Pikkuplaneetta pöydällä

19.12.2019 klo 07.00, kirjoittaja
Kategoriat: Aurinkokunta , Kraatterit , Meteoriitit , Vesta

Myöhäissyksyinen ilta uimarannalla

Kun marraskuu alkoi hiljalleen taittua joulukuun puolelle, tallustelin kohti läheistä uimarantaa. Suomen syksylle tyypillinen lähes kuukauden jatkunut yhtämittainen pilvisyys oli lopultakin tauonnut. Niinpä mukanani oli pyyhkeen ja simmareiden sijasta jalusta, parit kiikarit ja perinteiseen tyyliin paperille painettu tähtikartta.

Jäälle ei vielä tohtinut lähteä seikkailemaan. Se oli harmillista, sillä pääkohteenani ollut Etiopian kuninkaan Kefeuksen valtakunnan rannikoilla kauhua ja hävitystä kylväneen merihirviön eli Valaan tähdistö jäi ikävästi rantakoivujen katveeseen. Onneksi kuitenkin uimalaituri oli jätetty talveksi paikoilleen, joten se tarjosi riittävästi etäisyyttä rannan puihin. Laiturilta katsellen Valaan kirkkain tähti Menkar oli juuri koivunlatvojen yläpuolella ja näkyi mukavasti paljainkin silmin, vaikka suoraan kaupungin valohehkun suunnassa olikin. Ja siellä, Menkarista hollin matkaa ylös ja vähän oikealle näkyi jo pikkukiikarilla piste samassa kohdassa, johon olin sen tähtikarttaani piirtänyt. Edellisestä kohtaamisestani kotilieden jumalatar Vestan kanssa oli kulunut vajaat pari vuotta, joten jälleennäkeminen oli hyvinkin mieluisa.

Ennen minua tai ketään muutakaan Vestan löysi saksalainen Wilhelm Olbers maaliskuussa 1807. Olbers oli monipuolinen tutkija, sillä paitsi että hän oli lääkäri ja löysi Vestan, Pallaksen ja nimeään kantavan jaksollisen komeetan, hän myös pohdiskeli yötaivaan pimeyttä ja universumin äärettömyyttä. Tämä tapahtui noin 170 vuotta ennen kuin Jukka Kuoppamäki ja Katri Helena hivuttivat Olbersin paradoksin keskeisen kysymyksen ”Miksi taivas on öisin musta, miksi valoa en mä nää?” suomalaisen iskelmäkansan tietoisuuteen. Syvällisestä pohdinnasta huolimatta Olbersilla, sen paremmin kuin Vestan radan määrittäneellä ja myös sen nimenneellä Carl Friedrich Gaussilla ei kuitenkaan vielä voinut olla aavistustakaan Vestan perimmäisestä olemuksesta.

Nykyään jo harrastajienkin tavoitettavissa alkaa olla sen tosiasian toteaminen, ettei Vesta ole pelkkä tähdenkaltainen piste. Kuun ja planeettojen valokuvaukseen erikoistunut Damian Peach onnistui jo vuonna 2007 nappaamaan kuviinsa Vestan hieman soikean muodon. Suomalaisetkin harrastajat pystyvät nykyisin kuvaamaan yksityiskohtia Jupiterin suurimpien kuiden pinnoilta, ja Vestan maksimikulmaläpimitta on näiden erottuvien yksityiskohtien suuruusluokkaa. En tiedä, onko kukaan Suomessa vielä yrittänyt kuvata Vestan muotoa, mutta huippuharrastajien tekniikka ja taidot kehittyvät sitä vauhtia, ettei temppu enää mahdottoman kaukaiselta tunnu. Vestan oppositiot toistuvat suunnilleen vuoden ja viiden kuukauden välein, joten ehkäpä maaliskuussa 2021 Vestan loistaessa komeasti Leijonan tähdistössä joku suomalainenkin onnistuu ikuistamaan Vestan muodon.

Näytteitä Vestasta?

Uimarannalta takaisin kotiin päästyäni oli pakko ottaa vitriinistä esiin pieni rasia, jossa luki Bilanga. Avasin rasian, ja tavoistani poiketen koskin paljain sormin tuohon pieneen hauraaseen kivenmuruseen. Kyseinen pikkukivi päätyi aika tarkkaan 20 vuotta sitten Burkina Fasoon, jonnekin Bilanga-Yangan ja Gomponsagon kylien tienoville. Bilanga on yksi 2222:sta tällä hetkellä tunnetusta HED-meteoriitista. Jo viitisenkymmentä vuotta olemme tienneet, että HEDit – howardiitit, eukriitit ja Bilangan kaltaiset diogeniitit – ovat mitä suurimmalla todennäköisyydellä peräisin Vestasta. Juuri siksi minä sinne kivivitriinilleni menin: hetkeä aiemmin kiikarilla pisteenä näkemäni Vesta oli nyt siinä kirjoituspöydälläni, kosketeltavissa ja ihasteltavissa. No, mitättömän pieni osa Vestaa tietenkin, mutta sekin oli tarpeeksi saadakseen kylmät väreet kulkemaan selkääni pitkin.

Pikkuplaneetta(a) pöydällä. Bilanga on palanen Vestan ylävaippaa. Yläreunassa millimetriasteikko, joten näytteen leveys on pari senttiä. Kuva: T. Öhman.

Alkujaan Vestan ja HEDien yhteys perustui niiden spektrien ainutlaatuiseen samankaltaisuuteen. Vuonna 1997 Hubble-avaruusteleskoopin havaintojen perusteella löydettiin Vestan etelänavalta jättimäinen törmäysallas. Se selitti vestoideina tunnettujen spektriltään ja rataparametreiltään Vestan kaltaisten kilometrien kokoluokkaa olevien asteroidien olemassaolon – vestoidit ovat yksinkertaisesti törmäysaltaan heittelettä. Altaan löytyminen auttoi myös osaltaan ymmärtämään, miten HED-meteoriitteja saattoi päätyä Maahan. Vuonna 2007, siis 200 vuotta Vestan löytymisen jälkeen laukaistu NASAn Dawn-luotain on sittemmin käytännössä varmistanut käsityksen Vestasta HEDien emäkappaleena.

Moni kutsuu Vestaa asteroidiksi. Ja mikäpä siinä, sillä sananmukaisesti tähdenkaltaiseltahan se kiikarilla katsellen näyttää. Minulle kuitenkin Vesta on pikkuplaneetta. Suurempien planeettojen tapaan se on monimuotoinen, pitkään jatkuneiden geologisten prosessien muokkaama kaunis ja kiehtova maailma, pienempi vain. Se on jopa differentioitunut, eli sillä on rautaydin, raskaiden silikaattimineraalien muodostamista kivilajeista koostuva vaippa, ja lähinnä möyhentyneestä basalttisesta laavakivestä ja sen hieman syvemmällä syntyneistä lähisukulaisista koostuva kuori. Nykyään ”pikkuplaneettaa” tunnutaan terminä vierastavan, mutta ihan syyttä. Vaan kaipa tässäkin on kyse lähinnä näkemyserosta. Tähtitieteelliseltä kannalta Vesta on piste, mutta geologeille se on oma pieni maailmansa. Mikä parasta, se on maailma, josta on runsaasti näytteitä ja jonka pinnanmuodot ja koostumus tunnetaan poikkeuksellisen hyvin.

Vestan topografia. Punaiset alueet ovat korkeimpia, tummansiniset matalimpia. Noin 24 km:n läpimittainen Licinia on merkitty mustalla nuolella. Kuvan alareunassa törröttää Rheasilvian massiivinen keskuskohouma. Keskuskohoumasta ylävasemmalle näkyy myös Rheasilvian pohjan ainutlaatuisia spiraalimaisia rakenteita. Vestan keskimääräinen halkaisija on noin 525 km. Kuva: NASA / JPL / VestaTrek / T. Öhman.

Vestan neitsyet

Jo pian sen jälkeen kun Dawn saapui Vestan kiertoradalle, kävi ilmi, että Hubblen kuvissa nähty Vestan eteläinen törmäysallas muodostuukin kahdesta päällekkäisestä altaasta, eli vanhemmasta 400-kilometrisestä Veneneiasta ja geologisesti varsin nuoresta 500-kilometrisestä Rheasilviasta. Samaan allaskompleksiin kuuluu vielä kolmaskin, osin Rheasilvian alla oleva nimetön 250-kilometrinen allas. Rheasilvian keskuskohouman korkeus vetää lähes vertoja aurinkokokunnan korkeimmalle vuorelle, Marsin maineikkaalle Olympus Monsille. Rheasilvian synty kesti noin puoli Vestan vuorokautta (joka puolestaan kestää reilut viisi tuntia), joten coriolisvoima ehti vaikuttaa prosessin kulkuun synnyttäen hämmentäviä spiraalimaisia rakenteita, jollaisia ei vastaavassa mitassa ole toistaiseksi tavattu mistään muualta aurinkokunnastamme.

Dawn-luotaimen spektrometrien ja kameroiden tuottaman aineiston tutkimus osoitti, että eukriittista ainesta on etenkin Vestan päiväntasaajan tienoilla. Eukriitit edustavat Vestan kuorikerrosta, eli basalttisia laavoja ja niitä vastaavia hitaammin kiteytyneitä syväkiviä. Howardiitit puolestaan ovat murskaantuneita seoskiviä eli breksioita, joissa on sekaisin diogeniittista, eukriittista, ja silloin tällöin myös hiilikondriittimeteoriiteista peräisin olevaa runsaasti vettä ja muita helposti haihtuvia yhdisteitä sisältävää ainesta. Howardiittinen materiaali muodostaa Vestan irtonaisen ”maaperän”, regoliitin, joka kattaa suurimman osan Vestan näkyvästä pinnasta.

Diogeniittistä ainesta esiintyy lähinnä Rheasilvian törmäysaltaan sisällä ja sen heittelekentällä. Sulan kiviaineksen kiteytymistä ja kemiaa tutkivien petrologien työn ansiosta on jo vuosikymmeniä on tiedetty, että diogeniitit ovat lähtöisin Vestan ylävaipasta. Vestan tapauksessa se alkaa vasta parinkymmenen kilometrin syvyydestä, joten jollain ilveellä diogeniitit on saatava kaivettua ylös ja nostettua avaruuteen ennen kuin niitä voi päästä putoilemaan burkinafasolaisten kylien liepeille. Veneneia ja Rheasilvia tarjoavat tälle luonnollisen selityksen: jos yksi suuri törmäys räjäyttää ensin suuren osan Vestan kuorikerroksesta pois, on toisella lähes samaan kohtaan tapahtuvalla vielä suuremmalla törmäyksellä helppo työ nostaa ylävaipan kiviainesta Vestan pinnalle ja avaruuteen.

Vaikka Rheasilvia ryöpsäytti avaruuteen runsaasti Vestan ainesta, ei se kuitenkaan voi suoraan olla nykypäivänä putoilevien HED-meteoriittien takana. Tämä johtuu siitä, että kolmasosa kaikista HEDeistä sinkoutui avaruuteen vasta noin 22 miljoonaa vuotta sitten. Bilanga edustaa toista porukkaa, joka on seilannut avaruudessa suunnilleen 49 miljoonaa vuotta ennen päätymistään maapallolle. Vaikka Rheasilvia suureksi altaaksi nuori onkin – ehkä noin miljardi vuotta – on se silti aivan liian vanha kyetäkseen selittämään näiden HED-klaanien avaruudessa viettämän ajan lyhyys. Myöskään Rheasilvian synnyttämien vestoidien keskinäiset törmäykset eivät kelpaa HEDien valtaosan alkulähteeksi. HEDien selittämiseksi tarvitaankin kohtalaisen suuria huomattavasti Rheasilviaa nuorempia törmäyksiä itse Vestan pinnalle ja mieluiten vielä sopiville alueille, jotta avaruuteen päätyy oikeaan aikaan merkittäviä määriä Vestan ylävaipasta, kuoresta ja regoliitistä peräisin olevaa ainesta. Viime toukokuussa julkaistun tutkimuksen ansiosta meillä onkin nyt suht luotettavalla pohjalla oleva käsitys siitä, missä noiden törmäysten synnyttämät kraatterit sijaitsevat.

HED-meteoriittien lähtökraatterit

Howardiittien, eukriittien ja diogeniittien todennäköisten lähtöpaikkojen selvittämisessä vaikeinta on oikean ikäisen kraatterin löytäminen. Toisten taivaankappaleiden törmäyskraatterien tai laavatasankojen iän määrittäminen ei nimittäin ole helppoa. Käytännössä ainoa keino on laskea, kuinka monta törmäyskraatteria pinta-alayksikköä kohti löytyy. Kraatterien määrästä ja kokojakaumasta pitäisi sitten päätellä pinnan vuosissa mitattava ikä. Menetelmä toimii joltisenkinmoisella tarkkuudella Kuussa, koska Apollo- ja Luna-näytteiden ansiosta meillä on näytteitä alueilta, joiden kraatteritiheydet tunnetaan. Kuunäytteiden iänmääritys laboratoriossa ei kuitenkaan sekään ole yksinkertaista puuhaa, tulosten geologisesta tulkinnasta puhumattakaan. Niinpä Kuun eri ikämalleissa satojen miljoonien vuosien heitot suuntaan tai toiseen ovat arkipäivää. Muiden taivaankappaleiden kohdalla homma on vielä huomattavasti hankalampaa, sillä näytteitä varmasti tunnetuilta paikoilta ei ole, törmäysnopeudet ja sen myötä syntyvien kraatterien koot eivät ole samat kuin Kuussa, eikä törmäävien kappaleiden populaatio muutenkaan vastaa Kuuta. Hämmästyttävää kyllä, kaikista näistä hankaluuksista huolimatta sekä Bilangan porukan että 22 miljoonaa vuotta matkanneiden HEDien lähtökraatterit Vestalla todennäköisesti – tai ainakin mahdollisesti – tunnetaan.

Antonia on läpimitaltaan noin 16,8-kilometrinen kaunis, persoonallisen näköinen kraatteri Rheasilvian sisällä. Monien muiden Vestan kraatterien tapaan se syntyi loivaan rinteeseen, mikä selittää sen heitteleen epäsymmetrisen leviämisen enimmäkseen alarinteen suuntaan. Kraatterilaskujen perusteella sen heittelekentän ikäarviot pyörivät enimmäkseen jossain noin 18:n ja 24:n miljoonan vuoden välillä. Mallinnusten mukaan sen heitteleen kappaleet olivat suurimmillaan nelimetrisiä järkäleitä, ja tyypillisesti läpimitaltaan noin 0,25–1,25 metriä. Ideaalista tavaraa synnyttämään 22 miljoonan vuoden HED-klaanin meteoriitit siis. Arviolta parisen prosenttia Antonian avaruuteen heittämästä kiviaineksesta päätyy ennemmin tai myöhemmin Maahan.

Antonia, noin 22 miljoonaa vuotta avaruudessa viettäneiden HED-meteoriittien mahdollinen lähtökraatteri. Kraatterin terävä ylärinteen puoleinen reuna on nelisen kilometriä ylempänä kuin epämääräinen alarinteen puoleinen reuna. Alarinteen suunta on kuvassa alas vasemmalle. Kuva: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA / PIA15904.

Licinia on Antoniaa hieman suurempi, suunnilleen kotimaisen kraatterihelmemme Lappajärven kokoinen 24-kilometrinen kraatteri Vestan pohjoisella pallonpuoliskolla, varsin kaukana diogeniittisen aineksen pääesiintymisalueelta. Sen ikämääritys on hieman epävarmempi kuin Antonian. Näistä lievistä puutteistaan huolimatta Licinia on selvästi paras kandidaatti selittämään Bilangan ja muut 49 miljoonan vuoden klaanin jäsenet.

Licinia, noin 49 miljoonaa vuotta avaruudessa viettäneiden HED-meteoriittien mahdollinen lähtökraatteri. Lähikuvassa Licinian pohjalla näkyy kuoppamaastoa, joka lienee muodostunut kuuman törmäyssulaa sisältävän aineksen höyrystäessä hiilikondriiteista peräisin olevaa vesipitoista ainesta. Kuva: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA / PIA16049.

Antonia ja Licinia eivät suinkaan ole ainoat HED-meteoriittien lähtökraatterit. HED-ikäryhmiä on useita muitakin, ja niiden sisälläkin on muutamien miljoonien vuosien hajontaa. Kraatterilaskujen Antonialle ja Licinialle antamat iät puolestaan ovat täysin malleista riippuvaisia, eikä kukaan toistaiseksi tiedä, mikä malleista on lähimpänä totuutta. Ne ovat kuitenkin ainoat kraatterit, jotka nykyisen käsityksen mukaan pystyvät selittämään suuren osan tunnetuista HED-meteoriiteista. Niinpä siihen saakka kunnes jotain paremmin perusteltua esitetään, olen valmis hyväksymään, että oma pieni palaseni Vestaa lähti liikenteeseen juuri Liciniasta.

Minua voi kai moittia parantumattomaksi romantikoksi, mutta Vestan ja HED-meteoriittien tarina on minusta tavattoman kaunis. Kiikarilla näkemäni piste, ehkäpä noin 4,567 miljardia vuotta sitten syntynyt ja sulanut pikkuplaneetta, miljardi vuotta sitten tapahtunut valtava törmäys, 49 miljoonaa vuotta sitten sattunut pienempi törmäys, burkinafasolaisen kylän kivisade kaksikymmentä vuotta sitten ja vitriinissäni oleva kivenmurunen muodostavat yhden suuren polveilevan kertomuksen. Siinä on vielä pieniä aukkoja, mutta suurimmalta osin tarinan sivujuonet muodostavat loogisesti etenevän kokonaisuuden. Juuri tällaisten tarinoiden vuoksi planeettageologian tutkimus on niin äärimmäisen kiehtovaa.


Muokkaus 20.12.2019: Toiseksi viimeinen kappale oli kohteen kertaan. Yhdelläkin pärjää.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Apollo 12 Myrskyjen valtamerellä

26.11.2019 klo 13.54, kirjoittaja
Kategoriat: Aurinkokunta , Kraatterit , Kuu , kuulennot

Viime kesänä ei voinut välttyä Apollo 11:n viisikymmenvuotisjuhlinnalta. Hehkutukseen oli toki aihettakin, sillä olihan Neil Armstrongin, Mike Collinsin ja Buzz Aldrinin viimeinen avaruuslento käännekohta ihmiskunnan historiassa. Ikiaikainen haave Kuun pinnalla kävelystä toteutui, ja Yhdysvallat todisti lopullisesti päihittäneensä Neuvostoliiton suurvaltojen avaruuskilpajuoksussa. Samalla presidentti Kennedyn hullunrohkea tavoite Kuussa käynnistä 1960-luvun loppuun mennessä saavutettiin.

Vaan kuinka moni huomasi, että viime viikolla tuli täyteen 50 vuotta toisesta miehitetystä laskeutumisesta Kuun pinnalle? Ellei sattunut seuraamaan NASAn kuu-uutisointia kohtalaisen tarkasti, meni koko tapaus luultavasti ohi. Korviahuumaava mediahiljaisuus heijastelee puolen vuosisadan takaista mielenmaisemaa, sillä tiedotusvälineiden, suuren yleisön ja poliitikkojen kiinnostus Apollo-ohjelmaa kohtaan romahti heti Apollo 11:n jälkeen. Kun Kuussa oli kertaalleen käyty ja venäläiset voitettu, ei seuraaville lennoille tuntunut olevan mitään mediaseksikästä tarkoitusta. Tieteelliseltä kannalta kunnianhimoisimmat kuulennot olivat kuitenkin vielä suurelta osin suunnittelupöydällä. Niiden näkökulmasta oli välttämätöntä, että Apollo 12 onnistuu tavoitteissaan.

Läntinen meri

Vaikka kaikki Kuun meret ovat basaltti-kivilajista koostuvia laavatasankoja, ne eivät suinkaan kaikki ole samanlaisia. Itäiset basaltit, esimerkiksi Apollo 11:n tuomat Mare Tranquillitatiksen kivet, ovat yleensä vanhempia kuin läntiset. Myös kerros kerrokselta laajoja alueita peittäneiden laavojen koostumus on eri paikoissa ja satojen miljoonien vuosien kuluessa vaihdellut. Kaikkein ilmeisin ero on titaanin määrä basaltissa, sillä se vaikuttaa voimakkaasti basaltin väriin: runsaasti titaania (käytännössä ilmeniitti-mineraalia) sisältävät basaltit ovat sinertäviä, titaaniköyhemmät puolestaan punertavia. Laajoissa puitteissa tässäkin on nähtävissä selvä ero Kuun itäisen ja läntisen pallonpuoliskon välillä. Tämän eron saa helposti näkyviin jo Kuusta napattuja kännykkäkuvia hieman kuvankäsittelyohjelmassa rääkkäämällä.

Apollo 12:n laskeutumispaikaksi valikoitui läntinen basalttitasanko Oceanus Procellarumin eli Myrskyjen valtameren itäosassa. Nuorehkot basaltit eivät suinkaan olleet alueen ainoa houkutin, sillä jo huhtikuussa 1967 miehittämätön Surveyor 3 -alus oli laskeutunut Oceanus Procellarumin pinnalle nelisensataa kilometriä Copernicuksen kraatterista etelälounaaseen. Kaksi ja puoli vuotta myöhemmin Apollo 12:n komentajan Pete Conradin oli määrä ohjata kuumoduli Intrepid aivan Surveyor 3:n viereen. Seuraavien lentojen onnistuminen nimittäin edellytti erittäin tarkkaa laskeutumista, ja Apollo 12:n oli määrä osoittaa, onko tarvittava tarkkuus ylipäätään mahdollista. Ja olihan se: 19.11.1969 Conrad ja hänen hyvä ystävänsä, kuumodulin pilotti Alan Bean tumpsahtivat pehmeästi Surveyor-kraatterin reunalle, vain 150 metrin päähän Surveyor 3:sta.

Yksi laskeutumispaikan valintaan johtaneista tekijöistä oli halu selvittää, kuinka ihmisen tekemät laitteet selviävät Kuun armottomissa olosuhteissa. Niinpä Conradin ja Beanin oli määrä tuoda mukanaan takaisin Maahan mm. Surveyor 3:n kamera. Se olikin pärjännyt hyvin, sillä lukuun ottamatta säteilyn ja luultavimmin kuumodulin nostattaman pölyn aiheuttamaa rusketusta, muutoksia Surveyorin osissa ei juurikaan huomattu. Mikrometeoriittipommitus oli kahden ja puolen vuoden aikajänteellä olematonta. Toisin kuin usein väitetään, streptokokki-bakteeri tuskin kuitenkaan selvisi Surveyorin matkassa Kuuhun ja takaisin, vaan se oli luultavasti maahanpaluun jälkeistä kontaminaatiota. Täyttä varmuutta asiasta ei kuitenkaan ole.

Pete Conrad Surveyor 3 -laskeutujan luona.
Apollo 12:n komentaja Pete Conrad Surveyor 3 -laskeutujan luona marraskuussa 1969. Taustalla kuumoduli Intrepid. Kuva: Alan Bean / NASA / LPI / AS12-48-7133.

Copernicus ja Kuun ajanlasku

Kuun nuorin, yhä meneillään oleva geologinen kausi on saanut nimensä tyypillisestä edustajastaan, Copernicus-kraatterista. Se hallitsee kirkkailla, satojen kilometrien etäisyydelle yltävillä kraatterista ulos lentäneestä aineksesta koostuvilla säteillään Kuun lähipuolen läntisen osan päiväntasaajan tienoita. Yksi säteistä ylittää Apollo 12:n laskeutumisalueen, mikä ei tietenkään ole sattumaa. Geologit olisivat nimittäin halunneet yhden Apollo-lennoista laskeutuvan Copernicukseen, mutta insinöörit ja etenkin NASAn johto olivat ajatuksesta huomattavasti vähemmän innoissaan. Geologeille kuitenkin kelpasi muualtakin kuin itse kraatterin sisältä kerätty Copernicus-näyte. Copernicuksen sädejärjestelmä tarjosi tähän erinomaisen mahdollisuuden.

Copernicuksen, Apollo 11:n ja 12:n sijainti Kuussa.
Apollo 11:n ja 12:n laskeutumisalueiden ja Copernicus-kraatterin sijainti. Kuva: Virtual Moon Atlas / NASA / ASU / LRO WAC / T. Öhman.

Toisella kuukävelyllään yksi Conradin ja Beanin tehtävistä oli tehdä tutkimuskaivanto Head-kraatterin reunan tuntumaan. Sieltä, noin 15 cm paikallisen heitteleen alta, löytyi huomattavasti pintamateriaalia vaaleamman aineksen kerros. Jo tässä vaiheessa Houstonin lennonjohdon takahuoneessa osa geologeista tuuletteli Copernicuksen heitteleen löytymisen merkiksi. Myöhemmät tutkimukset ovat vahvistaneet juhlimisen perustelluksi. Kaivannon vaalea aines eli näyte 12033 vastaa koostumukseltaan sitä, mitä Copernicuksesta voisi olettaakin lentävän muutaman sadan kilometrin päähän. Useat eri menetelmät ovat antaneet näytteelle myös ”järkevän” iän, noin 800 miljoonaa vuotta. Tämä sopii yhteen myös kraatterilaskujen perusteella saatuun Copernicuksen ikään.

Tutkimuskaivannosta noussut Copernicus-kraatterin todennäköinen heittele näkyy pinta-ainesta vaaleampana.
Pete Conradin kaivama tutkimuskaivanto Head-kraatterin lähellä. Pinnan alta löytynyt vaaleampi aines on todennäköisesti Copernicuksen heittelettä. Kuva: NASA / AS12-48-7051.

Copernicuksen iän tunteminen on merkittävää koko Kuun geologisen historian ymmärtämisen kannalta. Kuun nuorimpien geologisten aikakausien rajoja ei ole onnistuttu sitomaan mihinkään laajoja alueita kattavaan yksittäiseen geologiseen tapahtumaan, puhumattakaan siitä, että näitä suhteellisia aikarajoja olisi saatu minkäänlaisella varmuudella absoluuttisesti, siis vuosissa mitaten ajoitettua. Niinpä kopernikaanisen kauden tyypillisen edustajan absoluuttisen iän tunteminen tarjoaa harvinaisen datapisteen esimerkiksi kraatterilaskujen avulla Kuun pinnan ikää määrittäville tutkijoille.

Copernicuksen iän vaikutus yltää kuitenkin huomattavasti Kuuta laajemmalle. Kuu on ainoa suuri aurinkokuntamme kappale, josta meillä on näytteitä tunnetuista paikoista. Näin se tarjoaa ainutkertaisen mahdollisuuden sitoa yhteen absoluuttiset iät suhteellisten ikien kanssa. Suhteelliset iät perustuvat käytännössä suurelta osin kraatterilaskuihin, siis törmäyskraatterien määrään pinta-alayksikköä kohti. Erilaisilla malleilla, perustelluilla oletuksilla ja osin havainnoillakin Kuun absoluuttisten ja kraatterilaskuihin perustuvien ikien keskinäinen suhde on saatua siirrettyä muille taivaankappaleille. Näin koko aurinkokunnan kiinteäpintaisten kappaleiden geologisen historian kronologia lepää niiden näytteiden varassa, jotka viitisenkymmentä vuotta sitten tuotiin Yhdysvaltain kuudella Apollo-lennolla ja Neuvostoliiton kolmella miehittämättömällä Luna-lennolla takaisin Maahan.

Corvette-kaverukset Conrad, Bean ja kiertoradalta mm. spektroskopisia tutkimuskokeiluja tehnyt komentomoduli Yankee Clipperin pilotti Dick Gordon eivät valitettavasti päässeet Apollo 12:n 50-vuotisjuhlia näkemään: Al Bean kuoli vuonna 2018, Dick Gordon vuonna 2017 ja aina vauhdista pitänyt Pete Conrad moottoripyöräonnettomuudessa vuonna 1999. Heidän työnsä kantaa kuitenkin hedelmää edelleen. Paitsi että Conradin ja Beanin kenttätyön ansiosta selvitettiin Copernicuksen (todennäköinen) ikä, kertoivat näytteet myös suoraan sen, etteivät Kuun meret suinkaan syntyneet yhdessä jättimäisessä sulan kiven plörtsähdyksessä. Sen sijaan mare-vulkanismi kesti satoja miljoonia, nykykäsityksen mukaan jopa miljardeja vuosia. Ja koska Apollo 12:n laskeutumispaikka oli ohjelman läntisin, laajensi Conradin ja Beanin asentama seismometri geofyysikoiden mittausverkkoa ja sen tarkkuutta merkittävästi. Ymmärryksemme Kuun syvärakenteesta perustuu suurelta osin juuri Apollo-seismometrien tallentamien kuunjäristysten tarjoamaan tietoon.

Kuten on laita muidenkin Apollo-kivien kohdalla, monet Conradin ja Beanin keräämistä näytteistä ovat vielä lähes täysin tutkimatta. Tämä on tarkoituksellista, sillä Apollo-ohjelman tutkijat ymmärsivät sekä näytteiden ainutlaatuisuuden, että analyysimenetelmien jatkuvan kehityksen. Osa kuunäytteistä on odottanut aikaa parempaa täysin koskemattomina: yksi Apollo 17:n suljetuista kairasydännäytteistä avattiin marraskuun alussa, toisen vuoro on tammikuussa 2020. Entistä tarkemmat ja täysin uudenlaiset keinot selvitellä Kuun kivien ja mineraalien koostumusta, ikää ja fysikaalisia ominaisuuksia ovatkin viimeisen kymmenen vuoden aikana osin mullistaneet käsityksemme Kuusta ja sen kehityksestä. Merkittäviä löytöjä tehdään epäilemättä jatkossakin.

Käytännössä kaikki suurimmat avaruustoimijat, niin yksityiset kuin valtiollisetkin, ovat suunnittelemassa ja osin jo toteuttamassakin uusia kuulentoja. Niinpä vaikuttaa siltä, ettei seuraavia, aiemmista poikkeavilta alueilta peräisin olevia kuunäytteitä tarvitse odotella kovinkaan pitkään. Sitten jos ja kun niitä Maahan saadaan, painottuu tutkijoiden ja median huomio tietenkin pitkäksi aikaa niihin. Tästä huolimatta myös Apollo 12:n näytteitä tutkitaan varmasti vielä seuraavatkin 50 vuotta.


Tämä artikkeli ilmestyy myös Hieman Kuusta -blogissa, jossa on lisäksi muutama anaglyfikuva Apollo 12:n kuukävelyiltä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *