Parisuhteita

30.1.2024 klo 21.25, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Viime viikolla Giorgio Mentasti Iso-Britannian Imperial Collegesta puhui Helsingin yliopiston fysiikan osaston kosmologiaseminaarien sarjassa Aurinkokunnan käyttämisestä gravitaatioaaltojen havaitsemiseen.

Sen jälkeen kun LIGO-koeryhmä helmikuussa 2016 ilmoitti ihmiskunnan historian ensimmäisestä suoraan havaitusta gravitaatioaallosta, niistä on tullut astrofysiikan ja kosmologian keskeisiä tutkimuskohteita.

Gravitaatioaalloilla, kuten sähkömagneettisella säteilyllä, on eri aallonpituuksia. Kun tähtitieteessä on laajennettu havaintoja uusille aallonpituuksille, on löytynyt uudenlaisia ilmiöitä. Esimerkiksi mikroaaltojen, röntgensäteiden ja radioaaltojen kautta havaitaan erilaisia kohteita kuin näkyvän valon avulla. Samaan tapaan eripituisten gravitaatioaaltojen avulla näkee eri kohteita.

LIGO-havaintolaitteet, jotka toimivat yhdessä Virgo– ja KAGRA-laitteiden kanssa, ovat nähneet kymmeniä gravitaatioaaltoja, joiden aallonpituus on noin tuhat kilometriä. Euroopan avaruusjärjestö ESA:n LISAsatelliittikolmikon on määrä nousta taivaalle vuonna 2037 mittaamaan gravitaatioaaltoja, joiden aallonpituus on miljardi kilometriä, ja kiinalaiset kilpailijat TianQin ja Taiji kirivät ehtiäkseen ensin. Pulsareiksi kutsuttujen pyörivien neutronitähtien lähettämien radiosignaalien avulla on kenties havaittu gravitaatioaaltoja, joiden aallonpituus on kymmenen valovuoden suuruusluokkaa.

Samalla fyysikot yrittävät keksiä muita keinoja gravitaatioaaltojen havaitsemiseen. Mentis ja hänen väitöskirjaohjaajansa Carlo Contaldi ehdottavat uutta mutta vanhanaikaista menetelmää: mitä jos kalliiden lasersäteiden ja monimutkaisten satelliittien sijaan katsottaisiin Aurinkokunnan kappaleiden liikkeitä?

Aurinkokunnassa on arviolta miljardi asteroidia ja muuta pientä kappaletta. Niistä noin miljoonan paikat tiedetään. Kun gravitaatioaalto, jonka aallonpituus on Aurinkokuntaa isompi, pyyhkäisee halki Aurinkokunnan, se vaikuttaa samalla tavalla kaikkialla. Tällaisia gravitaatioaaltoja odotetaan olevan maailmankaikkeudessa paljon, ja vaikka mittausmenetelmä ei pystyisi erottamaan yksittäisiä kohteita, se voi havaita aaltojen yhdessä muodostaman kohinan – tähän Mentasti ja Contaldi tähtäävät.

Gravitaatioaaltoja on vaikea havaita, koska niiden aiheuttama muutos yksittäisen kappaleen rataan on pieni, mutta kappaleiden iso lukumäärä helpottaa. Mentastin ja Contaldin menetelmässä seurataan kappaleiden paikkoja suhteessa toisiinsa, joten oleellista on erilaisten asteroidiparien määrä: miljoonasta asteroidista saa muodostettua miljoona miljoonaa paria.

ESA:n Gaia-satelliitti on seurannut Aurinkokunnan asteroideja kymmenen vuotta. Elokuussa aloittava Vera C. Rubin -observatorio mittaa kymmenen vuoden aikana yli viiden miljoonan kappaleen paikkoja Aurinkokunnassa. Signaalin voimakkuus kasvaa nopeasti ajan myötä: mitä pidempään kohteita seuraa, sitä isomman poikkeaman gravitaatioaallot aiheuttavat.

Valitettavasti Gaian herkkyys on sata kertaa ja Rubin-observatorion miljoona kertaa pienempi kuin mitä pulsarien mahdollisesti havaitseman gravitaatioaaltotaustan havaitsemiseen vaaditaan. Havainnointiaikaa on vaikea kasvattaa paljon kymmenestä vuodesta, etenkin satelliittien tapauksessa. Mutta seuraavan sukupolven teleskoopit mittaavat asteroidien ratoja tarkemmin ja kenties havaitsevat useampia niitä. Lisää dataa voi saada myös seuraamalla kaukaisten tähtien paikkoja, ja yhdistämällä ne havaintoihin asteroideista.

Vaikka menetelmä ei ainakaan vielä ole kilpailukykyinen pulsarien kanssa, se on sikäli kiinnostava, että se ei maksa mitään. Asteroidien ratoja seurataan joka tapauksessa muista syistä, ja niiden käyttäminen gravitaatioaaltojen havaitsemiseen on ilmainen bonus. Samaan tapaan pulsarihavaintojen tapauksessa oli tärkeää, että planeettojen liikkeet oli selvitetty tarkkaan muihin tarkoituksiin; Jupiterin sijainti tiedetään 10 kilometrin tarkkuudella.

Fysiikassa tieto ei ole kerros toisensa päälle rakentuva torni, vaan se muodostaa verkon, jonka osat tukevat toisiaan. Kun käsityksemme maailmankaikkeudesta eri saroilla tarkentuu, mahdollisuus löytää poikkeamia tunnetusta fysiikasta kasvaa. Vastaavasti yksittäisten poikkeamien selittäminen muuttuu vaikeammaksi, koska selityksen täytyy olla sopusoinnussa monen muunkin asian kanssa..

Esimerkiksi kosmologian tämän hetken merkittävin ristiriita havaintojen ja teorian välillä, joka liittyy maailmankaikkeuden laajenemisnopeuteen, on osoittautunut vaikeaksi ratkaista, koska kun korjaa ongelman joillekin havainnoille, niin samalla huonontaa muiden tilannetta. Tämä voi viitata siihen, että teoriassa on jotain pielessä odotettua pahemmin, tai sitten havainnoissa voi olla isompia puutteita kuin mitä nyt ymmärretään. Yhteistä asteroiditapaukseen on se, että avain edistykseen on tarkemmat havainnot.

6 kommenttia “Parisuhteita”

  1. Martti V sanoo:

    Onko jotain odotettavia ilmiöitä tai ennustuksia joita uudet miittaustavat voivat paljastaa?

  2. Martti V sanoo:

    Voiko riittävän voimakas gravitaatioaalto teoriassa repiä kiinteän kappaleen rikki?

    1. Syksy Räsänen sanoo:

      Voi.

      1. Cargo sanoo:

        Voiko jokin kvanttifluktuaatio siirtää lämpökuolleen Universumin alkuräjähdystilaan ja aloittaa koko sirkuksen alusta?

        1. Syksy Räsänen sanoo:

          Lämpökuolemasta, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/ikuisuus-vailla-lampokuolemaa/

          Ei tästä sen enempää.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *