Kylmästä läiskästä kuumaan Saharaan?
Paras tapa saada perusteellista tietoa aurinkokuntamme kappaleiden todellisesta olemuksesta on tutkia niiltä peräisin olevia näytteitä. Kuu on tässä suhteessa ylivertainen muihin Maan ulkopuolisiin kohteisiin nähden. Apollo-astronautit toivat kuudelta laskeutumisalueelta 382 kg kiviä ja kuupölyä, Neuvostoliiton Luna-laskeutujat puolestaan kolmesta pisteestä muutaman sata grammaa pintamateriaalia. Kaksi vuotta sitten Kiinan Chang’e-5 taas kiikutti reilut 1,7 kg kuunäytteitä Mongoliaan.
Kaikkiaan ihmiskunta on siis ihmisin tai robotein tuonut näytteitä Kuusta kymmeneltä tunnetulta alueelta. Ne kaikki ovat kuitenkin Kuun lähipuolelta ja Chang’e-5:ä lukuun ottamatta kohtalaisen läheltä päiväntasaajaa. Vertailun vuoksi voi vaikka miettiä, kuinka hyvin tuntisimme Afrikan ja Australian geologian, jos meillä olisi näytteitä vain kymmenestä kohdasta Afrikasta. No, vertailu on sikäli hieman epäreilu, että Kuun geologia on paljon yksinkertaisempaa kuin Maan, mutta Afrikan ja Australian yhteenlaskettu pinta-ala on sama kuin Kuun.
Kuumeteoriitit
Luonto on kuitenkin tarjonnut meille mahdollisuuden saada näytteitä Kuusta ihan ilmaiseksi. Kuuhun törmää edelleenkin silloin tällöin kohtalaisen suuria kivenmurikoita. Pakonopeus Kuusta on vain reilut pari kilometriä sekunnissa, joten kun tavallinen asteroidin törmäysnopeus on pakonopeuteen nähden liki kymmenkertainen, merkittävä osa törmäyksessä syntyvästä heitteleestä voi ylittää pakonopeuden ja karata Kuun pinnalta avaruuteen. Tätä edesauttaa myös kaasukehän puute. Aikansa avaruudessa kierreltyään osa karanneesta heitteleestä päätyy meteoriitteina Maahan.
Tätä kirjoittaessani on virallisia kuumeteoriitteja tunnistettu ja nimetty 556 kappaletta. Massaa niistä kertyy reilut 900 kiloa, joten kuumeteoriittiainesta on noin 2,3 kertaa niin paljon kuin Apollo-, Luna- ja Chang’e-näytteitä. Mikä parasta, kuumeteoriittien määrä kasvaa koko ajan.
Viime vuonna julkaistun tutkimuksen mukaan 341 kuumeteoriittia, joista oli riittävän tarkat tiedot, oli lähtöisin 109–134:stä eri paikasta Kuun pinnalla. Jos tuo sama suhde pätee kaikkiin kuumeteoriitteihin, meillä on tällä hetkellä kuunäytteitä ei ainoastaan kymmeneltä laskeutumisalueelta, vaan parista sadasta eri paikasta Kuun pinnalta. Tämä antaa jo paljon paremmat lähtökohdat koko Kuun geologisen kehityksen ymmärtämiseksi.
Ongelma on kuitenkin siinä, että emme tiedä, mistä kohdasta Kuuta kuumeteoriitit tarkkaan ottaen ovat peräisin. Niiden rakenne, mineraalit, kemiallinen koostumus ja isotoopit voidaan kyllä laboratoriossa syynätä äärimmäisen tarkasti, mutta ilman tietoa lähtöpaikasta jää tarina väkisinkin vajaaksi. Geologiassa kontekstilla on merkitystä, minkä Apollo 15:n komentaja Dave Scottkin hyvin tiesi.
Northwest Africa 11962
Tuoreimmassa Meteoritics & Planetary Science -lehden numerossa on mielenkiintoinen artikkeli, joka tarjoaa toivoa kuumeteoriittien lähtöalueiden ja jopa tarkkojen paikkojen selvittämiseksi. Andreas Bechtold kollegoineen tutki Northwest Africa eli NWA 11962 -nimistä kuumeteoriittia. Wienin luonnontieteellinen museo osti sen vuonna 2013 marokkolaiselta kauppiaalta. Sen löytöpaikasta ei kuitenkaan tiedetä muuta kuin että se on peräisin jostain päin Luoteis-Afrikkaa.
Bechtold kollegoineen tutki NWA 11962:n syvintä olemusta jo viime vuonna julkaistussa artikkelissaan. Tämä vain jokusen sentin läpimittainen ja 86 gramman painoinen meteoriitti on regoliittibreksia, eli törmäysten kokoonpuristama sekoitus Kuun pinta-ainesta. Siitä löytyi niin ylänköainesta kuin tasankojen mare-basaltin kappaleitakin. Oleellisia olivat myös vulkaaniset lasipallerot eli sferulit. Niinpä jo viime vuoden artikkelissaan tutkijat päättelivät, että todennäköisin lähtöalue NWA 11962:lle on sellainen, jossa on lähellä niin ylänköä, tasankoa, kuin sellaistakin aluetta, jossa näkyy merkkejä pinnalle tuhkaa ja lasipalleroita pölläyttäneestä pyroklastisesta purkauksesta. Tarkempi paikan haarukoiminen vaati kuitenkin yllättäviin kraatterihavaintoihin perehtymistä. Niiden alkuperä yltää 50 vuoden taakse.
Kuun kylmät läiskät
Yksi joulukuussa 1972 Kuuhun lentäneen Apollo 17:n huoltomoduulin kylkeen tyrkätyistä mittalaitteista oli infrapunaradiometri. Se kartoitti Kuun pinnan lämpötilavaihteluja etenkin öisin. Pinnan yölämpötilaa hallitsevat kivien fysikaaliset ominaisuudet ja raekoko, käytännössä siis se, onko pinnalla vähintään nyrkin kokoisia lohkareita tai paljasta kalliota, vai onko se kuupölyn peitossa. Kuten kokemusperäinen tieto kesäisiltä rannoiltakin kertoo, lohkareet ja kallio pysyvät lämpiminä pitkään Auringon laskettuakin. Siksi ne näkyivät Apollo 17:n infrapuna-aineistossakin kirkkaina kohteina.
Mittausaineistosta löytyi kuitenkin myös kohtia, joissa lämpötila oli kymmenkunta astetta keskimääräistä kylmempi. Yksi näistä kylmistä läiskistä (cold spots) saatiin yhdistettyä valokuvissa nähtyyn kirkkaaseen läiskään, mutta niin kirkkaan kuin kylmienkin läiskien synty jäi tuolloin arvoitukseksi.
Kuun kylmistä läiskistä saatiin tarkempaa tietoa vasta 2010-luvulla Lunar Reconnaissance Orbiter -luotaimen Diviner– radiometrin myötä. Vuonna 2014 Joshua L. Bandfieldin johdolla niitä löydettiin peräti pari tuhatta 50:nnen eteläisen ja pohjoisen leveyspiirin väliseltä alueelta. Uusien valokuvien myötä ilmeni myös, että se mikä 1960-luvun kuvissa oli näyttänyt vain epämääräiseltä kirkkaalta töhryltä, olikin aina pieni nuori törmäyskraatteri ja sitä ympäröivä heittelekenttä.
Kylmät läiskät ovat huomattavasti laajempia kuin niiden keskellä olevat tyypillisesti vain joidenkin kymmenien tai satojen metrien läpimittaiset kraatterit ja niiden heittelekentät. Hiemankaan isompien kraattereiden tapauksessa itse kraatterit ja heittelekentät näkyvät lämpöisinä kohteina, aivan kuten niiden lohkareisuutensa vuoksi sopii olettaakin tekevän. Tämä lämmin alue yltää enimmillään suunnilleen kymmenen kraatterin säteen päähän. Kylmä läiskä voi kuitenkin yltää aina sadan kraatterin säteen päähän, eli merkittävästi etäämmälle kuin normaali valokuvissa näkyvä heittelekenttä. Osassa kylmiä läiskiä kuitenkin erottuu heittelekentille tyypillinen säteittäinen rakenne, joten jonkinlainen heitteleilmiö kyseessä lienee.
Bandfieldin ryhmä ehdotti läiskien synnylle kahta vaihtoehtoista mallia. Perinteisemmän idean mukaan näkyvän heittelekentän ulkopuolelle lentää hienojakoista ainesta, joka ei kasaa merkittäviä heittelekerrostumia. Se ei toisaalta myöskään kaiva ajan saatossa tummentuneen regoliitin alta näkyviin kirkkaampaa ainesta, vaan ainoastaan pöyhii pintaa sen verran, että siitä tulee entistä kuohkeampi.
Vaihtoehtoisen mallin mukaa pöyhimisestä olisi vastuussa joko törmänneen kappaleen, kohdekallioperän tai molempien höyrystymisestä peräisin oleva kaasu. Joka tapauksessa lopputuloksena on alue, jossa regoliitin ylin osa ehkäpä noin viidestä sentistä muutamaan kymmeneen senttiin on höttöisempää kuin ympäristön koskemattoman regoliitin pinta. Siksi se on myös öisin kylmempää.
Vuonna 2018 Jean-Pierre Williams ja Bandfield kollegoineen julkaisivat tutkimuksen, joka tarkensi aiempia käsityksiä kylmien läiskien nuoresta iästä. Kraatterilaskujen perusteella suurimmat kylmät läiskät ovat korkeintaan noin miljoona vuotta vanhoja, pienemmät vain joitain satoja tuhansia vuosia. Kuun miljardeja vuosia vanhaa pintaa on pidetty muuttumattomuuden perikuvana, joten tällaiset geologisessa mielessä nopeasti katoavat mutta kymmenien kilometrien läpimittaiset piirteet vaativat ainakin pienimuotoista ajattelutavan muutosta.
NWA 11962:n (mahdollinen) alkuperä
Kuumeteoriittien valtaosan tiedetään singahtaneen Kuun pinnalta avaruuteen viimeisen puolen miljoonan vuoden aikana. Noin nuoria vähänkään suurempia kraattereita ei ole likikään riittävästi selittämään kuumeteoriittien kirjoa. Näin ollen pienet, nuoret, kylmien läiskien ympäröimät kraatterit ovat kuumeteoriittien todennäköisin lähtöpaikka.
Bechtoldin ryhmä käytti Williamsin ja Bandfieldin läiskälistaa, 1990-luvun lopulla Kuuta kiertäneen Lunar Prospector -luotaimen gammaspektrometrin tuottamia geokemiallisia karttoja ja omia tutkimuksiaan NWA 11962:n koostumuksesta selvittääkseen sen todennäköisen lähtöpaikan. Kyseessä on tiettävästi ensimmäinen kerta, kun kasassa on riittävän yksityiskohtaista tietoa kuumeteoriitin koostumuksesta yhdistettynä kaukokartoitusaineistoon ja riittävään ymmärrykseen nuorimmista Kuun kraattereista, jotta meteoriitin lähtöpaikan selvittämistä voidaan yrittää kohtalaisen uskottavasti perustellen. (Eriasteisia enemmän tai vähemmän vakuuttavia ideoita toki on aiemminkin esitetty.) Bechtold kollegoineen löysikin yhden – ja vain yhden – kylmän läiskän keskellä sijaitsevan kraatterin, joka on ylängön ja mare-basalttien rajaseudulla, jota ympäröivien basalttien titaanipitoisuus sopii NWA 11962:sta määritettyihin, ja jonka lähistöllä on todennäköisiä pyroklastisia kerrostumia, jotka voisivat selittää NWA 11962:n sisältämät vulkaaniset sferulit.
Kraatteri sijaitsee lähes keskellä Kuun lähipuolta Sinus Mediin eli Keskuslahden kaakkoisrannalla, suunnilleen Réaumur D ja Rhaeticus J -kraatterien välissä kymmenkunta kilometriä ensin mainitusta kaakkoon kohdassa 3,009° itäistä pituutta, 0,387° eteläistä leveyttä. Sen läpimitta on noin 320 m. Itse kraatteri ja sen kirkas lähiheittele näkyvät Diviner-aineiston yölämpötilakartoissa lämpiminä. Sitä ympäröi noin 5 km:n läpimittainen kylmä läiskä. Ehkäpä täältä, kenties vain joitain satoja tuhansia vuosia sitten NWA 11962 sai räjähtävän lähdön matkalleen, joka äskettäin päättyi jonnekin päin luoteisen Afrikan aavikoita.
On kiehtovaa ja Kuun geologian tutkimuksen kannalta lupauksia herättävää ajatella, että NWA 11962:n lähtöpaikka Kuussa saatetaan tietää paljon tarkemmin kuin sen löytöpaikka maapallon pinnalta. Ei lähtöpaikka toki varma ole. Kuun pintakerrosten sekoittuminen törmäysten vaikutuksesta niin pysty- kuin vaakasuunnassakin on edelleen kohtalaisen huonosti ymmärretty prosessi. Näin ollen on periaatteessa täysin mahdollista, että sopiva yhdistelmä mare-basaltteja, ylänköainesta ja vulkaanisia sferuleja on päätynyt myös jonkin muun sopivan kraatterin kohdalle. Myös meteoriittien laukaisuun Kuun (tai minkä tahansa muun isomman kappaleen) pinnalta liittyy vielä paljon asioita, jotka tunnetaan melkoisen kehnosti.
Vaikka Bechtoldin ryhmä olisikin oikeassa, ei kaukokartoitusaineistosta tulkittu geologinen konteksti koskaan ole lähellekään yhtä tarkkaa kuin mihin geologisen koulutuksen saanut astronautti pystyy paikan päällä. Kukaan ei kuitenkaan varmuudella tiedä, milloin saamme seuraavat robotti- tai ihmisgeologit Kuuhun hakemaan näytteitä. Uusien näytteenhakupaikkojen lukumäärä tulee myös ainakin seuraavat vuosikymmenet olemaan hyvin rajallinen. Siksi onkin niin äärimmäisen kutkuttava ajatus, että nyt meillä lienee ainakin kohtalainen mahdollisuus selvittää museoissa ja tutkimuslaitosten varastoissa lojuvien kuumeteoriittien lähtöpaikkojen geologinen konteksti kuulentoihin verrattuna erittäin halvalla ja helpolla tavalla.
Tämä juttu ilmestyy aikanaan hivenen pidempänä versiona myös Hieman Kuusta -blogissani.
Muokkaus 28.10.2022: Kakkoskuvaan lisätty, että kyseessä on kraatteri Bandfield ja korjattu sen läpimitta ja koordinaatit virallisten lukujen mukaisiksi. Bandfield nimettiin vasta heinäkuussa 2022, joten Williams et al.in artikkelissa, jossa Joshua Bandfield (1974–2019) vielä oli kakkoskirjoittajana mukana, tuota tietoa ei luonnollisestikaan voinut olla, mutta itse se olisi tietysti pitänyt huomata. No, tulipa ainakin nyt päivitetyksi.