Pikkuhyrrien kertomaa
Mainitsin steriilien neutriinoiden yhteydessä ominaisuudesta nimeltä spin, jota olen sivunnut joskus aiemminkin, kertomatta kunnolla mistä siinä on kyse. Yritän hiukan korjata tilannetta ja myös valaista, miksi asian selittäminen yleistajuisesti on vaikeaa.
Klassisen mekaniikan mukainen käsitys maailmasta sopii hyvin yhteen arkiajattelumme kanssa. Kvanttimekaniikan paljastama kuva on sen sijaan outo. Esimerkiksi kaksoisrakokoetta on mahdoton ymmärtää, jos ajattelee fotonien olevan joko yhteen paikkaan keskittyneitä hiukkasia, kuten hiekanjyvät, tai pienistä osista koostuvia aaltokokonaisuuksia, kuten veden laineet. Kun kvanttimekaniikkaa haparoiden hahmoteltiin sata vuotta sitten, puhuttiin aaltohiukkasdualismista. Tällä tarkoitettiin sellaista ajatusta, että fotoni on toisaalta aalto ja toisaalta hiukkanen (sanan merkityksessä ”yhteen paikkaan keskittynyt klimppi”), riippuen siitä, missä yhteydessä sitä tarkastelee. Nykyään asia ymmärretään paremmin, ja tällainen termi hämärtää ennemmin kuin valaisee.
Hiukkanen ja aalto ovat molemmat malleja fotonien käyttäytymiselle. Jossain olosuhteissa hiukkasmalli on tarkempi, toisissa aaltomalli. Fotonia kuvaa kummassakin tapauksessa tarkasti aaltofunktioksi kutsuttu malli. Yksissä olosuhteissa aaltofunktio käyttäytyy vesiaallon tavoin, toisissa hiekanjyvän, joissakin ei kummankaan.
Tämä on kummallista vain jos sekoittaa mallin ja todellisuuden. Fotoni ei ole sen enempää aalto kuin hiukkanen kuin aaltofunktiokaan: malli on vain kuva todellisuudesta, ei todellisuus. Fotonien tapauksessa hiukkanen ja aalto ovat vajavaisia malleja, aaltofunktio on hyvin tarkka malli. (Vaikka sitäkin pitää tarkentaa kun kuvataan esimerkiksi uusien hiukkasten syntymistä kiihdytinten törmäyksissä.)
Spinin selittäminen on vaikeaa, koska se ei missään olosuhteissa käyttäydy samalla tavalla kuin mikään tuttu ilmiö. Aaltofunktio ainakin toisinaan käyttäytyy kuten klassisen mekaniikan mallit, mutta spin on puhtaasti kvanttimekaaninen ominaisuus, jolle ei ole mitään vastinetta arkikokemuksessa. Yritän silti vähän hahmotella, millainen se on.
Spinin löysi Paul Dirac vuonna 1928. Yrittäessään yhdistää kvanttimekaniikkaa ja suppeaa suhteellisuusteoriaa hän yleisti elektronia kuvaavan aaltofunktion käyttäytymistä koskevan yhtälön. Tuloksena oli yllättäen neljän yhtälön kokoelma, joka kuvaa neljää eri aaltofunktiota: elektronista on neljä eri versiota. Puolet näistä aaltofunktioista kuvaa antielektronia eli positronia, joka havaittiinkin seuraavana vuonna. Lisäksi puolet aaltofunktioista kuvaa elektroneja (ja positroneja), joilla on eri spin. Elektronin (ja positronin) spinillä on kaksi mahdollista arvoa, joita voi kutsua nimillä plus ja miinus – joskus sanotaan myös ylös ja alas. On siis olemassa plus-elektroni, miinus-elektroni, plus-positroni ja miinus-positroni.
Sittemmin on ymmärretty, että kaikilla hiukkasilla on spin, aivan kuten niillä on massa ja sähkövaraus. Hiukkasten pysyvä spin on aina kokonaisluku jaettuna kahdella. Tunnetuista alkeishiukkasista fotonien, W- ja Z-bosonien sekä gluonien spin on 1, Higgsin hiukkasen 0 ja muiden 1/2. Hiukkasia, joiden spin on kokonaisluku, sanotaan bosoneiksi. Niitä voi pinota päällekkäin miten paljon vain, ja esimerkiksi laser perustuu useiden fotonien laittamiseen samaan tilaan. Hiukkasia, joiden spin ei ole kokonaisluku, sanotaan fermioneiksi. Niitä ei voi laittaa päällekkäin samaan tilaan. Eri alkuaineet käyttäytyvät eri tavalla siksi, että niissä on ytimen ympärillä eri määrä elektroneja, jotka ovat kaikki eri tilassa. Jos elektronit olisivat bosoneita, ne kaikki vajoaisivat atomiytimen lähelle toistensa päälle, eikä tuntemaamme aineen moninaisuutta olisi. Kvanttimekaniikka ei selitä, miksi bosonit ja fermionit käyttäytyvät näin, sitä varten pitää mennä aineen teorian seuraavalle tasolle, kvanttikenttäteoriaan. Voi siis sanoa, että alkuaineiden jaksollinen järjestelmä perustuu kvanttikenttäteoriaan.
Diracin löytämät plus- ja miinuselektronit liittyvät tähän siten, että hiukkasella on pysyvän spin-arvon lisäksi muuttuva spin. Spin-1/2 hiukkasille se voi olla +1/2 tai –1/2, fotonille ja gluonille +1 tai –1, ja W- ja Z-bosonille +1, 0 tai –1. Higgsin hiukkaselle se on aina 0. Toisin kuin hiukkasen massa, spin voi siis saada eri arvoja. On tietysti tuttua, että hiukkasilla on ominaisuuksia, joiden arvo vaihtelee, esimerkiksi paikka ja liikemäärä. Mutta spin on siitä erityinen, että sillä on vain muutama mahdollinen arvo. Klassisessa fysiikassa ei ole vastaavaa ilmiötä, mutta kvanttimekaniikassa sama pätee pyörimismäärään.
Jos elektroni kiertäisi ydintä klassisen fysiikan mukaisesti, niin se voisi olla millä tahansa etäisyydellä, aivan kuten planeetat Auringon ympärillä. Kvanttimekaniikan mukaan kuitenkin vain tietynlainen pyöriminen on mahdollista, ja erilaiset pyörimistilat voi luetteloida kokonaisluvuilla. (Oikeastaan elektronit eivät kierrä protonia, koska niillä ei ole määrättyä paikkaa, mutta ei mennä siihen tässä!) Sama pätee myös liikkeeseen Auringon ympäri, mutta koska sallittujen ratojen erot ovat hiukkasfysiikan skaalaa, tällä ei ole käytännön merkitystä. Spin käyttäytyy muutenkin samalla tavoin kuin pyörimismäärä, ja joskus sitä on kuvailtu hiukkasen sisäiseksi pyörimiseksi (mihin englannin sana spin viittaakin). On kuin elektroni olisi pikkuhyrrä, joka voi kiertää oikealle tai vasemmalle aina samaa tahtia.
Spinin voi havaita sitä kautta, että se kytkeytyy magneettikenttään. Jos lähettää elektroneja magneettikentän läpi, niiden rata taipuu kahteen eri suuntaan sen mukaan onko spin +1/2 vai –1/2. Lisäksi magnetismi pohjaa spiniin: aineiden erilaiset magneettiset ominaisuudet selittyvät sillä, että elektronit ovat kasautuneet eri tavoin ydinten ympärille ja atomit eri tavoin isoiksi kokonaisuuksiksi, kuten rautapalkeiksi.
Spin löydettiin puhtaasti teoreettisten tarkastelujen myötä pohdittaessa kvanttimekaniikan ja suppean suhteellisuusteorian yhteensovittamista, ja se on yksittäisen hiukkasen tapauksessa arjesta kovin etäällä. Silti spin on aivan keskeinen asia aineen ominaisuuksien ymmärtämisessä. Sen lisäksi, että ilman sitä ei ole mahdollista käsittää alkuaineiden jaksollista järjestelmä eikä harjoittaa nykykemiaa, siihen liittyvä magnetismi on myös kirjaimellisesti modernin elektroniikan ytimessä. On mahdotonta etukäteen tietää, mitä jää haaviin teoreettiselle tutkimusmatkalle lähdettäessä.
Onko mahdotonta ajatella että alkeishiukkaset olisivat lähtökohtaisesti satunnaismuuttujia (tai satunnaiskenttiä)? Ainakin moni niihin liiittyvä ilmiö tuntuu noudattavan satunnaisilmiön logiikkaa determinismin sijaan. Mitä vähemmän hiukkasia / vuorovaikutuksia sen enemmän satunnaisilmiön roolia. Suuressa vuorovaikutusjoukossahan satunnaisuus häviää ja käytös on odotusarvon mukaista.
Juha:
Alkeishiukkasten käyttäytyminen tosiaan ei ole determinististiä, vaan perustavanlaatuisella tavalla satunnaista. Ks.
http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/maarattyina_yhteen
http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/arjen_epatotuus
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaksi-tarinaa-ajasta/
Kiitos kun tartuit haastavaan aiheeseen. Jos haluaisi ymmärtää enemmän siitä, miten hiukkasten spin muodostuu tai miksi se on juuri sitä mitä on, niin onko mitään kirjallista lähdettä josta asiaan voisi ilman alan korkeakoulututkintoa lähteä tutustumaan, vai onko ainoa vaihtoehto ryhtyä fysiikan ylioppilaaksi?
Mika:
Alkeishiukkasten spin ei muodostu mistään, sen enempää kuin niiden sähkövaraus. Se on perustavanlaatuinen ominaisuus.
Spinistä luultavasti on hyviä populaareja selityksiä, mutta tunnen populaaria kirjallisuutta niin huonosti, että en osaa neuvoa mitään.
Tarkoitin sitä, että miksi tiettyjen alkeishiukkasten spin on juuri sitä mitä se on. Vai eikö tälle vielä tiedetä syytä?
Kysymys on oikeastaan se, miksi on olemassa tietynlaisia spinejä omaavia hiukkasia. Tästä tiedetään jotain. Erilaiset spinit liittyvät erilaisiin hiukkasiin.
Esimerkiksi fotonin, gluonin ja W- ja Z-bosonien spin on 1, koska ne välittävät vuorovaikutuksia tietyllä tavalla. Sähköheikon symmetrian rikkominen vaatii spin 0 -hiukkasen, eli Higgsin bosonin – ja lisäksi se tarvitaan Standardimallin teoreettisen konsistenssin takia. Ilman spin 1/2 -hiukkasia ei ole tuntemamme kaltaista ainetta.
Mutta miksi sähköheikko symmetria pitää rikkoa, miksi pitää olla ainetta, miksi pitää olla bosonien välittämiä vuorovaikutuksia? Vastaus liittyy näihin kysymyksiin.
On erilaisia ehdotelmia, esimerkiksi säieteoriassa, mutta varmuutta ei ole.
Mainitset spinin ainoaksi löytäjäksi Paul Diracin. Tai täsmällisemmin: et puhu muista fyysikoista spinin keksimisen/löytämisen yhteydessä. Ehkä se on perusteltua teoreettisen hiukkasfysiikan yhteydessä.
Esimerkiksi Wikipedia antaa kuitenkin paljon tunnustusta muillekin, kuten W. Paulille ja Stern-Gerlachin kokeelle.
Sunnuntaikosmologi:
Eipä taida olla ainoa tapaus, kun historiallinen käsittelyni tässä blogissa on liian yksinkertaistettu! Paulin olisi tosiaan voinut mainita, Stern ja Gerlach eivät ole tässä niin oleellisia, koska heillä ei ollut oikeaa selitystä koetulokselle.
Onko tutkimustulosta, joka poissulkisi lähes varmasti sen, että spin olisi jollain tavalla osallisena kaikissa lomittuneissa tiloissa? Toisin sanoen, onko olemassa koejärjestelyä, josta havaitaan lomittuminen, mutta spinin osallisuus tulokseen olisi äärimmäisen epätodennäköistä?
Lomittuminen on kvanttimekaniikan rakenteeseen perustavanlaatuisella tavalla liittyvä ilmiö. Spin on vain yksi vapausaste muiden joukossa. Ehdotus on siksi järjetön.
Protonilla, neutronilla ja elektronilla on spin. Miten näistä muotoutuu atomin spin? Onko eri isotoopeilla sama spin? Onko ionilla sama spin kuin atomilla? Eli siis, vuorovaikuttavatko spinin (tuntemattomat?) tekijät millään tavalla toistensa kanssa?
Atomin spin ilmenee magneettisena momenttina. Onko tämä mitattava suure? Miten momentin kenttä jakautuu atomissa? Vuorovaikuttavatko lähekkäisten atomien magneettiset momentit?
Tässäpä monta kysymystä, joista osa on varmaan tyhmiä.
Spinejä lasketaan yhteen keskenään ja myös atomin osasten pyörimismäärän kanssa. Yhdistelmähiukkasilla voi olla erilainen spin niiden koostumuksesta riippuen, erikoistapauksina tästä erilaiset ytimet, atomit ja ionit.
Magneettinen momentti on eräs tarkimmin mitattuja suureita, se tunnetaan miljardisosan tuhannesosan tarkkuudella. Se siis kertoo, miten voimakkaasti elektronin spin kytkeytyy magneettikenttään.
Atomien spinit vuorovaikuttavat keskenään.