Ongelmien murskaaminen
Andreas Ringwald saksalaisesta hiukkaskiihdytinkeskuksesta DESY puhui toissapäivänä Helsingin yliopiston fysiikan osaston kosmologiaseminaarissa hiukkasfysiikan teoriasta nimeltä SM*A*S*H, joka yrittää ratkaista yhdellä jysäyksellä suurimman osan kosmologian ongelmista. Ringwald on Guillermo Ballesteroksen, Javier Redondon ja Carlos Tamaritin kanssa kehittänyt teorian.
Nimi on lyhenne sanoista Standard Model Axion Seesaw Higgs-Portal Inflation. Tämä ennemmin konkreettinen kuin suureellinen sanarimpsu (vertaa vaikka termiin ”suuri yhtenäisteoria”) kertoo jotain fyysikkojen huumorista, mutta se myös kuvaa hyvin sitä, miten SM*A*S*H on rakennettu liimaamalla yhteen toimivaksi todettuja ideoita mahdollisimman yksinkertaisella liitoksella.
Kuten nimen alku kertoo, SM*A*S*H on hiukkasfysiikan Standardimallin laajennus. Siihen on lisätty kolme steriiliä neutriinoa, samaan tapaan kuin Takehiko Asakan ja Mikhail Shaposhnikovin vuonna 2005 esittämässä mallissa nuMSM. Asaka ja Shaposhnikov halusivat selittää neutriinoilla sekä aineen ja antiaineen välisen epäsuhdan että pimeän aineen. Heidän mallissaan kevyin neutriino on pimeää ainetta. Kahden hieman raskaamman neutriinon muuttuminen tavallisiksi neutriinoiksi synnyttää hieman enemmän neutriinoita kuin antineutriinoita, mikä taasen selittää miksi ainetta on enemmän kuin antiainetta. Asaka ja Shaposhnikov halusivat, että teoriaan ei lisätä mitään hiukkasia, jotka olisivat raskaampia kuin jo tunnetut hiukkaset, joten heidän mallissaan nämä kolme neutriinoa ovat niin kevyitä, että ne on mahdollista löytää kokeellisesti.
Myös SM*A*S*H:issa steriilit neutriinot ovat vastuussa aineen ja antiaineen epäsuhdasta, joskin eri tavalla. Tämä liittyy teorian toiseen S-kirjaimeen, sanaan seesaw eli kiikkulauta, jota en tässä tarkemmin selitä. Nimi liittyy siihen, että tavalliset neutriinot ovat hyvin kevyitä ja steriilit neutriinot hyvin raskaita. Steriilit neutriinot ovat myös hyvin epävakaita, eli elinikä on hyvin lyhyt, joten ne hajoavat hyvin varhaisina aikoina, ja hajoamisessa syntyy enemmän ainetta kuin antiainetta. Hiukkaskiihdytinten energia ei riitä niiden tuottamiseen törmäyksissä, eli niitä ei voi suoraan nähdä.
Pimeä aine selittyy SM*A*S*H:issa neutriinojen sijaan teorian A-kirjaimella, eli aksioneilla. Aksionit on alun perin keksitty ratkaisemaan sen ongelman, että Standardimallista näyttää puuttuvan yksi vuorovaikutus (asiasta tarkemmin täällä). Ne kuitenkin kelpaavat myös pimeäksi aineeksi. Aksionit ovat siitä hankala pimeän aineen ehdokas, että niitä syntyy varhaisessa maailmankaikkeudessa eri tavoilla: kosmisten säikeiden romahtaessa ja inflaation loppuessa. SM*A*S*H:in hyvä puoli on se, että on selvästi määritelty, mitä teoriaan kuuluu ja miksi, joten monimutkaisten laskujen avulla on mahdollista selvittää, miten aksioneja syntyy ja milloin niiden massatiheys vastaa havaintoja pimeästä aineesta.
SM*A*S*H:in viimeinen kirjain H viittaa Higgsin kenttään. Se on Standardimallin keskeinen osa, ja vuonna 2007 Fedor Bezrukov ja Mikhail Shaposhnikov oivalsivat, että Higgs voi olla vastuussa inflaatiosta – eli selittää maailmankaikkeuden rakenteiden alkuperän. SM*A*S*H:issa inflaatio on Higgsin ja aksionin yhteinen hanke, ja tämä ratkaisee Higgs-inflaation erään ongelman.
SM*A*S*H on esimerkki nykypäivän yhtenäisteoriasta: se ei pohjaa yhteen isoon ajatukseen, vaan kokoelmaan hyviksi todettuja ideoita. Fyysikot kutsuvat tällaista lähestymistapaa nimellä bottom-up, ylös pohjalta. Sen vastakohta on top-down, alas huipulta, mistä esimerkkejä ovat yleinen suhteellisuusteoria, suuret yhtenäisteoriat ja säieteoria. SM*A*S*H on sikäli viehättävä, että lähes kaikille palasille on hyvä perustelu ja ne sopivat hyvin yhteen. Monet kosmologian teoriat ovat sen sijaan kyhäelmiä, joihin on pultattu erilaisia osia ilman hyvää syytä. Yksi kauneusvirhe SM*A*S*H:issa on: mukana on yksi uudenlainen kvarkki, joka paikkaa teorian aukkoa, vaikka teoria olisi kauniimpi aukon kanssa: ilman sitä aksioneilla ei olisi massaa, eivätkä ne voisi olla pimeää ainetta.
Kauneudesta on erilaisia näkemyksiä, ja irralliselta näyttävä pala voi osoittautua keskeiseksi kun teoriaa ymmärretään paremmin. Lopulta havainnot ratkaisevat. SM*A*S*H on kunnianhimoinen kokonaisuus, ja sen varmistaminen ja erottaminen kilpailijoista vaatii paljon havaintoja.
Ringwaldin puhe keskittyikin siihen, miten SM*A*S*H:ia voidaan testata. Helpointa on aloittaa inflaatiosta, jonka ennusteita verrataan kosmisen mikroaaltotaustan mittauksiin. SM*A*S*H ennustaa, että inflaation synnyttämien gravitaatioaaltojen voimakkuus on isompi kuin Higgs-inflaatiossa. Rakenteilla tai suunnitteilla olevat LiteBIRD-satelliitti, Simons-observatorio ja nimellä CMB-S4 kulkeva teleskooppikokoelma tulevat lähitulevaisuudessa joko havaitsemaan nämä gravitaatioaallot tai osoittamaan, että SM*A*S*H ei kuvaa todellisuutta.
On muitakin inflaatiomalleja, joiden ennusteet kosmisen mikroaaltotaustan havainnoista ovat samat kuin SM*A*S*H:in, eli lisäksi tarvitaan jotain muuta. Aksionit vuorovaikuttavat valon kanssa, joten magneettikentässä valo joskus muuttuu aksioneiksi. Tätä voi tutkia osoittamalla lampulla seinään ja katsomalla hohkaako seinän toisella puolella valoa: joskus valo muuttuu aksioneiksi, jotka pääsevät seinän läpi, ja sitten takaisin valoksi. Myös muunlaisia kokeita on. SM*A*S*H ennustaa jonkinlaisella tarkkuudella aksionien massan ja sen kuinka usein ne muuttuvat fotoneiksi. Aksioneja etsivät kokeet kattavat lähitulevaisuudessa lähes kaikki mahdollisuudet, isoimpia massoja lukuun ottamatta.
Sen jälkeen voidaan kääntyä tulevaisuuden kokeiden puoleen: erityisen kiinnostavaa on gravitaatioaaltojen tarkempi mittaaminen. Koska niitä syntyy koko ajan ja ne matkaavat esteettä halki avaruuden, niistä voi lukea maailmankaikkeuden historian kaikki vaiheet: ongelmana on se, että gravitaatioaallot ovat erittäin heikkoja.
Ringwald antoi haaveiluksi leimaamansa aikajanan SM*A*S*H:in varmentamisesta. Siinä aksionit ja inflaation aikana syntyneet gravitaatioaallot löydetään pian, 2030-luvulla. Sitten 2060-luvulla LISA–gravitaatioaalto–observatorion seuraaja osoittaa inflaation gravitaatioaaltojen eri aallonpituuksien vastaavan ennusteita. Seuraavaksi 2080-luvulla seuraajan seuraaja näkee aksionien syntymisen jättämät jalanjäljet gravitaatioaalloissa. Ja lopulta ennen vuosisadan loppua uudenlaiset gravitaatioaaltokokeet, joiden teknologiaa ei ole vielä olemassa, näkevät gravitaatioaallot, jotka ovat syntyneet kun aksioni ja Higgsin kenttä inflaation loppuessa hajoavat hiukkasiksi ja niiden synnyttämät aallot vellovat.
On silmiinpistävää, että siinä missä kosmologiassa tällaiset kauaskantoiset visiot esitetään päiväunina –kuka tietää, millaista teknologiaa on 70 vuoden kuluttua?– niin hiukkaskiihdytinten seuraavan sukupolven kehittäjät tekevät vakavissaan suunnitelmia 2090-luvulle asti.
SM*A*S*H:issa näkyy kosmologian ja hiukkasfysiikan vahva suhde. Teorian rakentamisessa on käytetty paljon hiukkasfysiikan tutkimuksessa kertynyttä ymmärrystä, se ratkaisee sekä hiukkasfysiikan että kosmologian ongelmia, ja suurin osa sen testeistä on kosmologisia.
Onko jotakin periaatetta jonka mukaan alkuräjähdyksen energia jakautuu erilaisten kenttien kesken? Näin insinöörinä voisi olettaa, että mitä pienempi kentän hiukkasen massa on niin sitä suuremman enrgiaosuuden se kaappaa maailmankaikkeuden alkuaikoina. Kevyitä, neutriinonkailtaisia hiukkasia olisi sitten lentänyt runsain mitoin ympäriinsä ja lopulta jäänyt gravitaation vietäväksi, mikä nykyään ilmenisi pimeänä aineena?
Onpa hyvinkin. Silloin kun kaikki kentät ovat lämpötasapainossa, energia jakautuu niiden kesken suunnilleen tasaisesti (riippuen tosin vähän siitä, millainen kenttä on kyseessä). Aksionit vuorovaikuttavat kuitenkin niin heikosti, että ne eivät ole koskaan olleet lämpätasapainossa.
nuMSM-mallissa yksinkertaisin idea oli se, että steriilien neutriinojen lukumäärä selittyisi sillä, että lämpötasapainossa olevat tavalliset neutriinot ovat oskilloineet steriileiksi neutriinoiksi. Tämä ei kuitenkaan toimi, pimeää ainetta syntyy liian vähän, joten syntymekanismi on monimutkaisempi.
Niin eikö tuota lämpötasapainovaatimusta voi vähän sörkkiä ja antaa suurempi osuus kentille, joilla on kevyt hiukkanen? Eihän meillä ole mitään kiveenhakattua tietoa siitä, miten perusrakenteet ja -prosessit käyttäytyvät.
Varhaisina aikoina kaikki kentät ovat kevyitä suhteessa lämpötilaan. Oleellista on se, miten voimakkaasti kentät vuorovaikuttavat. Mutta SM*A*S*H:in ongelma ei ole se, että aksioneja ei ole tarpeeksi, vaan ennemmin se, että niitä syntyy helposti liian paljon.
Herttaista ottaa optimistinen kulma tuohon SM*A*S*Hiin, mutta oikeasti se on unelmointia toiveilla. Pitäisi löytää CMB:n B-moidit, stokastinen gw-tausta, ne axionit ja niihin liityyvät topologiset defektit…
Tutkimusohjelma on kehitelty tulevaisuuteen ja saanee tukea kyllä ihan rahoitustoiveikkuuden motivoimana.
Epäilen, että löytyy keino falsifioida rakennelma jo aikaisemmin.
Miten axion ja higgs käyttäytyvät inflaation aikana? Muuttuiko axion kenttä suoraan inflaation jälkeen axioneiksi ja osa higgs kentän energiasta standardimallin hiukkasiksi ?
Inflaation aikana sekä Higgsin kenttä että aksionikenttä ovat hyvin tasaisia (siis samanlaisia kaikkialla) ja muuttuvat hitaasti. Inflaation lopussa käy suunnilleen kuten kuvailet: Higgs hajoaa lähinnä top-kvarkeiksi, joiden hajoaminen tuottaa muita hiukkasia, ja aksionikenttä muuttuu aksioneiksi. Tarkemmin katsottuna prosessi on monimutkainen, esimerkiksi myös Higgs tuottaa aksioneja.