Pimeyden perkaaminen

26.5.2024 klo 14.14, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Vuoden toistaiseksi merkittävin askel kosmologiassa otettiin viime kuussa, kun Dark Energy Spectroscopic Instrument eli DESI (suomeksi siis Pimeän Energian Spektroskooppinen Instrumentti eli PESI) julkaisi ensimmäiset havaintonsa.

Sonoran aavikolle Yhdysvalloissa rakennettu teleskooppi mittaa tarkkaan galaksien paikkoja taivaalla. Niiden perusteella se määrittää, miten nopeasti maailmankaikkeus laajenee ja kuinka iso aineen tiheys on. DESI tekee havaintoja yhteensä viisi vuotta, joista on nyt kulunut kolme. Huhtikuussa julkistettu analyysi perustuu ensimmäisen vuoden dataan – nykyään kosmologiset havainnot ovat niin laajoja ja monimutkaisia, että vuodessa kerätyn datan perkaamiseen menee ainakin kaksi vuotta. Ensimmäisen vuoden analyysi ei ole edes vielä kokonaan valmis.

Teknologian kehitys on ollut jo yli 30 vuotta tärkein kosmologiaa eteenpäin vievä tekijä. DESI mittasi vuodessa kuuden miljoonan galaksin paikat. Tämä on kaksi kertaa niin paljon kuin mitä edellinen iso havaintoprojekti Sloan Digital Sky Survey keräsi 20 vuodessa. Viidessä vuodessa DESI tulee mittaamaan 40 miljoonan galaksin sijainnin.

Nyt julkaistu analyysi perustuu varhaisen maailmankaikkeuden ääniaaltojen jalanjäljen seuraamiseen. Kosmisesta mikroaaltotaustasta nähdään, millainen aineen jakauma oli varhaisina aikoina. Kun mitataan galaksien jakaumaa eri aikoina (eli eri etäisyyksillä meistä), niin nähdään miten jakauma muuttuu aikojen kuluessa, eli miten maailmankaikkeus on kehittynyt.

Havaintojen edistymisestä kertoo sekin, että DESIn havainnot ovat niin tarkkoja, että niiden virheet ovat käytännössä merkityksettömiä. Analyysin virherajat, jotka ovat alle prosentin, tulevat kokonaan teoreettisesta mallista galaksien jakauman kehitykselle: jotta galaksien paikoista voi lukea, miten maailmankaikkeus on kehittynyt, pitää tietää, miten ne liikkuvat ympäriinsä aikojen kuluessa.

Yksi DESIn päätavoitteista on pimeän energian muutoksen mittaaminen. Pimeä energia on jokin tuntematon aineen muoto, jonka on kenties vastuussa siitä, että maailmankaikkeuden kiihtyminen on viimeisen muutaman miljardin vuoden aikana kiihtynyt.

Keskeinen kysymys on se, onko pimeä energia tyhjän tilan energiatiheyttä vai jotain monimutkaisempaa (vai onko kiihtymiselle jokin muu selitys). Tyhjön energiatiheys on sama kaikkialla ja aina. Vaihtoehtojen energiatiheys sen sijaan muuttuu ajan myötä, mikä vaikuttaa maailmankaikkeuden laajenemisnopeuteen.

DESIn havainnot eivät ole yksin kovin herkkiä pimeän energian mahdolliselle muutokselle, mutta yhdistettynä muihin havaintoihin ne terävöittävät kuvaa huomattavasti. DESIn uuden analyysin mukaan tyhjön energia ei enää sovi havaintoihin hyvin. Todennäköisyys sille, että tyhjön energia on oikea kuvaus verrattuna malliin, missä pimeä energia muuttuu ajan kuluessa on jotain väliltä 80:1 ja 10 000:1 tyhjön energiaa vastaan, käytetyistä havainnoista riippuen.

Suurin osa tyhjön energiasta poikkeavista havainnoista keskittyy maailmankaikkeuden kehityksen tiettyyn aikaan. Voi olla, että tuolloin tapahtui jotain erityistä, tai sitten siinä kohtaa on analyysissä jokin ongelma.

On liian aikaista tehdä johtopäätöksiä pimeän energian luonteesta: nopeasti etenevät havainnot varmistavat tai kumoavat tämän poikkeaman. On mielenkiintoista nähdä, mitä satelliitin Euclid ensi vuonna julkistettavissa havainnoissa näkyy, Euclid kun on suunniteltu juuri pimeän energian muutoksen mittaamiseen.

Pimeää energiaa vähemmälle huomiolle ovat jääneet DESIn tulokset neutriinoista. Maailmankaikkeudessa on valtavasti neutriinoja, kevyitä hiukkasia, jotka vuorovaikuttavat niin heikosti, että ensimmäisen sekunnin jälkeen ne voi havaita vain gravitaation avulla.

Aikoinaan 1970-luvulla neutriinoja ehdotettiin pimeäksi aineeksi. Pian kuitenkin todettiin, että niiden massa on liian pieni, että ne voisivat selittää kaiken pimeän aineen, ja ne liikkuvat liian nopeasti pysyäkseen sen verta paikallaan mitä galaksien kasaamiseen tarvitaan.

Nämä kaksi seikkaa ovat vieläkin neutriinojen kosmologisen tutkimuksen ytimessä. Varhaisina aikoina neutriinot pyyhkivät aineen jakaumaa tasaisemmaksi kirmatessaan lähes valonnopeudella ympäri maailmankaikkeutta. Tämän takia rakenteita syntyy varhain vähemmän. Kun maailmankaikkeus laajenee, neutriinot hidastuvat, ja myöhäisinä aikoina ne liikkuvat niin hitaasti, että ne putoavat galakseihin ja muihin massakeskittymiin. Siksi rakenteita syntyy myöhään enemmän. Vaikutus on pieni, koska neutriinot ovat paljon kevyempiä kuin muut hiukkaset: niiden massa on ainakin miljoona kertaa pienempi kuin seuraavaksi kevyimmän hiukkasen, elektronin.

DESI on tehnyt tarkimman mittauksen neutriinoiden vaikutuksesta galakseihin. Mitä isompi massa, sitä isompi vaikutus. DESI näkee miten varhaiset neutriinot tasoittavat aineen jakaumaa, mutta ei vielä pysty mittaamaan sitä, miten ne myöhemmin klimppiytyvät. Mutta DESIn tulosten antama isoin mahdollinen neutriinoiden massa on jo lähellä sitä, mikä neutriinokokeista tiedetään niiden pienimmäksi mahdolliseksi massaksi.

On todennäköistä, että neutriinoista tulee lähivuosina ensimmäiset hiukkaset, joiden massa mitataan taivaalta kosmologisin keinoin eikä laboratoriossa hiukkasfysiikan menetelmin. Nähtäväksi jää, ehtiikö ensimmäiseksi DESI, Euclid, vai jokin muu koe. Edistys tapahtuu tässä askel kerrallaan, ei äkillisen läpimurron kautta.

DESI on Euclidin ohella esimerkki siitä, miten kosmologisten havaintojen kärki on siirtymässä kosmisen mikroaaltotaustan havainnoista galaksien muodostamien rakenteiden tutkimiseen. Mikroaaltotaustan yksi etu on se, että sen teoreettinen käsittely on helppoa, kun taas galaksien liikkeisiin liittyy enemmän sotkua, mutta menetelmät galaksien liikkeiden kuvaamiselle ovat jo varsin hienostuneita.

Mikroaaltotaustasta on vielä luvassa kiinnostavia tuloksia muutaman vuoden kuluessa (erityisesti gravitaatioaaltojen saralla), mutta ison mittakaavan rakenteen puolella on enemmän kasvun varaa: moni galaksi on vielä mittaamatta.

19 kommenttia “Pimeyden perkaaminen”

  1. Eusa sanoo:

    Voisiko neutriinomeren energia korreloida pimeän aineen jakaumaan neutriino-oskillaatiolla? Yksittäisten neutriinojen energiahan vaihtelee. Onko pois suljettua, että energia neutriinojen kesken kimpuissa voisi jakautua ”matkan varrelle” niin, että ryhmänä ottaisi isompaa amplitudia pimeän aineen haloissa. Neutriinot olisivat tuossa spekulaatiossa siis aika-avaruuden runsainta rakennetta koheroiden siihen eikä itseensä kuten sähkömagneettinen aalto…

    1. Syksy Räsänen sanoo:

      Ei.

  2. Mika sanoo:

    Mitä tarkoittaa ”Kun maailmankaikkeus laajenee, neutriinot hidastuvat”?

    1. Syksy Räsänen sanoo:

      Kun maailmankaikkeus laajenee, niin kaikkien vapaasti liikkuvien hiukkasten liikemäärä laskee.

      Fotoneille, jotka ovat massattomia, tämä tarkoittaa sitä, että niiden aallonpituus venyy suoraan verrannollisesti maailmankaikkeuden laajenemiseen, mutta ne kulkevat silti aina valonnopeudella.

      Massallisille hiukkasille tämä tarkoittaa sitä, että niiden aallonpituus venyy kohti niiden massan antamaa alarajaa, ja niiden nopeus pienenee suoraan verrannollisesti siihen maailmankaikkeuden laajenemiseen.

      1. Mika sanoo:

        Kiitos. Ymmärränkö oikein, että hiukkasen aallonpituus on suoraan yhteydessä sen liikemäärään ja (massallisilla hiukkasilla) siten nopeuteen?

        Maailmankaikkeushan laajenee edelleen, kenties kiihtyvästi, joten hidastuuko kaikkien massallisten hiukkasten liike siis yhä tänäkin päivänä?

        1. Syksy Räsänen sanoo:

          Aallonpituus on kääntäen verrannollinen hiukkasen energiaan. Energia E liittyy massaan m ja liikemäärään p yhtälön E^2 = (m c^2)^2 + (p c)^2 mukaisesti.

          Liikemäärä p on kääntäen verrannollinen maailmankaikkeuden laajenemiseen: kun pituudet kaksinkertaistuvat, liikemäärä puolittuu. Eli vapaiden massallisten hiukkasten nopeudet tosiaan laskevat jatkuvasti.

  3. Mika sanoo:

    Aivan tietysti, aallonpituus ja energia ovat se yhdistävä tekijä ja liikemäärä tosiaan tulee tuosta yhtälöstä. Kiitos!

    Onko tällä vapaiden massallisten hiukkasten nopeuksien laskulla jotain käytönnön merkitystä nykyisessä maailmankaikkeudessa, vai onko se merkityksellinen ilmiö ainoastaan varhaisten aikojen ilmiöita tutkittaessa?

    1. Syksy Räsänen sanoo:

      Isoin vaikutus on neutriinoihin, koska varhaisina aikoina niiden liikemäärään liittyvä energia on paljon isompi kuin massaan liittyvä energia, mutta myöhäisinä aikoina niiden liikemäärään liittyvä energia laskee alle massaan liittyvän energian. Silloin ne putoavat galakseihin.

      Muiden hiukkasten massat ovat niin isot eli nopeudet ovat jo varhain niin pieniä, että niiden käytös ei kvalitatiivisesti muutu, mutta isommalla nopeudella on toki kvantitatiivinen merkitys. Lisäksi massaklimppeihin kuten galakseihin gravitaation takia sitoutuneiden hiukkasten nopeus määräytyy klimpin massajakaumasta, eikä enää laske laajenemisen takia (koska galaksit jne. eivät laajene).

      1. Joksa sanoo:

        Neutriinon kosminen käyttäytyminen on mielenkiintoinen ilmiö ja tässä keskustelussa aivan kiitettävästi avattu. Konkretisoi kosmologisen, matemaattisen ja kvanttinäkökulmien nivoutumista.

        Eikö avaruuden laajenemisilmiö aiheuta galaksien ja galaksiryhmien ulkopuolellakaan aineessa jotain rakennemuutosta tai epävakautta perusvuorovaikutusten vaikutusetäisyyksien mittakaavojen muutoksesta johtuen? Tai säilyykö aineen vakaus myös hajottavien voimien vähenemisestä johtuen?

        1. Syksy Räsänen sanoo:

          Mitä tarkoitat ”perusvuorovaikutusten vaikutusetäisyyksien mittakaavojen muutoksella” ja ”hajottavien voimien vähenemisellä”?

          1. Joksa sanoo:

            Ajatushypoteesina oli että Big Rip ei olisi alkeishiukasten tasollakaan on-off tilanne vaan kehittyisi avaruuden laajetessa. Vahvan vuorovaikutuksen näkökulmasta kvarkien etäisyydet kasvaisivat ytimissä paikallisen avaruuden laajenemisen mukana. Täydessä Big Rip tilanteessa matka kosmologiseen horisonttiin olisi pienempi kuin kvarkkien välimatka jolloin gluoni ei enää kykene välittämään vahvaa vuorovaikutusta. Tätä ennen perusvuorovaikutukset heikkenisi etäisyyksien kasvun suhteessa ja ydin hajoaisi aikaisempaa herkemmin esim. hiukkastörmäyksien seurauksena elleivät törmäysenergiat olisi heikeneet samassa suhteessa. Kehityskulku ilmenisi avaruuden laajenevilla alueilla aikaisemmin kuin galaksien sisällä ja galaksit jäisivät saarekkeiksi kvarkki-gluonimassaan..?

          2. Syksy Räsänen sanoo:

            Big Rip eli se, että maailmankaikkeuden laajenemisnopeus kasvaa niin nopeasti, että siitä tulee äärellisessä ajassa ääretön ja maailmankaikkeus lakkaa olemasta on hyvin spekulatiivinen. Se on eri asia kuin se, että maailmankaikkeus laajenee tai että se laajeneminen kiihtyy.

            Ei siitä sen enempää.

  4. Lentotaidoton sanoo:

    Räsänen: ”eikä enää laske laajenemisen takia (koska galaksit jne. eivät laajene)”.

    Sinä, maapallo, aurinko, galaksimme emme laajene. Gravitaatio pitää yhdessä. Nykyään vasta galaksijoukot laajenevat toisistaan. Selityksenä n 5 miljardia vuotta sitten ns pimeä energia ”voitti” gravitaation. Noin 4,5 gigaparsekin etäisyydellä olevat galaksit etääntyvät jo valoa nopeammin. Näitä voimme kuitenkin toistaiseksi nähdä, koska menneisyydessä kosmos laajeni hitaammin. Esim laajenemisen pysyvä jatkuminen eristää kuitenkin joskus galaksimme (tai senaikuisen yhdistyneen ellipsigalaksin) muista galakseista.

    Tulemme paradoksaalisesti takaisin käsitykseen kosmoksesta kuten se oli Einsteinin aikaan. Ei ole mahdollisuuksia todeta tieteellisesti muita galakseja (ei edes taustasäteilyä eikä kosmoksen laajenemista). Tähtien alkuaineprosentteja voisimme tutkia – jos vain tietäisimme mitä ne kosmologisesti tarkoittavat. Silloin elliptinen galaksimme olisi maailmankaikkeuden ”keskus” ja ainut mitä yleensä mielestämme on olemassa. JOS tuolloin yleensä olisi minkäänlaisia olioita tekemässä kosmologisia havaintoja.

    1. Syksy Räsänen sanoo:

      Pienenä korjauksena se, että Linnunrata ei ole elliptinen galaksi vaan spiraaligalaksi. Ja pimeä energia ei heti vie Linnunrataa pois muiden galaksien läheisyydestä, koska galaksimme on sitoutunut osaksi paikallista galaksien ja kääpiögalaksien ryhmää. Lopulta senkin jäsenet yksitellen irtautuvat toisistaan, mutta siihen menee kauemmin.

      1. Lentotaidoton sanoo:

        Siis se tuleva galaksimme, johonka olisi tulevaisuudessa sulautunut Andromedasta alkaen paljon paikallista tavaraa, tulisi siis olemaan se suuri elliptinen galaksimme. Pikkuhiljaa (noin 3 triljoonan, 30^18 vuoden päästä) kaikki muut galaksit häipyvät näkyvistä. Jäljellä on vain se yhdistetty elliptinen jättigalaksi, eli senaikuisten tiedemiesten koko maailmankaikkeus. Silloin kosminen taustasätelykin olisi niin heikkoa, että se ei pystyisi läpäisemään tämän galaksin omaa sätelyä (ja siis kertomaan kosmoksen todellista ikää). Käsitys olisi silloin sama kuin Einsteinin aikaan: maailmankaikkeus on yhtä kuin oma (ikuinen) galaksimme. Näin minä sen käsitin.

        1. Till Sawala sanoo:

          On totta, että jos kosminen laajeneminen jatkuu LCDM-mallissa ennustetulla tavalla, tulevaisuuden ”paikallinen universumimme” on paljon pienempi. Paikallisen ryhmän ulkopuoliset galaksit saattavat kadota näkyvistä jo muutaman 100 miljardin (10^8) vuoden kuluttua. Meillä saattaa olla pian uutisia Linnunradan ja Andromedan törmäyksestä. Palataan tähän pian – voisimme elää spiraaligalaksissa vielä jonkin aikaa 🙂

          1. Lentotaidoton sanoo:

            ”Paikallisen ryhmän ulkopuoliset galaksit saattavat kadota näkyvistä jo muutaman 100 miljardin (10^8) vuoden kuluttua.”

            Toki näin voi käydä. Mutta pointti oli se, että tuolloiset astronomit voisivat toki silti vielä havaita kosmista taustasäteilyä (sekä laskea tähtien alkuaineprosentteja) ja tehdä siitä johtopäätöksiä kosmoksen äärellisestä iästä ja maailmankaikkeuden laajenemisesta. Eli ”poissa näkyvistä” ei vielä tarkoita etteivätkö astronomit voisi silti vielä laskeskella kosmoksen ikää ja olettaa, että jotain muutakin on saattanut olla olemassa. Vasta kun taustasäteily ei enää pysty läpäisemään silloista (mainitsemani vanhaa) elliptistä galaksia, syntyy käsite maailman ainoana olemisesta.

  5. Lentotaidoton sanoo:

    ”Suurin osa tyhjön energiasta poikkeavista havainnoista keskittyy maailmankaikkeuden kehityksen tiettyyn aikaan. Voi olla, että tuolloin tapahtui jotain erityistä, tai sitten siinä kohtaa on analyysissä jokin ongelma. – ja: Nyt julkaistu analyysi perustuu varhaisen maailmankaikkeuden ääniaaltojen jalanjäljen seuraamiseen. Ja: Yksi DESIn päätavoitteista on pimeän energian muutoksen mittaaminen”.

    Onko tämä sanomasi ”poikkeavat havainnot” ja ”tietty aika” eli ”tuolloin” se 380.000 vuotta BB:stä tapahtunut?

    1. Syksy Räsänen sanoo:

      Ei, DESI:n havainnot ovat paljon myöhemmiltä ajoilta. Ongelmallinen kohta vastaa noin punasiirtymää 0.5, eli noin 8 miljardin vuoden ikää.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *