Taivaan merkit

31.10.2022 klo 13.16, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Mainitsin viime kuussa, että kosmisen mikroaaltotaustan perusteella tiedämme, että pimeä aine (jos sitä on olemassa) on tähtiä vanhempaa. Merkinnän kommenteissa pyydettiin avaamaan sitä, miten kosmisesta mikroaaltotaustasta voi päätellä tällaisia asioita. Tämä onkin hauska aihe.

Varhaisina aikoina maailmankaikkeuden aine oli hiukkaskeittoa. Kun avaruus laajenee, keiton lämpötila laskee. Kun maailmankaikkeus saavutti 380 000 vuoden iän, lämpötila laski alle 3 000 kelvinin. Tällöin keiton valohiukkasten energia ei enää riittänyt atomiytimien ja elektronien välisen sidoksen rikkomiseen, joten ne yhtyivät atomeiksi.

Tätä ennen valo, elektronit ja ytimet olivat tiukasti kytköksissä, kun valo poukkoili elektronien sähkövarauksista, ja maailmankaikkeus oli läpinäkymätön. Atomit ovat sähköisesti neutraaleja, joten niiden muodostuttua valo ei juuri vuorovaikuta aineen kanssa, ja on siitä lähtien matkannut jokseenkin esteettä halki maailmankaikkeuden.

Tämä valo tunnetaan nimellä kosminen mikroaaltotausta. Se on kirjaimellisesti valokuva maailmankaikkeudesta 380 000 vuoden iässä, ja näyttää tältä:

Kosminen mikroaaltotausta. (Lähde: ESA:n Planck-tutkimusryhmä.)

Kuvassa näkyy taivas mikroaaltoaallonpituudella, kun on poistettu Linnunradasta ja joistakin muista lähellä olevista lähteistä tuleva säteily. Punakeltaiset alueet ovat kirkkaampia ja siniset himmeämpiä; erot ovat muutaman sadastuhannesosan kokoisia. Näistä taivaan merkeistä voi lukea, millainen maailmankaikkeus oli nuorena.

Suoraviivaisin päätelmä on se, että valon ja tavallisen aineen tiheys oli 380 000 vuoden aikaan sama kaikkialla sadastuhannesosan tarkkuudella. Tarkempaa tietoa saa tutkimalla sitä, miten täplien kirkkaus riippuu niiden koosta. Vältän blogissa kuvaajien käyttämistä, mutta tätä en malta olla laittamatta:

Kosmisen mikroaaltotaustan täplien kirkkauden ja koon suhde. Pisteet ovat Planck-satelliitin mittaustuloksia, käyrä on teorian paras ennuste. (Lähde: ESA:n Planck-tutkimusryhmä.)

Kuvassa on x-akselilla täplän koko taivaalla, ja y-akselilla se, paljonko kirkkaus poikkeaa keskiarvosta. Isoimmat täplät ovat 90 asteen kokoisia; Planck pystyy erottamaan pienimmillään vajaan asteen kymmenesosan kokoisia täpliä.

Kirkkaimpia ovat noin asteen kokoiset täplät. Tästä voi päätellä sen, miten nopeasti maailmankaikkeus laajenee. Sitä varten pitää tietää, miten täplät syntyvät.

Kun keskivertoa tiheämmät alueet varhaisina aikoina gravitaation takia tiivistyivät, valon paine työnsi niitä takaisin, mikä johti vuoroittaiseen tiivistymiseen ja harventumiseen. Edestakainen liike synnytti aaltoja, kuin järven pintaa vatkaava käsi. Aallot matkasivat nopeudella joka on noin puolet valonnopeudesta. Vanhimmat aallot olivat 380 000 vuoden aikaan ehtineet matkata 400 000 valovuotta, nuoremmat vähemmän. (Kuljettu matka on isompi kuin maailmankaikkeuden ikä kertaa nopeus, koska avaruus laajenee.)

Kappaleen kulmakoko taivaalla on sen pituus jaettuna sen etäisyydellä: mitä pienemmältä kappale näyttää, sitä kauempana se on. Kun siis tiedämme aaltojen pituuden ja kulmakoon, voimme päätellä kuinka kaukaa kosminen mikroaaltotausta on nykypäivään asti matkannut. Jos valon ja aineen eron hetkeä siirtäisi kauemmas tai lähemmäs, niin kaikkien täplien koko taivaalla muuttuisi tasaisesti. Tästä voi mitata etäisyyden tarkasti.

Koska tämä etäisyys riippuu siitä, miten maailmankaikkeus on laajentunut, kosmisesta mikroaaltotaustasta voi päätellä maailmankaikkeuden laajenemisnopeuden. Kosmologian tämän hetken merkittävin ristiriita ennusteiden ja havaintojen välillä onkin se, että tällä tavalla saa eri tuloksen kuin mittaamalla laajenemisnopeuden suoraan siitä, miten nopeasti lähellä olevat galaksit meistä etääntyvät.

Entäpä se pimeä aine? Aaltojen pituus taivaalla kertoo vain etäisyyden, mutta niiden korkeudesta voi lukea monta seikkaa. Mitä vahvemmin tiheiden alueiden gravitaatio varhaisina aikoina vetää ainetta puoleensa, eli mitä enemmän massaa niissä on, sitä voimakkaampia aallot ovat. Toisaalta näkyvä aine (eli elektronit ja atomiytimet) törmäilee koko ajan valoon, mikä hidastaa sen liikkeitä kitkan tavoin, ja vaimentaa aaltoja. Pimeällä aineella ei ole tällaista ongelmaa.

Mitä enemmän on pimeää ainetta, sitä korkeampi on pisimmän aallon aallonhuippu, ja mitä enemmän on näkyvää ainetta, sitä matalampi se on. Yhdestä huipusta ei siis voi päätellä erikseen pimeän aineen ja tavallisen aineen määrää, koska niitä molempia sopivasti kasvattamalla korkeus pysyy samana.

Mutta pimeä aine ja näkyvä aine vaikuttavat eri tavalla kuvassa näkyviin eri huippuihin. Kuvassa ei ole erotettu aallonharjoja ja -pohjia: siinä näkyy vain paljonko kirkkaus poikkeaa keskiarvosta, ei onko alue keskivertoa kirkkaampi vai himmeämpi. Joka toinen huippu vastaa itse asiassa aallonharjaa ja joka toinen aallonpohjaa.

Näkyvän aineen kitka syventää aallonpohjia ja laskee aallonhuippuja, kun taas pimeän aineen gravitaatio vahvistaa molempia. Niinpä ottamalla huomioon sekä ensimmäisen että toisen huipun korkeuden voi päätellä sekä pimeän aineen että näkyvän aineen tiheyden. Huippujen korkeuksien suhteesta voi lukea, että pimeää ainetta on noin viisi kertaa niin paljon kuin näkyvää ainetta.

Pimeä aine esitettiin alun perin selittämään sitä, miksi näkyvä aine galakseissa ja galaksiryppäissä liikkuu nopeammin kuin mitä sen oma gravitaatio pystyy selittämään. Tarvittiin ainetta, jota ei voi nähdä, eli joka ei juuri vuorovaikuta valon kanssa. Vapaus valosta osoittautui sittemmin avaimeksi myös kosmisen mikroaaltotaustan täplien ymmärtämiseen. Tämä on hyvä esimerkki siitä, miten oikeansuuntaiset ideat ratkaisevat myös uusia ongelmia ilman erillistä säätämistä – eli tekevät onnistuneita ennustuksia.

Ainoa vaihtoehto pimeälle aineelle on se, että gravitaatio käyttäytyisi eri tavalla kuin mitä yleinen suhteellisuusteoria ennustaa. On kuitenkin vaikea selittää, miksi kosmisen mikroaaltotaustan muodostumisen aikaan gravitaatio olisi kuusi kertaa odotettua vahvempi, mutta Aurinkokunnassa ei ole nähty poikkeamia yleisen suhteellisuusteorian ennusteista, vaikka niitä on mitattu sadastuhannesosan tarkkuudella. Yksikään ehdokas uudeksi gravitaatioteoriaksi ei ole pystynyt edes jälkikäteen selittämään kosmisen mikroaaltotaustan kaikkien huippujen korkeuksia, saati ennustamaan niitä.

Kosmisen mikroaaltotaustan analyysi on oikeasti monimutkaisempaa kuin vain huippujen korkeuksien ja aineen tiheyksien vertaaminen. Mikroaaltotaivaan merkeistä voi lukea fotonien ja neutriinojen tiheyden, testata kosmisen inflaation ennustetta siitä, millainen aaltojen lähteinä toimivien ylitiheiden alueiden jakauma on, ja paljon muuta.

Kosminen mikroaaltotausta on ehkä antoisin yksittäinen kosmologinen havainto: se sisältää paljon tietoa, sitä voidaan mitata tarkasti, ja sen teoreettinen tarkastelu on suoraviivaista. On paljon helpompi mallintaa pieniä aaltoja kaasussa kuin vaikkapa törmääviä mustia aukkoja.

Seuraavaksi halutaan mitata tarkemmin kosmisen mikroaaltotaustan fotonien polarisaatiota, eli sitä, mihin suuntiin ne värähtelevät. Tuloksia on odotettavissa kymmenen vuoden kuluessa japanilaiselta satelliitilta LiteBIRD sekä kansainvälisiltä maanpäällisiltä teleskooppihankkeilta Simons-observatorio ja CMB-S4.

27 kommenttia “Taivaan merkit”

  1. Boris the rat sanoo:

    hyvä luento!

    kysymys; voiko maailmankaikkeuden laajentuminen , johtua (mahdoliisesti) kauempana olevien universumien vetovoimalla?

    1. Syksy Räsänen sanoo:

      Maailmankaikkeus on kaikki aika ja avaruus, mitä on olemassa. Avaruuden laajenemisesta, ks. http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu

      1. Boris the rät sanoo:

        mutta eikö näitä multiversumi hommia ole esitetty?

        1. Syksy Räsänen sanoo:

          On, mutta niissä yleensä ”muilla maailmankaikkeuksilla” on kullakin oma erillinen aika-avaruutensa, joka ei ole yhteydessä meidän aika-avaruuteemme. Joskus sanalla ”maailmankaikkeus” myös viitataan oman avaruutemme kaukana toisistaan oleviin osiin.

          Multiversumi-ideasta tarkemmin, ks.

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaikenlaisia-selityksia/

          1. Boris the Rat sanoo:

            Ja nämä eivät voi vetovoimallaan laajentaa omaa kaikkeuttamme?

          2. Syksy Räsänen sanoo:

            Avaruuden laajenemisen syynä ei ole se, että kappaleet vetävät toisiaan puoleensa.

          3. Boris the rat sanoo:

            luulin että laajentumisen syytä ei vielä tiedetty?

          4. Syksy Räsänen sanoo:

            On tiedetty sata vuotta, vuodesta 1922 asti. Siitä, miksi laajeneminen on viime aikoina kiihtynyt, ei tosin ole varmuutta.

  2. hölmö sanoo:

    voiko universumia laajentavuminen johtua toisten universumien vetovoimalla?
    vai onko mahdollista että me itse sattumalta sijaitsemme laajentuvassa kohtaa universumia?

    1. Syksy Räsänen sanoo:

      Maailmankaikkeus on kaikki aika ja avaruus, mitä on olemassa. Avaruuden laajenemisesta, ks. http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu

  3. Eusa sanoo:

    Eikö maaimankaikkeuden sijaan olisi luontevinta puhua yksinkertaisesti kaikkeudesta?

    1. Syksy Räsänen sanoo:

      Miksipä ei.

  4. Martti V sanoo:

    Taustasäteilyssä on havaittu selkeästi kylmempi alue tai ehkä useampia. On esitetty, että se voisi olla jälki kosketuksesta toiseen universumiin. Voidaanko tällaiset ajatukset tyrmätä?

    1. Syksy Räsänen sanoo:

      Kyseinen ”kylmänä täplänä” tunnettu alue ei itse asiassa ole poikkeuksellisen kylmä. Kyseessä saattaa olla pelkkä tilastollinen sattuma.

      Mainitsemasi selitys täplälle viittaa ideaan, että kosmisen inflaation aikana olisi syntynyt kuplia, joiden törmäyksestä olisi jäänyt jälki inflaatiota ajavaan kenttään, jonka kosminen mikroaaltotausta sitten perii. Onhan se mahdollista, mutta täplä ei ole tilastollisesti niin harvinainen, että se antaisi paljon tukea tällaiselle tapahtumalle.

  5. Helena Othman sanoo:

    Jotenkin kiehtovaa ajatella, että siinä hiukkassopassa alussa oli ns kaikki, siis jos ajattelee ikäänkuin nykyhetkestä taaksepäin. Ajan, liikkeen, lämmön jne lisäksi.
    Eikä siinä keitossa ilmeisesti ollut mitään mille ei löytynyt käyttöä.

    1. Syksy Räsänen sanoo:

      Hieman aineen muodonmuutoksista tässä:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/tuhoutuuko-kaikki/

  6. Boris the Rat sanoo:

    sen verran vielä pimeästä aiheesta;

    koska painovoima ajatellaan usein avaruuden kaareutumisena; onko avaruutta laajentavan pimeän aineen aiheuttama kelmu aika-avaruuteen ”negatiivinen”? pahoittelut kysymystulvasta

    1. Syksy Räsänen sanoo:

      Mitä tarkoittaa tässä ”kelmu” ja ”negatiivinen”?

      1. Boris the Rat sanoo:

        normaali massa esitetään aika-avaruuden kaareutumisena montulle ”alaspäin” – näin ollen pimiä aine kaareuttaa aika-avaruutta ”ylöspäin” satulan tapaan?

        1. Syksy Räsänen sanoo:

          Tällaista aika-avaruuden kaarevuutta havainnollistavaa kuvaa ei voi katsoa noin kirjaimellisesti. Aika-avaruuden kaarevuudella on oikeasti 20 eri suuntaa, ei vain yksi.

          Mutta tämä vastannee kysymykseesi: pimeän aineen gravitaatio on aivan samanlaista kuin tavallisen aineen. Niiden vaikutus avaruuden laajenemiseen ja kappaleiden välisene näennäiseen vetovoimaan on sama.

          1. Boris the Rat sanoo:

            anteeksi; tarkoitin pimeää energiaa

  7. miguel sanoo:

    Sellainen kysymys, että kun alku-universumi muuttui näkyväksi fotoneille, niin jos kaikkeus ei laajene valonnopeudella, vaan äärellisellä nopeudella, niin jossain vaiheessa fotonit ilmeisesti saavuttavat/ovat saavuttaneet universumin reunan. Mihin ne sen jälkeen etenevät? Neuriinot ilmeisesti saavuttaisivat laajenevan reunan jo aiemmin. Tietysti, jos universumi on rajaton tai ääretön, niin ei olisi mitään reunaa, jonka saavuttaa.

    1. Syksy Räsänen sanoo:

      Ei tiedetä onko maailmankaikkeus äärellinen vai ääretön, mutta jos se on äärellinen, se on rajaton. Fotonit kulkevat joka suuntaan.

      Avaruuden laajenemista ei mitata nopeuden yksiköissä. Mutta jos laajeneminen hidastuu, niin valo tosiaan saavuttaa ajan kuluessa mielivaltaisen etäisiä pisteitä. Jos laajeneminen kiihtyy, näin ei tapahdu.

      Tarkemmin avaruuden laajenemisesta, ks.

      https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu

      1. Jani sanoo:

        Kun kerta maailmankaikkeudella on alku ja siitä on äärellinen määrä aikaa, niin kuinka maailmankaikkeus voisi olla ääretön?

        1. Syksy Räsänen sanoo:

          Miksipä ei? Jos maailmankaikkeus on ääretön, se on ollut koko olemassaolonsa ajan ääretön.

        2. Kyllä, havaittavalla eli meille näkyvällä maailmankaikkeudella on alku josta on äärellinen määrä aikaa, ja havaittava maailmankaikkeus on äärellinen, ja tästä on yksimielisyys.

          Kosmisen horisontin takaa meillä ei ole havaintoja. Voidaan ajatella että olisi yksinkertaisinta jos maailmankaikkeus jatkuisi siellä suurena tai peräti äärettömänä, ehkä.

          Tietoamme rajoittavat vaikeus nähdä varhaisiin ajanhetkiin (inflaation aiheuttama diluutio ym.) ja kosminen horisontti. Ja jos käytetään kvanttimekaniikan monimaailmatulkintaa, niin myös siihen liittyvä ”kvanttihorisontti”, jonka takana ovat multiversumin ne haarat jotka eivät ole meille makroskooppisesti totta, eli jotka (löysästi sanoen) eivät interferoi konstruktiivisesti meistä katsoen. Eli noin kolme horisonttia.

          1. Syksy Räsänen sanoo:

            Selvennykseksi lukijoille, että ”havaittava maailmankaikkeus” tässä tarkoittaa aluetta, josta meille on ehtinyt tulla signaaleja.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *