Myyttisiä lintuja

31.8.2020 klo 11.24, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Luin Richard Baumin ja Willian Sheehanin kirjan In Search of Planet Vulcan: The Ghost in Newton’s Clockwork Universe. Se käsittelee erästä historian suurinta tieteellistä vallankumousta, nimittäin Newtonin gravitaatioteorian korvautumista yleisellä suhteellisuusteorialla. Näkökulma on sikäli kiinnostava, että suhteellisuusteoria on vain pikkujuttu lopussa. Pääosassa on Newtonin teorian kehitys, kukoistus ja lopullinen kaatuminen ongelmaan, jota yritettiin paikata Vulkanus-planeetalla. Baum ja Sheehan käyvät vaiheet läpi keskeisten henkilöiden historian kautta tuoden esille kiinnostavia yksityiskohtia.

Tarina lähtee liikkeelle vuonna 1642 Isaac Newtonista. Hänen äitinsä palvelijoiden mielestä Isaac ”ei kelpaa muualle kuin yliopistoon”, ja sepä hänen kohtalokseen koituikin. Kahdessa vuosikymmenessä 1660-luvulta 1680-luvulle Newton kehitti rakennelman, joka tunnetaan nykyään Newtonin mekaniikkana eli klassisena mekaniikkana. Se oli ensimmäinen fysiikan teoria. Yksi sen keskeinen osa oli Newtonin gravitaatioteoria, jonka mukaan jokainen kappale vetää muita puoleensa voimalla, joka on verrannollinen kappaleen massaan ja kääntäen verrannollinen kappaleiden etäisyyden neliöön.

Newtonin teoria selitti Johannes Keplerin havainnot, joiden mukaan planeetat liikkuvat ellipsin muotoisia ratoja Auringon ympäri. Newton meni Kepleriä pidemmälle selittämällä myös sen, että planeettojen radat poikkeavat ellipseistä, koska niihin vaikuttavat Auringon lisäksi myös muut planeetat.

Säntilliset havainnot olivat fysiikan kehityksen ytimessä, ja fysiikan edistys taasen johti tarkempien havaintolaitteiden kehittämiseen. Uuden teleskoopin avulla William Herschel vuonna 1781 mullisti käsityksen maailmankaikkeudesta löytämällä kokonaisen uuden planeetan, jonka nimeksi tuli Uranus.

Herschel itse ehdotti nimeä Georgium Sidus, suomeksi siis Yrjöjen tähti, kuninkaallisen tukijansa George (eli Yrjö) III:n mukaan. Avaruutta tutkittiin siinä missä tuntemattomia seutuja Maassa ja kunniaa taivaan löydöistä jaettiin kuin siirtomaiden valloitusretkistä. Kolme vuosikymmentä Uranuksen löytämisen jälkeen George III:n hallinnosta kirjoitettiin seuraavasti:

”on totta, että menetimme Amerikan kolmentoista siirtokunnan terra firman [kiinteän maan], mutta meidän tulisi olla tyytyväisiä saatuamme tri Herschelin kenraalintaitojen avulla vastineeksi paljon laajemman terra incognitan in nubibus [tuntemattoman maan pilvissä]”

Planeettojen löytämistä (kuten 1900-luvulla Kuun ”valloitusta”) pidettiin enemmän kansallisen kunnian kuin käytännön kysymyksenä. Tosin jo Kepler oli vuonna 1608 kirjoittanut avaruusmatkailusta, ja planeettoja pidettiin elinkelpoisina, eikä tutkimusmatkojen ulottamista niihin pidetty mahdottomana.

Fysiikan menestyksellä oli valtava ideologinen merkitys. Newtonin teoria alisti aiemmin salaperäiset taivaan ilmiöt väistämättömien lakien avulla ihmisjärjen käsitettäviksi. Sattumanvaraisen tuhon tuojina nähdyt komeetat näyttivät nyt kasvonsa vain Newtonin teorian määrääminä ajankohtina: fysiikka valjasti kaaoksen airuet järjestyksen näytekappaleiksi. Jo protofyysikko Francis Bacon oli vuonna 1620 liittänyt tieteen menneiden kuvitelmien haamujen karkottamisen, järjen voittokulkuun ja maailman hallitsemiseen.

Vanhaa järjestystä vastaan asettuvasta vallankumouksellisesta (ja vallankumouksen jälkeisestä) Ranskasta tuli yksi klassisen mekaniikan johtavia tutkimuskeskuksia. On esitetty, että Newtonin ylenpalttinen ihannointi haittasi Iso-Britanniassa rakentavan kriittistä suhtautumista hänen teoriansa kehittämiseen. Pierre-Simon Laplace, eräs klassisen fysiikan ja taivaan tutkimisen kärkinimiä, ilmaisi ”maailmanjärjestystä” (eli tähtitiedettä) käsittelevän vuoden 1796 kirjansa johdannossa alan merkityksen seuraavasti:

”Tähtitieteiden suurin hyöty on se, että ne ovat häivyttäneet tietämättömyydestä syntyneet väärinkäsitykset todellisista suhteistamme luontoon, väärinkäsitykset, jotka ovat sitä vaarallisempia, kun yhteiskuntajärjestyksen tulee perustua ainoastaan näihin suhteisiin. Totuus ja oikeudenmukaisuus ovat sen järkkymättömiä peruskiviä. Olkoon kaukana meistä se ohjenuora, että voi joskus olla hyödyksi pettää tai orjuutta ihmisiä heidän onnensa paremmaksi varmistamiseksi! Pahat kokemukset ovat kaikkina aikoina todistaneet, että näitä pyhiä lakeja ei ole seurauksitta rikkominen.”

Tähän parlamentin alahuoneelle omistettuun tekstiin on saattanut vaikuttaa Laplacen oma tilanne. Laplace kun oli menettänyt virkansa, koska häneltä katsottiin puuttuvan ”tasavaltalaisia hyveitä ja kuningasvihaa”.

Taivaankappaleiden ratojen yksityiskohtien selvittäminen vaati pitkiä ja monimutkaisia laskuja. Joskus usko petti ja Newtonin gravitaatiolaki haluttiin korvata sellaisella, joka tekisi havaintojen selittämisestä suoraviivaisempaa. Lakien muuttaminen halutun tuloksen saamiseksi (mitä esiintyy fysiikassa halki aikojen) on helppoa, jos voi säätää uuden lain miten tahtoo perusteista välittämättä. Se on usein myös lyhytnäköistä, eikä tässäkään vienyt maaliin. Newton kamppaili pitkään Kuun liikkeiden selittämiseksi, onnistumatta, ja lopulta kesti 60 vuotta, ennen kuin Auringon, Maan ja Kuun tanssin askeleet saatiin laskettua, muun muassa Laplacen oivallusten ansiosta.

Toinen ongelma, jonka ratkaisuksi esitettiin gravitaatiolain muuttamista, oli Uranuksen liikkeet. Oikea tie löytyi taas muualta, yksityiskohtaisten laskujen kautta. Urbaine Le Verrier laski vuonna 1846 millaisen planeetan vetovoima selittäisi erot Uranuksen lasketun radan ja havaintojen välillä. Planeetta löytyikin saman tien vain asteen päästä Le Verrierin ennustamasta paikasta. Tässä, kuten äkillisissä tieteellisissä murroksissa usein, oli mukana ripaus tuuria. Le Verrierin laskuissa oli iso virheraja, eikä löydetty planeetta täysin vastannut Le Verrierin ennustusta. Tämä ei juuri himmentänyt loistoa.

Le Verrier sujautti julkiseen keskusteluun ehdotuksen planeetan nimeämistä itsensä mukaan, mutta lopulta päädyttiin hänen ensin ehdottamaansa nimeen Neptunus. Brittiläinen tähtitieteilijä W.P. Smyth varoittikin siitä, mihin planeettojen nimeäminen löytäjien mukaan voisi johtaa: ajatella jos seuraavan löytäisi saksalainen tai joku ties minkä kansan jäsen.

Uuden planeetan ennustaminen, ”tähden löytäminen kynän kärjellä”, oli läpimurto. Jälleen kerran Newtonin teorian ongelmat ratojen selittämisessä oli käännetty suurenmoiseksi voitoksi. Niinpä seuraavankin ongelman ratkaisuksi ehdotettiin uutta planeettaa.

Merkuriuksen, kuten muidenkaan planeettojen, rata ei ole tarkalleen ellipsin muotoinen. Sen sijaan, että Merkurius palaisi joka kierroksella samaan paikkaan, sen rata kiertyy hieman. Newtonin teoria ennustaa tämän ilmiön, ja siitä voi laskea tismalleen paljonko rata kiertyy. Le Verrier osoitti syyskuussa 1859, että Merkuriuksen rata kiertyy enemmän kuin mitä tunnetut planeetat selittävät. Neptunus-menestyksensä nosteessa hän esitti, että vastuussa on Merkuriuksen ja Auringon välissä oleva uusi planeetta, Vulkanus.

Kuten Neptunus, myös Vulkanus nähtiin hetimiten, saman vuoden joulukuussa. Tosin havaintoihin sopivan planeetan massa oli miljoona kertaa ennustettua pienempi, mutta eipä Neptunuskaan ollut täysin vastannut ennusteita, joten Le Verrieriä juhlittiin silti.

Toisin kuin Neptunuksen kohdalla, havainnon varmentaminen osoittautui kuitenkin ongelmaksi. Epäilyjä oli alusta alkaen. Vulkanusta etsittiin odottamalla sen kulkevan meidän ja Auringon välistä, jolloin planeetta näyttäytyisi Auringon kasvojen halki matkaavana kiekkona. Jotkut raportoivatkin nähneensä planeetan – Auringossahan on kaikenlaisia täpliä. Toiset taas katsoivat osoittaneensa, että planeettaa ei ole, kun mitään ei näkynyt.

Idean tueksi esitetyt havainnot rupesivat olemaan ristiriidassa keskenään, eikä planeetta edes pystynyt selittämään Merkuriuksen radan kiertymistä. Niinpä Vulkanuksen rataa muokattiin ja sille laitettiin seuraksi joukko asteroideja – jolloin tuli uudeksi ongelmaksi se, miksi asteroideista heijastuvaa valoa ei nähdä, vaikka niiden pitäisi olla kirkkaita, lähellä Aurinkoa kun ovat. Tähtitieteilijä C.H.F. Peters nimitti touhua Le Verrierin myyttisten lintujen jahdiksi.

Pariisin observatorion eteen pystytettiin vuonna 1888 Le Verrierin patsas, jonka jalustaan oli kaiverrettu Aurinkokunta, Vulkanus mukaan lukien. Patsas on tallella, mutta Vulkanus on sittemmin hiottu pois. 1800-luvun loppupuolella kamerat korvasivat ihmissilmät Auringon tarkkailussa, eikä mielikuvitukselle jäänyt sijaa Vulkanus-havaintojen siivittämiseen.

Uuden planeetan tyrmääminen jätti jäljelle ongelman Merkuriuksen radan selittämisestä. Kun havainnot oli todettu luotettaviksi, oli vain kaksi vaihtoehtoa: joko on tuntematonta ainetta tai Newtonin gravitaatiolaki ei päde. Yksi yritys jälkimmäiseen suuntaan oli ehdotus, että gravitaatiovoima ei olekaan kääntäen verrannollinen etäisyyden neliöön, vaan etäisyyden potenssiin 2.00000016. Tämä on esimerkki teorian muokkaamisesta sopimaan havaintoihin, eikä kestänyt lähempää tarkastelua. Mutta vaikka reitti ei vienyt kohti ratkaisua, idea siitä, että gravitaatio on lähellä Aurinkoa vahvempi kuin mitä Newtonin teoria ennustaa oli oikea.

Ratkaisu saatiin vasta vuonna 1915, kun Albert Einstein ja David Hilbert löysivät yleisen suhteellisuusteorian. Yleisen suhteellisuusteorian mukaan gravitaatio ei ole voima, vaan aika-avaruuden kaarevuuden ilmentymä. Kun kaarevuus on pieni ja kappaleiden nopeudet ovat vähäisiä, kappaleiden radat ovat suunnilleen samat kuin Newtonin teoriassa. Lähellä Aurinkoa kaarevuus on kuitenkin sen verta isompi kuin muualla, että Merkuriuksen rataan tulee se tarvittu lisäkierre, jonka Le Verrier oli määrittänyt havainnoista 1859 (ja jota oli sittemmin tarkennettu).

Yleistä suhteellisuusteoria ei tarvinnut säätää Merkuriusta varten. Teorian lähtökohdilla ei ollut mitään tekemistä Aurinkokunnan kanssa, mutta se automaattisesti selitti ja ennusti siihen liittyviä havaintoja. Tällainen hedelmällisyys on toimivien teorioiden tunnusmerkki. Nykyään Merkuriuksen radan kiertyminen esitetään, aivan oikein, tärkeänä todistuskappaleena yleisen suhteellisuusteorian puolesta.

Sen sijaan Merkuriuksen radan kiertyminen ei yksinään todistanut Newtonin teorian olevan väärässä. Teorioita ei hylätä vain siksi, että ne eivät sovi havaintoihin, pitää olla jotain parempaa tilalle. Newtonin teoria ei ollut kumottuna 56 vuotta ennen yleisen suhteellisuusteorian löytämistä, vasta poikkeaman selittäminen uuden teorian avulla kumosi Newtonin teorian.

Asiaa valaisee Pioneer-anomalia. 1970-luvulla matkaan lähteneiden luotainten Pioneer 10 ja 11 radat poikkesivat vuosikymmenten ajan yleisen suhteellisuusteorian ennusteista. Lopulta vuonna 2012 ymmärrettiin, että kyse oli vain siitä, että lämmön liikettä luotaimissa ei oltu mallinnettu kunnolla. Mutta jos vastuussa olisikin ollut tarkempi gravitaatioteoria ja se olisi löytynyt, Pioneerit olisivat olleet Merkuriuksen lailla uuden teorian suunnannäyttäjiä.

Vastaavia teorioihin ja muihin havaintoihin sopimattomia havaintoja on jokseenkin aina. Yksi esimerkki, jonka tulkinta on vielä epäselvä, on koe DAMA/Libra. Koeryhmä väittää löytäneensä pimeän aineen, mutta kukaan muu ei ole pystynyt toistamaan tulosta, ja koska kokeet ovat hieman erilaisia, on epäselvää ovatko DAMAn/Libran tulokset pielessä vai onko edessä yllätys.

Mitä planeettajahtiin tulee, se on jatkunut näihin päiviin saakka. Vuonna 1930 havaittiin Pluto, joka oli planeetta aina vuoteen 2006 asti. Sekin löytyi läheltä ennustettua uuden planeetan paikkaa, mikä -hassua kyllä- oli puhdas sattuma, koska mitään uutta planeettaa ei oikeasti tarvittu selittämään havaintoja. Juuri nyt etsitään Aurinkokunnan rajamailta kaukaista planeettaa 9, jolla puolestaan pyritään selittämään Pluton tienoilla ja kauempana olevien kappaleiden liikkeiden poikkeamia odotuksista.

Baum ja Sheehan kertovat Vulkanuksen tarinan elävästi. Se on hyvä esimerkki siitä, miten tieteelliset ideat voivat toimia kerta toisensa jälkeen ja mennä lopulta pieleen, miten vaikeaa ja tärkeää on huolellisten laskujen ja havaintojen yhteispeli, miten hankalaa voi olla nähdä oikeaa suuntaa, ja miten pitkälle jotkut jahtaavat lintuja, joita ei ole.

9 kommenttia “Myyttisiä lintuja”

  1. Lentotaidoton sanoo:

    ”DAMAn kohdalla on toisin: koeryhmä on kerännyt dataa vuodesta 1995 asti, ja signaali on samanlainen vuodesta toiseen. Ryhmän maaliskuussa (2018) julkistamien uusimpien tulosten myötä DAMA on ilmoittanut löytäneensä pimeän aineen hiukkasen nyt jo 99.999999999999999999999999999999999996% todennäköisyydellä.”

    Todella ihmetyttää ja kummastuttaa. Jos jo 25 vuotta on data näyttänyt (heidän mielestään) että pimeän aineen hiukkanen on jo löytynyt, vieläpä joka vuosi säännöllisesti, ja vielä tuolla typerryttävän suurella todennäköisyydellä, niin MIHIN he vielä tarvitsevat lisäaikaa? Ihme nyhveröintiä. Näytöt esiin ja odottelemaan takuuvarmaa Nobelia.

    Ei. Jokin tässä mättää ja erittäin kovasti. Luulisi rahoittajienkin jo kyllästyvän 25 vuoden vedätykseen.

    1. Syksy Räsänen sanoo:

      Koejärjestelyissä on tehty parannuksia, jotka oletettavasti auttavat sulkemaan pois joitakin systemaattisia virheitä. En kyllä tiedä kuinka merkittävää tämä on. Koeryhmää on arvosteltu datan ja analyysin julkisuuden puutteesta. Lisää dataa ei pelkästään satunnaisten virheiden varalta ei tosiaan enää ole juuri järkeä hankkia.

      1. Lentotaidoton sanoo:

        Niin maailmallahan on kaksi samaa koemateriaalia (natrium jodidi) käyttävää koetta ANAIS ja COSINE-100 mutta eivät ole nähneet toistaiseksi mitään (myös nämä vuosia käytössä, vaikkakin hekin yrittävät projektiaan parantaa). DAMA/Libra koe vihjaa WIMPejä 10 tai 70 GeV:ssä (jopa 13 sigmalla). Vaikeus on siinä, että he eivät ole suostuneet julkisesti näyttämään dataansa. Datan keruu sinänsä on hidasta hommaa koska sitä (huiput) saadaan periaatteessa vain kerran vuodessa.

        1. Syksy Räsänen sanoo:

          Tosiaan. Kutsuimme itse asiassa viime vuonna ANAISin edustajan puhumaan Helsinkiin. Koe on verrattain uusi, ja tarvitsee vielä vähän aikaa saadakseen tarpeeksi havaintoja sulkeakseen pois tai varmistaakseen DAMAn. Heillä on tosin ollut vaikeuksia rahoituksen kanssa (vaikka koe on muistaakseni alle miljoonan, kokeellisessa fysiikassa siis pikkurahoja).

  2. Eusa sanoo:

    Ostin kirjan mm. siksi, että kiinnosti kuinka newtonilaisittain Vulkanin ja sen korjausseuralaisten liikkeet matemaattisesti motivoitiin, kun eihän sellainen ryhmä kovin hyvin käyttäytyisi voimaopillakaan. Toiseksi kiinnosti aikalaisten reaktiot Einsteinin versioon viiveestä ja eksentrisyydestä.

    Petyin odotuksissani, mutta olihan pienten luonteiden historiassa oma viehätyksensä.

  3. Erkki Kolehmainen sanoo:

    ”Laplace kun oli menettänyt virkansa, koska häneltä katsottiin puuttuvan ”tasavaltalaisia hyveitä ja kuningasvihaa”.

    Tällaista sattuu nykyäänkin. Arto Annila menetti virkansa, koska häneltä katsottiin puuttuvan kunnioitus nykyfysiikan ns. standardimallia ja pimeän aineen/energian olemassaolon teoriaa kohtaan.

    1. Syksy Räsänen sanoo:

      Mihin perustat väitteesi?

      1. Erkki Kolehmainen sanoo:

        Se ei ole väite vaan fakta!

        1. Syksy Räsänen sanoo:

          Mihin perustat väitteen siitä, että se on fakta?

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *