Miilut maanalaiset

15.8.2023 klo 19.49, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Mainitsin atomikellojen yhteydessä ohimennen Oklossa kaksi miljardia vuotta sitten toimineesta ydinreaktorista. Kirjoitan nyt tästä luonnonilmiöstä tarkemmin.

Aine koostuu atomeista, joissa on atomiydin ja sen ympärillä elektroneja. Ytimet rakentuvat protoneista ja neutroneista. Suurin osa ytimistä on epävakaita, eli ne hajoavat jonkun ajan kuluttua. Jos hajoamisessa irronnut neutroni osuu toiseen ytimeen, se voi pistää tämänkin palasiksi.

Vuonna 1938 Joseph Rotblat ja muut fyysikot ymmärsivät, että jos ytimiä on tarpeeksi tiheässä, voi syntyä ketjureaktio, missä jokainen hajoaminen johtaa uusiin hajoamisiin. Puun palaminen toimii samalla tavalla: kun atomista irtoaa elektroneita, tästä vapautuva energia hajottaa lisää atomeita, ja reaktio jatkuu.

Yksi merkittävä ero on se, että protoneita ja neutroneita toisiinsa sitova ydinvuorovaikutus on noin miljoona kertaa vahvempi kuin elektroneja atomiytimessä pitävä sähkömagneettinen vuorovaikutus. Tämän takia ydinten hajottamisesta saa noin miljoona kertaa enemmän energiaa kuin atomien rikkomisesta.

Jos ydinten tiheys on iso, ytimet kuluvat loppuun nopeasti eli energia vapautuu lyhyessä ajassa. Jos ytimet ovat kauempana toisistaan, reaktio voi jatkua pitkään. Ydinpommin ja ydinvoimalan erona on lähinnä reaktion nopeus.

Äärimmäisin esimerkki hitaasta hajoamisesta on löydetty Oklon kaivoksesta Gabonissa. Vuonna 1972 havaittiin, että Oklosta louhitussa malmissa oli tiettyä uraaniydintä vähemmän kuin mitä Maapallolla yleensä. Pian tajuttiin, että syynä on se, että uraaniytimiä oli hajonnut ketjureaktioissa kaksi miljardia vuotta sitten.

Oklosta on paikallistettu 15 ydinreaktoria 10-400 metrin syvyydestä. Ne olivat linssinmuotoisia, noin kymmenen metriä leveitä ja keskeltä vajaan metrin paksuja alueita, joihin oli pakkautunut uraania. Lisäksi maaperässä kallioperässä oli sopivasti vettä. Vettä käytetään myös ihmisten valmistamissa ydinreaktoreissa hidastamaan neutroneita, jotta nämä ehtivät hajottaa ytimiä ennen kuin lentävät pois.

Oklossa ydinten hajoamisesta syntyvä lämpö on lämmittänyt vettä muutamaan sataan asteeseen, kunnes vesi höyrystyy ja reaktori sammuu. Tämä kestää puoli tuntia. Sitten lämpötila laskee ja vesi valuu takaisin reaktoriin, ja kahden ja puolen tunnin kuluttua ketjureaktio alkaa uudelleen. Tätä luonnonkiertoa jatkui 100 000-300 000 vuotta, kunnes tarvittavat uraaniytimet kuluivat loppuun.

Oklo on ainoa tunnettu alue Maan pinnalla Maassa, missä on ollut ydinmiiluja ennen joulukuuta 1942, jolloin ihmiset käynnistivät Chicagossa reaktorin osana joukkotuhoaseiden valmistamista. Mutta muualtakin on löydetty merkkejä siitä, että ytimiä on pakkautunut niin tiheään, että ketjureaktio on ollut lähellä. On siis mahdollista, että luonnon ydinreaktoreita löydetään lisää.

Tällaiset reaktorit tarjoavat havaintoja siitä, millaisia luonnonlait ovat olleet kaksi miljardia vuotta sitten. Sähkömagneettisen vuorovaikutuksen takia protonit hylkivät toisiaan, joten sen voimakkuus vaikuttaa ydinten kokoon ja sitä kautta hajoamiseen. Protonit ja neutronit koostuvat kvarkeista, joten kvarkkien massat vaikuttavat nekin siihen, miten ydinreaktiot tapahtuvat.

Oklon kivistä voi mitata kuinka paljon erilaisia ytimiä syntyi. Vertaamalla havaintoja ennusteisiin saa selville, että kaksi miljardia vuotta sitten sähkömagneettisen vuorovaikutuksen voimakkuus ja kevyiden kvarkkien massat poikkesivat nykyisistä korkeintaan miljoonasosan sadasosan verran.

Kosmologiassa havaitaan menneisyyttä kahdella tavalla: suoraan ja arkeologisesti. Oklon reaktorit, kuten kevyiden alkuaineiden pitoisuudet avaruudessa, ovat esimerkkejä jälkimmäisestä. Ne ovat jäänteitä, joista voi lukea mitä menneinä aikoina on tapahtunut. Toinen vaihtoehto on katsoa menneisyyteen suoraan. Koska valo kulkee äärellisellä nopeudella, mitä kauemmas katsoo, sitä varhaisempaan aikaan näkee.

Vuonna 2011 väitettiin, että miljardien valovuosien takaa tuleva valo näyttää, että sähkömagneettisen vuorovaikutuksen voimakkuus oli muinoin sadastuhannesosan nykyistä pienempi. Tämä olisi mullistava tulos, mutta koska muutos on tuhat kertaa Oklosta pääteltyä rajaa isompi, on syytä suhtautua siihen epäilyksellä. Aiheesta on kiistelty, eivätkä sittemmin tehdyt suoratkaan havainnot tue väitettä.

Tiede ei ole torni, vaan päättelyn ja havaintojen verkko, joten yksi havainto harvoin riittää teorian hylkäämiseen, ja on tärkeää hyödyntää erilaisia tapoja tutkia samoja asioita.

Päivitys (17/08/23): Korjattu kieliasua.

10 kommenttia “Miilut maanalaiset”

  1. Erkki Kolehmainen sanoo:

    ”Tämän takia ydinten hajottamisesta saa noin miljoona kertaa enemmän energiaa kuin atomien rikkomisesta.”

    NL:n fuusiopommin, Tsar Bomban, teho oli n. 50 megatonnia eli yli kaksituhatkertainen verrattuna esim. Hiroshiman ja Nagasakin fissiopommeihin. Selitäpä tavalliselle kaduntallaajajle, miten fuusiopommilla saadaan tällainen teho?

    1. Syksy Räsänen sanoo:

      En tunne ydinaseiden suunnittelua, mutta oleellista on se, kuinka monesta ytimestä saadaan sidosenergiaa irti (ja se, kuinka isoja niiden sidosenergiat ovat). Mitä enemmän sopivia ytimiä saadaan mukaan, sitä isompi räjähdys.

    2. MM sanoo:

      Uraani- ja plutoniumpommien käytännön teho määräytyy noiden isotooppien kriittisen massan mukaan: Ei ole käytännössä eikä ehkä teoriassakaan mahdollista tehdä pommeja, joissa fissioydin olisi kauheasti kriittistä massaa suurempi tai pienempi.

      Fuusiopommin vedyllä ei ole samassa mielessä kriittistä massaa, sitä voi ladata pommiin melkeinpä niin paljon kuin haluaa, paljon Tsar Bombaa enemmänkin. Vetypommin käytännön tehoa kuitenkin rajoittaa sekä koko, että se että valtavien räjähdysten teho katoaa enimmäkseen avaruuteen.

      Käsittääkseni johtaville ydinasevaltioille ei olisi mitenkään erityinen ponnistus tehdä paljon Tsar Bombaa isompia pommeja. Niille ei vain ole edes teoreettista käyttöä.

    3. Jnes sanoo:

      Varsinaiseksi pommiasiantuntijaksi en itseäni miellä, mutta jonkin verran on tullut asiasta luettua ja parhaani mukaan yritän vastailla..

      Vaiheistamalla pommia siitä saadaan enemmän räjähdysvoimakkuutta (kton) tilavuus. Periaatteessa näitä vaiheita voidaan lisätä loputtomiin, mutta käytännössä tila rajoittaa vaiheiden lukumäärän. Wikipediassa on hyvin tietoa tästä vaiheistamisesta, sekä yleensä lämpöydinräjähteestä. Teller-Ulam design.
      Nykyisissä ydinaseissa on mahdollista säätää latauksen tehoa useilla kilotonneilla. Myös monikärkilataukset kuuluvat ydinasevalikoimaan eri valtioilla.

      On totta, että pommin tehoa/kokoa kasvatettaessa sen tuhovaikutus jää ”pieneksi” tai se katoaa ilmakehään/avaruuteen, kuten Tsar Bomban tapauksessa. Toki räjäytys korkeudella on vaikutusta tähän.

      Mielenkiintoinen artikkeli, kiitokset siitä.

  2. Niilo Paasivirta sanoo:

    Hiroshiman pommi oli niin alkeellinen ja tehoton, että vain 2 % sen uraanimäärästä fissioitui, noin 1280 g. Räjähdysvoimakkuus 18-20 kt (TNT-ekvivalenttia).

    Fissiopommin yläraja on vaatimattomat 500 kt (TNT) käsittääkseni siksi että on vaikea saada aikaan suurta kriittistä massaa.

    Fuusiopommista voidaan tehdä ainakin 200 kertaa voimakkaampi mutta sellaisella ei ole mitään käyttöä.

  3. Lola Montez sanoo:

    Hyvä artikkeli

  4. Martti V sanoo:

    Oli näköjään tämä juttu ylittänyt Iltalehden uutiskynnyksen.

  5. Ville Rintala sanoo:

    ”Vettä käytetään myös ihmisten valmistamissa ydinreaktoreissa hidastamaan neutroneita, jotta nämä ehtivät hajottaa ytimiä ennen kuin lentävät pois.”

    Tämä ei ole mitenkään tärkein syy käyttää hidastetta ydinreaktorissa. Mikäli asia olisi väitetysti, niin helposti voi päätellä, että suurentamalla reaktorin kokoa asian voisi kompensoida. Näin ei kuitenkaan ole vaan hidastamalla muutetaan, tässä artikkelissa käytetyin termein, tiettyjen uraaniytimien keskinäisiä vuorovaikutustodennäköisyyksiä.

    ”Ydinpommin ja ydinvoimalan erona on lähinnä reaktion nopeus.”

    Tämähän on hauska heitto, mutta taidettu ihan tosissaan kirjoittaa. Yhteistä on, että molemmissa vapautetaan raskaiden atomiydinten sidosenergiaa, mutta siinä se onkin sitten.

    1. Syksy Räsänen sanoo:

      Olen kirjoittanut asiasta näin:

      ”Tiedettä popularisoidessa ei ainoastaan tarvitse yksinkertaistaa asioita, vaan niitä pitää myös vääristellä. Asian selittäminen oikein, summittaisesti ja varauksella, antaa usein heikomman käsityksen kuin sen selittäminen selkeästi, yksinkertaisesti ja virheellisesti. Popularisoijan onkin valittava valheensa: ei ole aina helppoa päättää, mikä on oleellista kertoa oikein, ja mistä on parempi tarinoida siten, että mielikuva on oikein, vaikka juttu on väärin.”

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/suureellinen-fantasiaeepos/

      Yksittäisiä valintoja voi toki aina arvostella (kuten tuossa jutussa teenkin).

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *