Europa – laattatektoniikkaa biljardipallolla?

31.12.2022 klo 18.21, kirjoittaja
Kategoriat: Europa , Historia , Tektoniikka , Vesi

Pian auringonlaskun jälkeen Padovassa tammikuun seitsemäntenä päivänä vuonna 1610 Galileo Galilei (1564–1642) suuntasi vielä uudenkarhean kaukoputkensa kohti Jupiteria. Vain viitisen viikkoa aiemmin hän havainnut Kuun olevan vuorten ja eri kokoisten pyöreiden kuoppien kirjoma monimuotoinen maailma, kaikkea muuta kuin aristotelisen täydellinen kirkon hyväksymä pallo. Nyt vuorossa oli vähintään yhtä järisyttäviä havaintoja.

Galilei näki suorassa rivissä Jupiterin itäpuolella kaksi ”tähteä” ja länsipuolella yhden. Aluksi hän ei kiinnittänyt niihin sen kummempaa huomiota, sillä hän piti niitä tavallisina taustataivaan tähtinä. Jo aiemmin hän oli nimittäin kaukoputkellaan pannut merkille, että tähtiä oli avaruudessa valtavan paljon enemmän kuin paljailla silmillä pystyi näkemään. Sekin oli maailmankuvaa järisyttänyt havainto.

Seuraavana iltana, 8.1.1610, Galilei havaitsi jälleen Jupiteria. Nyt hän hämmästyi: kolme kirkasta ”tähteä” näkyikin linjassa Jupiterin länsipuolella. Jupiter toki liikkuu koko ajan taivaalla taustatähtiin nähden kuten Galilei erittäin hyvin tiesi, mutta näiden kolmen ”tähden” suhteen Jupiter näytti liikkuvan päinvastaiseen suuntaan kuin sen pitäisi.

Galileo Galilein ja samalla ihmiskunnan ensimmäiset varmat havainnot Jupiterin neljästä suurimmasta kuusta eli Iosta (I), Europasta (E), Ganymedeestä (G) ja Kallistosta (K) tammikuulta 1610. Kahdeksantena päivänä Kallisto oli kaukana idässä, eikä Galilei huomannut sitä. Kaikki Galilein varhaisten Jupiter-havaintojen mallinnukset kannattaa vilkaista Ernie Wrightin erinomaiselta sivustolta. Kuva: Galileo Galilei / Wikimedia Commons / T. Öhman.

Tammikuun yhdeksännen päivän iltana Galilei ei tehnyt havaintoja, mutta kymmenentenä hän oli jälleen Jupiterin kimpussa. Nyt ”tähtiä” näkyi kaksi, molemmat Jupiterin itäpuolella. Tässä vaiheessa Galilei oivalsi, että Jupiter ei suinkaan mutkittele illasta toiseen, vaan ”tähdet” kiertävät Jupiteria. Ensimmäiset kuut Maa–Kuu-järjestelmän ulkopuolelta oli löydetty, eikä Maa senkään vuoksi ollut enää erikoisasemassa aurinkokunnassamme.

Galilein ensimmäisen Jupiter-piirroksen lähimpänä Jupiteria itäpuolella sijainnut ”tähti” muodostui todellisuudessa kahdesta kuusta. Nykyisiltä, Galilein syvästi inhoaman baijerilaisen Simon Mariuksen  (1573–1625) vuonna 1614 antamilta nimiltään Iona ja Europana tunnetut kuut olivat tuolloin niin lähellä toisiaan, ettei Galilei vaatimattomalla kaukoputkellaan kyennyt erottamaan niitä erillisinä kohteina. Kauimpana idässä oli Kallisto1, lännessä puolestaan Ganymedes.1 Seuraavana iltana Galilei ei hoksannut edelleen kaukana idässä ollutta Kallistoa lainkaan. Lännessä olleet kuut olivat Jupiterista lukien Io, Europa ja Ganymedes. Niinpä ihmiskunnan ensimmäiset piirrokset Kallistosta ja Ganymedeestä tehtiin 7.1.1610, mutta Iosta ja Europasta erillisinä kohteina vasta seuraavana iltana. Galilein kunniaksi nämä Jupiterin neljä suurinta kuuta tunnetaan nykyisin Galilein kuina.

Europa on muuttunut neljässä vuosisadassa valopisteestä monien planeettatutkijoiden mielestä yhdeksi aurinkokuntamme kiinnostavimmista kohteista. Avaruusaikakauden ensimmäiset vilkaisut Europaan eivät kuitenkaan vielä kovin paljon lupailleet. Harva muistaa Pioneer 10 ja 11 -luotainten Jupiterin ohilentoja joulukuissa 1973 ja 1974.2 Osittain tämä johtuu siitä, että kuvat Jupiterista eivätkä vallankaan sen kuista olleet järin hääppöisiä. Tässä vaiheessa kuitenkin oli jo selvää, että Europan kuori, tai vähintään sen pinta, on lähinnä vesijäätä.

Ensimmäinen lähikuva Europasta otettiin Pioneer 10 -luotaimen kuvantavalla fotopolarimetrillä 3.12.1973. Kuvan erotuskyky oli noin 161 km kuvapistettä kohti. Vasemmalla lähes luomuversio, oikealla voimakkaammin tietokonekäsitelty kuva. Kuva: NASA / Pioneer 10 / IPP / A4.

Voyager-luotainten ohilennoilla maaliskuussa ja heinäkuussa 1979 Europa oli ratamekaniikan armottomien lakien vuoksi heikoimmin kuvattu Galilein kuu. Siitä huolimatta planeettatutkijoiden eteen avautui hämmästyttävä näkymä aurinkokunnan tasaisimpaan kappaleeseen. Sen pinnalta puuttuivat kraatterit lähes kokonaan, mutta sitä kirjoi ainutlaatuisten halkeamien ja muiden viivamaisten rakenteiden verkosto. Kesti kuitenkin kymmenen vuotta, ennen kuin tutkijat saivat aikaiseksi ensimmäisen artikkelin, jossa hahmoteltiin ajatusta toistensa suhteen liikkuvista jäälaatoista ja esitettiin rekonstruktioita siitä, kuinka erilaisten siirrosten erottamat laatat ovat toistensa suhteen liikkuneet. Samalla Europasta tuli maapallon jälkeen ainoa kappale aurinkokunnassamme, jossa oli siihen mennessä havaittu selviä todisteita Maan laattatektoniikalle ominaisista sivuttais- eli kulkusiirroksista, joissa laatat liukuvat toistensa ohitse.

Europan tektonisten rakenteiden kirjomaa jäistä pintaa Voyager 2 -luotaimen lähiohituksen aikaan 9.7.1979. Korkeuserojen ja etenkin törmäyskraattereiden vähyys, joka kertoo pinnan geologisesta nuoruudesta, on silmiinpistävää. Jonkinmoista ironiaa voi halutessaan nähdä siinä, että Galilei havaitsi Kuun olevan kirkolle kiusallisesti ”epätäydellinen” pallo, mutta löysi myös Europan, joka on osoittaunut koko aurinkokuntamme sileimmäksi ja siis ”täydellisimmäksi” palloksi. Kuva: NASA / JPL / Voyager 2 / ISS NA / PIA00459.

Lähes kotoisan Kuumme läpimittaista Europaa pidetään edelleen tektoniselta kannalta eniten Maata muistuttavana taivaankappaleena. Vuosina 1995–2003 Jupiteria kiertäneen Galileo-luotaimen kuvista oli nähtävissä, että lukuisat jäälaatat olivat liukuneet toistensa ohi ja erkaantuneet toisistaan. Missään ei kuitenkaan tuntunut olevan alueita, joissa laatat olisivat painuneet toistensa alle. Tämä oli tietenkin ongelma, sillä vaikka planetaarista laajenenemista voi tapahtua – esimerkkinä keskeltä turpoamisensa vuoksi ratkennut Pluton kuu Charon3 – ei Europalla kuitenkaan näy merkkejä globaalista laajenemisesta. Lopulta kahdeksisen vuotta sitten esitettiin tulkintoja, joiden mukaan tällaisia subduktiovyöhykkeitä Europassakin kuitenkin olisi. Moni yksityiskohta Europan tektoniikasta jäi kuitenkin edelleen auki.

Marraskuun Journal of Geophysical Research – Planets -lehdessä julkaistiin mielenkiintoinen laaja vapaasti luettavissa oleva tutkimus, joka tarjoaa vastausyrityksiä useisiin Europan tektoniikkaa koskeviin kysymyksiin. Geoffrey C. Collinsin johtama yhdentoista ihmisen ryhmä tutki Europan etäpuolella, siis aina Jupiterista poispäin kääntyneellä puoliskolla pituuspiirin 140°E tuntumassa olevia pinnanmuotoja kolmella lähes navalta toiselle ulottuvalla alueella.

Esimerkkejä Europan laattaliikunnoista Castalia Maculan alueella Galileo-luotaimen kuvissa. Vasemmassa sarakkeessa alkuperäinen kuva, keskimmäiseen on merkitty rakenteet, joiden osat voidaan laattoja aiempaan asentoonsa liikuttelemalla yhdistää, ja kolmannessa sarakkeessa on rakenteet yhdistetty tektonisen rekonstruktion avulla. Punaiset nuolet osoittavat laattojen suhteellista liikettä toistensa suhteen. Rivillä a on sivuttais- eli kulkusiirros, b-rivillä hieman Maan valtamerten keskiselänteitä muistuttava laattojen erkaantumisvyöhyke ja c-rivillä laattojen törmäysvyöhyke. Rivillä c on keltaisella merkitty nuorempi tektoninen rakenne, joka laattarekonstruktiossa voidaan jättää huomiotta. Kuva: G. C. Collins et al., 2022. Episodic Plate Tectonics on Europa: Evidence for Widespread Patches of Mobile-Lid Behavior in the Antijovian Hemisphere. Journal of Geophysical Research – Planets 127:e2022JE007492 / CC BY-NC 4.0.

Tutkimuksen keskeisiä johtopäätöksiä on kolme:

  1. Laattatektoniikan kaltainen aktiivisuus on Europalla laajalle levinnyttä, muttei globaalia. Laattojen liike on siis alueellisesti rajoittunutta ja voi näin ollen heijastella alueellisia tai paikallisia prosesseja. Tämä poikkeaa maapallosta, jossa laattatektoniikka on globaali, pohjimmiltaan lähes kaikkia suurimpia geologisia ilmiöitä hallitseva prosessi.
  2. Laattatektoniikan kaltainen aktiivisuus on ajoittaista eikä ole käynnissä tällä hetkellä. Laattojen liike siis käynnistyy tietyllä alueella, päättyy jossain vaiheessa ja alkaa myöhemmin uudelleen jossain muualla. Myös tässä mielessä Europa poikkeaa merkittävästi maapallosta.
  3. Laattojen liike on rajoittunutta. Havaitut siirtymät olivat tyypillisesti kymmenen kilometrin luokkaa, eikä missään nähty sataan kilometriin yltäviä siirtymiä. Myös tämä on merkittävä ero maapalloon, jossa tällaisia rajoitteita ei ole.

Collinsin ryhmän tulokset antavat siis hyvin vahvaa tukea ajatukselle, että Maan ohella myös Europalla on laaja-alaisia tektonisia liikuntoja, joissa suuret laattamaiset kuoren kappaleet liikkuvat toistensa vieritse, erkaantuvat toisistaan uuden aineksen purkautuessa niiden väliin, ja painuvat toistensa alle törmätessään. Eri asia sitten on, tohtiiko tällaista kutsua laattatektoniikaksi vai ei.

Miksi sitä sitten haluaakaan kutsua, Europan laatat kuitenkin joka tapauksessa ovat mitä suurimmalla todennäköisyydellä liikkuneet viimeisen sadan miljoonan vuoden aikana. Geologisessa mielessä merkittävä, koko Europan pintaa uudistanut toiminta on siis ollut käynnissä varsin äskettäin. Tästä kertoo myös Europan kraatteritiheys, joka on koko aurinkokunnan pienimpiä. Mutta miksi laatat eivät ole tällä hetkellä vaeltamassa mihinkään? Ja miksi liike on rajoittunutta niin ajallisesti kuin paikallisestikin? Ja johtuuko laattojen ajoittainen kuljeskelu ja pyörähtely Europan sisäisestä energiasta, vai onko kyseessä Jupiterin aiheuttamien massiivisten vuorovesivoimien aikaansaama liike?

Kuten Collinsin ryhmä artikkelissaan korostaa, näihin ja moniin muihin keskeisiin Europan geologista kehitystä koskeviin kysymyksiin on nykyisen luotainaineiston avulla hyvin vaikea antaa mitään varmahkoa vastausta. Niin suuri menestys kuin Galileo-luotain olikin, sen jumittunut pääantenni rajoitti etenkin kuvien määrää ja laatua erittäin tuntuvasti. Kun pintaa ei näe, sitä on aika hankala tutkia. Todennäköistä onkin, että todella merkittäviä edistysaskeleita Europan tektoniikan ymmärtämisessä saadaan odottaa 2030-luvulle. Silloin toivon mukaan NASAn Europa Clipper -luotain tuottaa tutkijoiden käyttöön nykyistä huomattavasti kattavampaa ja tarkempaa kuva- ja koostumustietoa. 

Europa Clipperin päätehtävä on selvittää, onko Europan jääkuoren alla paikkoja, jotka voisivat ylläpitää elämää. Yksi elämälle suotuisten olosuhteiden kannalta oleellisimmista prosessesita on ravinteiden kierrätys. Sen näkökulmasta Collinsin ryhmän havainnot toisiinsa törmäävistä ja sitä myöten jollain toistaiseksi tuntemattomalla tavalla syvyyteen uppoavista laatoista voivat olla hyvinkin oleellisia. Ravinteita voidaan kuitenkin kierrättää pinnalta mereen myös muuten kuin toisiinsa törmäävien laattojen avulla. Tästäkin aiheesta ilmestyi viime marraskuussa kiehtova tutkimusartikkeli, mutta se tarina saa odottaa vuoroaan ensi kertaan.

Sitä odotellessa voi vaikka vilkaista mainiosti näkyvissä olevaa Jupiteria pienellä kaukoputkella tai jalustalle asetetulla kiikarilla. Samalla voi tuumiskella, kuinka nopeasti itse olisi oivaltanut näiden pienten valopisteiden olevan Jupiteria kiertäviä kuita, kun mitään sellaista ei tiedetty eikä taika- ja kirkkouskon täyttämässä maailmassa myöskään hyväksytty voivan olla olemassakaan.


1Vaikka olenkin lähtökohtaisesti sitä mieltä, ettei taivaankappaleiden tai niiden pinnanmuotojen nimien kirjoitusasuja pitäisi suomalaistaa (perusteet ovat turhan pitkät tässä läpikäytäviksi), Jupiterin neljän suurimman kuun nimet ovat suomalaisissa asuissaan vuosikymmenten aikana muodostuneet melkoisen vakiintuneiksi, etenkin harrastajapiireissä (ja tutkijapiirejä Galilein kuiden ympärillä ei Suomessa tiettävästi koskaan ole ollutkaan). Niinpä poikkeus vahvistaa säännön, ja kirjoitan Kallistosta Calliston sijaan. Samoin aurinkokunnan suurin kuu on Ganymedes eikä suinkaan Ganymede.

2Veikkaisin, että vielä harvempi muistaa Pioneer 10:n ja 11:n olleen eräänlaisia Voyager-luotainten selviytymismahdollisuuksien esikartoituksia. Voyagerien piti tehdä Jupiterin lähiohitukset päästäkseen tutkimaan muita jättiläisplaneettoja. Tuossa vaiheessa ei kuitenkaan tiedetty, kuinka karuun magneettiseen myräkkään ja hiukkaspommitukseen Voyagerit joutuisivat Jupiterin ohi pyyhältäessään. Pioneerien ensisijainen tehtävä olikin tutkia hiukkasia ja sähkömagneettisia kenttiä Jupiterin lähiympäristössä. Tämä näkyi niiden mittalaitevalikoimassa, jossa ei varsinaista kameraa ollut lainkaan. Lähimmäksi kameraa pääsi mitättömällä 2,5 cm:n linssillä varustettu kuvantava fotopolarimetri, joka kuvasi Jupiteria ja sen kuita punaisen ja sinisen valon aallonpituuksilla. Synteettisen vihreän kaistan avulla saatiin aikaiseksi normaalimman näköisiä kuvia.

3Nimitettäköön Charonia tässä perinteiden mukaisesti Pluton kuuksi, vaikka järkevämpää olisi kutsua Plutoa ja Charonia kaksoisplaneettajärjestelmäksi, ei vähiten siksi, että järjestelmän massakeskipiste on tyhjässä avaruudessa Pluton ja Charonin välissä.

2 kommenttia “Europa – laattatektoniikkaa biljardipallolla?”

  1. Lasse Reunanen sanoo:

    Galileo Galilei oli merkinnyt päiväyksensä (7.1.1610 ja 8.1.1610):
    Adi 7 ja Adi 8, jotka lienee gregoriaanisen kalenterimme mukaiset
    kun oli nykyisen Italian katolisella seudulla.
    Täällä pohjoisemmassa, Ruotsin Suomen alueella oltiin vielä
    juliaanisen kalenterin päiväyksillä, 10 vrk jäljessä –
    siis vuoden 1609 loppupuolella päiväyksissään…

    1. Teemu Öhman sanoo:

      Unohtui kommentoida tähän ajallaan, pahoittelut. Gregoriaaninen vs. juliaaninen kalenteri on oleellinen asia Jupiterin kuiden löytöhistorian kannalta. Kuten tuolla blogitekstissä mainitsin, mutten sen kummemmin lähtenyt rönsyilemään (sitä kun tulee muutenkin tehtyä liian kanssa), Galilein ja Simon Mariuksen välit eivät olleet lämpimimmät mahdolliset. Hommahan meni niin, että Marius yritti väittää, että hän oli havainnut Jupiterin kuut ennen Galileita. Hän kuitenkin käytti vielä pakanallista juliaanista kalenteria, joten hänen (väitetyt) havaintonsa tehtiin todellisuudessa Galilein ensihavaintojen jälkeen. Tarinaa on avattu tarkemmin mm. tuossa blogitekstissä antamassani Marius-linkissä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *