen piirre ja kertoo suoraan, että törmännyt kappale tuli lounaasta, tässä tapauksessa luultavasti noin 30°:n kulmalla. Samaa tulosuuntaa indikoi myös vastakkaisella puolella kraatteria oleva pienten sekundäärikraatterien alue, joka on pisimmillään koillisessa.
Erikoisimmat piirteet ovat kraatterista luoteeseen ja heikommin eteläkaakkoon erottuvat kaartuvat tummat rakenteet. Tällaisia niin sanottuja sapeleita (engl. scimitar) ei ole löydetty muualta kuin eräiden Marsin nuorimpien kraatterien ympäriltä. Niiden syntyä ei vielä ymmärretä, mutta suosituimpien mallien mukaan ne muodostuvat kaasukehän läpi syöksyvää asteroidia ympäröivän kartiomaisen šokkiaallon ja itse törmäyksessä syntyvän suunnilleen pallomaisen šokkiaallon vuorovaikutuksesta. Sapelien näkyminen vaatii lisäksi pölyistä pintaa, jollaista Marsissa riittää.
Marsin vedestä innostuneiden tutkijoiden ja insinöörien mieliä kiihottava joulukraatterin piirre puolestaan erottui MRO-luotaimen HiRISE-kameran (High Resolution Imaging Experiment) lähikuvista. Kraatterin heittelekentällä huomattiin nimittäin olevan tavallisten kivenlohkareiden joukossa runsaasti myös suuria vesijään kappaleita. Niitä on aivan kraatterin reunalla sekä ainakin noin 150 m:n päähän saakka ulottuvalla alueella. Tämä jääheitteleen jakauma kertoo, että kohdeaineksessa on jäätä lähes pinnasta ainakin muutaman kymmenen metrin syvyyteen.
Suoria todisteita vesijäästä on löydetty Marsista monin paikoin, eikä siinä sinänsä ole mitään uutta tai ihmeellistä. Kiinnostavan tästä jouluaattokraatterista tässä mielessä kuitenkin tekee sen syntypaikka. Kraatteri sijaitsee vain 34,8 astetta päiväntasaajan pohjoispuolella. Näin läheltä päiväntasaajaa ei ole ennen löydetty suoria todisteita nykyisestä vesijäästä. Mikäli ihmiskunta ei onnistu intomielisessä yrityksessään kärventää itsensä takaisin kivikaudelle tai post-apokalyptiseen scifi-helvettiin, joskus ei niin hirvittävän kaukaisessa tulevaisuudessa ihmiset kävelevät Marsin pinnalla. Tuolloin runsaat ja lähes kaikkialla esiintyvät vesivarastot ovat erittäin käyttökelpoisia.
Kolmas näkökulma Amazoniksen joulukraatteriin on tietenkin Marsin sisärakenteesta kiinnostuneen seismologin. InSightin kohdalla olevan Marsin kuorikerroksen paksuudeksi on jo aiempien järistysten perusteella onnistuttu määrittämään 39 ± 8 km. Kun käytössä on vain yksi seismometri koko planeetalla, ei runkoaaltojen perusteella ole kuitenkaan pystytty havaitsemaan kuoren tai vaipan yläosan sivusuuntaisia paksuusmuutoksia. Tuoreet pinta-aaltoja tuottaneet törmäykset, etenkin Amazoniksen joulutörmäys, muuttivat tilanteen.
Havaittujen seismisten nopeuksien perusteella InSightin kohdalla Marsin kuoressa ei ole ainakaan merkittäviä määriä jäätä. Magmasta syntyneitä kiviä sen sijaan riittää, sillä Elysiumin laavakerrokset (tai osin syväkivet?) ovat vähintään muutaman kilometrin paksuisia. InSightin laskeutumisalueella kuori on kuitenkin pääosin harvempaa (ja täten seisminen nopeus pienempi) kuin Elysiumin ja Amazonisin välisellä alueella. Tämä saattaa selittyä sillä, että Elysiumin laavojen alla voi olla Utopian todennäköisen törmäysaltaan höttöisempää heittelettä.
Paitsi että InSightin seismometri rekisteröi joulutörmäyksestä suoraan lyhintä tietä tulleet pinta-aallot, se (todennäköisesti) onnistui 75 minuuttia myöhemmin havaitsemaan myös Marsin toiseen suuntaan kiertäneet pinta-aallot. Nämä niin sanotut R2-aallot kulkivat Hellaksen törmäysaltaan kautta. Hellaksen törmäyksen seuraksena Marsin kuori lienee altaan kohdalla vain muutaman kilometrin paksuinen. Niinpä Hellaksen kohdalla R2-aallot pääsivät kulkemaan tiheämmässä ylävaipan aineksessa. Sikäli kun nämä havainnot ja tulkinnat pätevät, on keskimääräinen seisminen nopeus Marsin kuoressa suunnilleen sama sekä vanhalla eteläisellä ylängöllä että nuoremmalla pohjoisella alangolla. Tämä puolestaan avaa uusia mahdollisuuksia ymmärtää Marsin suuren kahtiajaon syntyä.
Mitä InSightin jälkeen?
Kun InSight kuluvan talven aikana todennäköisesti lopullisesti sammuu, ei Maan ulkopuolella ole yhtään toimivaa seismometriä. Kuuhun on toivottu kattavaa geofysikaalista mittausasemaverkostoa jo Apollo-seismometrien sammutuksesta lähtien. Nykyisissä suunnitelmissa haikaillaan sellaista kenties jo vuodelle 2030. Myös Kuun eteläisellä napaseudulle laskeutuvien Artemis III -lennon astronauttien mukaan on kaavailtu seismometriä. Pisimmällä Kuun seismometrisuunnitelmista on ehkä Farside Seismic Suite -laitepaketti, jossa on tarkoitus viedä kaksi seismometriä Kuun etäpuolelle Schrödingerin altaaseen.
Marsin seismologiaakin koskevia alustavia suunnitelmia toki on, mutta Marsin sen paremmin kuin Kuunkaan osalta ei mikään ole varmaa. Etenkin NASA on pitänyt viime vuosien aikana suurta ääntä Kuuhun palaamisesta, mutta kannattaa pitää mielessä, että viimeisimmät kuusi onnistunutta pehmeää laskeutumista Kuun pinnalle ovat tehneet Kiina ja Neuvostoliitto.
Tätä kirjoittaessani NASAn Artemis I -lento kiertää Kuuta. Amerikkalaiset ovat kuitenkin edelleen kaukana siitä, että saisivat seismometrin tai vallankaan seismometriverkoston Kuun tai Marsin pinnalle. Toivottavasti he siinä onnistuvat, sillä InSight on neljän toimintavuotensa aikana osoittanut modernien seismisten tutkimusten keskeisen merkityksen planeettojen sisärakenteen ja kehityksen ymmärtämisessä.