Sattuman sormenjäljet
(Kirjoitus on julkaistu alun perin 23.3.2024.)
Keskiviikkona Jérôme Martin tutkimuslaitoksesta Institut d’Astrophysique de Paris puhui Helsingin yliopiston fysiikan osaston kosmologiaseminaarissa maailmankaikkeuden rakenteen kvanttifysikaalisesta alkuperästä.
Menestynein teoria kaikkien rakenteiden –planeettojen, galaksien ja niin edelleen– siementen synnystä on kosminen inflaatio. Inflaatio tarkoittaa maailmankaikkeuden alkuhetkinä tapahtunutta kiihtyvää laajenemista, jonka aikana avaruus paisui valtavasti.
On satoja erilaisia malleja inflaatiosta, mutta perusversio on seuraavanlainen. Avaruuden täytti jokin kenttä, joka sai laajenemisen kiihtymään. Tämä voi olla Higgsin kenttä tai jokin muu kenttä. Kentässä (kuten kaikessa aineessa aina) oli kvanttivärähtelyjä, pieniä eroja kentän arvossa. Kiihtyvän laajenemisen takia ne venyivät nopeasti hiukkasfysiikan skaalasta kosmisiin mittoihin ja jäätyivät paikalleen. Inflaation lopuksi kenttä hajosi hiukkasiksi. Niihin paikkoihin missä kentän energia sattui olemaan vähän keskivertoa isompi syntyi enemmän hiukkasia. Näiden pienten tihentymien ympärille sitten kertyi aikanaan enemmän ainetta, ja niistä kehittyi galakseja ja muita klimppejä.
Inflaatio on ainoa fysiikan alue, jossa on käsitelty aika-avaruutta kvanttifysiikan keinoin ja onnistuneesti testattu ennusteita havaintojen avulla – se on toistaiseksi ainoa kokeellinen näkymämme kvanttigravitaatioon. Galaksien jakauma taivaalla ja kosminen mikroaaltotausta näyttävät siltä kuin mitä inflaatio ennustaa.
Mutta mistä tiedämme, onko inflaatio oikea selitys – voisiko jokin toinen tapahtuma synnyttää samanlaiset rakenteen siemenet inflaation kvanttivärähtelyiden sijaan?
Yksi tapa varmistua asiasta olisi havaita inflaation synnyttämät gravitaatioaallot. Inflaatiossa niitä syntyy tyhjästä kvanttifysikaalisten värähtelyjen takia, ja samanlaisia aaltoja on vaikea tuottaa muuten. Valitettavasti gravitaatioaaltojen voimakkuus vaihtelee eri inflaatiomalleissa, ja joissakin ne ovat niin heikkoja, ettei niitä voi havaita millään nähtävissä olevalla teknologialla.
Entä galaksien jakauma ja kosminen mikroaaltotausta – voimmeko päätellä, että ne eivät voi olla peräisin mistään klassisen fysiikan kuvaamasta tapahtumasta, vaan taustalla on inflaation kvanttifysiikkaa? Martin on yksi tämän kysymyksen parhaita asiantuntijoita.
Avain klassisen fysiikan ja kvanttifysiikan erottamiseen on se, että niissä tapahtumilla on erilaisia korrelaatioita. Korrelaatio kahden asian välillä tarkoittaa sitä, että yhden tietäminen kertoo jotain toisesta.
Esimerkiksi jos uurnassa on yksi musta ja yksi valkoinen kivi ja sieltä nostaa valkoisen, niin tietää, että seuraava on musta, ja toisin päin. Tällöin havaintojen korrelaatio on täydellinen: yksi ennustaa täysin toisen. Yleensä korrelaatio on vain tilastollinen. Jos uurnassa on kaksi mustaa ja kaksi valkoista kiveä ja sieltä nostaa valkoisen, niin todennäköisyys sille, että seuraava kivi on musta on 2/3.
Jokin ilmiö voi myös olla korreloitunut paikassa. Kun Helsingin keskustassa sataa, niin todennäköisyys sille, että myös Tapiolan keskustassa sataa on keskivertoa isompi. Kauempana korrelaatio on pienempi.
Kvanttifysiikassa on korrelaatioita, jotka eivät ole klassisessa fysiikassa mahdollisia. Yksi esimerkki koskee hiukkasten pyörimistä. Ajatellaan, että kansainvälisellä avaruusasemalla laitetaan klassisen fysiikan lakien kuvaama hyrrä pyörimään ilmassa sattumanvaraisesti siten, että sen akseli osoittaa samalla todennäköisyydellä mihin tahansa suuntaan. Jos mitataan kuinka paljon akseli on kallellaan oikealle, niin tämä ei kerro mitään siitä paljonko se on kallellaan eteen tai alas.
Kvanttimekaniikassa on toisin: alkeishiukkasen pyörimisen mittaaminen yhdessä suunnassa vaikuttaa sen pyörimiseen muissa suunnissa. Toisin sanoen pyörimisen suuntien mittaustulosten välillä on korrelaatio. Tätä korrelaatiota kuvaa Bellin epäyhtälö, joka kertoo, kuinka paljon enemmän kvanttifysiikan kuvaama systeemi on korreloitunut kuin klassisen fysiikan kuvaama.
Galaksien jakaumassa (ja kosmisen mikroaaltotaustan täplissä) on korrelaatioita. Kun tiedämme, että taivaalla on galaksi tietyssä kohdassa, se vaikuttaa todennäköisyyteen siitä, onko toisessa kohdassa galaksi.
Jos tarkastellaan vain inflaation tuottamia galaksiparien paikkoja taivaalla, niin niiden korrelaatiot voisi tuottaa jokin klassinen prosessi. Mutta Martin ja hänen yhteistyökumppaninsa ovat osoittaneet, että kun tarkastellaan inflaation tuottamien tihentymien paikkojen lisäksi sitä, miten nopeasti ne muuttuvat, niin korrelaatiot ovat monimutkaisempia, eikä klassinen fysiikka voi tuottaa niitä – kuten Bellin epäyhtälön tapauksessa.
Valitettavasti inflaation synnyttämät tihentymät muuttuvat aluksi erittäin hitaasti, ja muutosta on käytännössä mahdotonta mitata. Myöhemmin esimerkiksi galaksien muodostuessa aineen jakauma kyllä muuttuu nopeasti, mutta se johtuu aineklimppien keskinäisestä gravitaatiosta, eikä kerro mitään inflaation antamasta alkunopeudesta.
Martin on etsinyt asioita, joissa kvanttifysiikan vaikutus näkyisi ja joita olisi helpompi havaita, mutta aluksi lupaaviltakin näyttävät korrelaatiot ovat osoittautuneet tarkemmin katsottuna liian heikoiksi. Yksi mahdollisuus on se, että otetaan huomioon galaksien paikan taivaalla lisäksi myös etäisyys meistä – eli tutkitaan galaksien kolmiulotteisen jakauman korrelaatioita. Toinen mahdollisuus on tarkastella useamman kuin kahden galaksin paikkojen korrelaatioita.
Martin arvelee, että luultavasti kaikki kvanttifysiikan sormenjäljet inflaatiossa ovat liian heikkoja mitattavaksi, mutta tutkimus jatkuu. Joka tapauksessa on kiehtovaa, miten kvanttimekaniikan perustavanlaatuisia piirteitä –joiden luotaamisesta laboratoriossa myönnettiin vuonna 2022 Nobelin palkinto– voi setviä myös taivaalle katsomalla.
Eikö galakseilla ole muitakin ominaisuuksia, joita voisi käyttää korrelaation löytämiseksi, kuten massa ja pyörimisakselin suunta?
Tässä ei käytetä galaksien massaa eikä pyörimisakselin suuntaa. Pyörimisakselin suunta liittyy galaksien synnyn aikaisiin tapahtumiin, ja sen yhteys inflaation ajan tapahtumiin on liian monimutkainen selvitettäväksi. Massa taas liitty siihen, minkä kokoisia klimppejä tarkastellaan ja miten ne ovat myöhemmin kehittyneet.
Tarkasteltavana ovat kosmisen mikroaaltotausta täplien korrelaatiot ja galaksien paikkojen korrelaatiot.