Luotettava ennustus ja tiheä kappale

7.10.2020 klo 00.42, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Ruotsin kuninkaallinen tiedeakatemia ilmoitti eilen myöntävänsä puolet tämän vuoden fysiikan Nobelin palkinnosta Roger Penroselle ”siitä löydöstä, että mustien aukkojen muodostuminen on yleisen suhteellisuusteorian luotettava ennustus” ja toisen puolen Reinhard Genzelille ja Andrea Ghezille ”superraskaan tiheän kappaleen löytämisestä galaksimme keskustasta”. (Suurelle yleisölle suunnattu selitys on täällä, tarkempi taustoitus täällä.)

Ghez on neljäs nainen, joka saa fysiikan Nobelin palkinnon. Ennen häntä olivat Marie Curie vuonna 1903, Maria Goeppert Mayer vuonna 1963 ja Donna Strickland vuonna 2018.

Tämä on toinen mustista aukoista annettu Nobelin palkinto. Se tulee pian törmäävien mustien aukkojen gravitaatioaalloista vuonna 2017 myönnetyn palkinnon jälkeen. Kuten silloin, nytkin palkinnon saavat kaksi havaintopuolen tutkijaa ja yksi teoreetikko.

Genzel ja Ghez johtavat kahta tutkimusryhmää, jotka ovat tarkkailleet Linnunradan keskustan tähtien liikkeitä 90-luvulta asti. Maapallo on 26 000 valovuoden päässä Linnunradan keskustasta, joten yksittäisten tähtien havaitseminen ja niiden liikkeiden seuraaminen tarkasti on melkoinen saavutus.

Tässä on Ghezin ryhmän 25 vuoden datasta tehty animaatio tähtien liikkeistä. Tähdet kiertävät tiheää kohdetta, jonka massa on noin neljä miljoonaa Auringon massaa. Lähin rata kulkee etäisyydellä, joka on muutama sata kertaa mustan aukon tapahtumahorisonttia isompi. Tämä on tarpeeksi lähellä, että yleisen suhteellisuusteorian korjaukset tähtien ratoihin on ollut mahdollista mitata, mutta niin kaukana, että mustan aukon nielusta ei saa tarkkaa kuvaa. (Galaksin M87 keskustan mustan aukon tapahtumahorisontin tienoot kuvannut Event Horizon Telescope -ryhmä on tehnyt havaintoja myös Linnunradan keskustasta, mutta data-analyysi ei ole vielä valmis.) Mutta on nähty infrapunavälähdyksiä etäisyydeltä, joka on 3-5 tapahtumahorisontin kokoinen.

Mikään tunnettu kappale ei voi olla näin tiheä ja himmeä, joten on päätelty, että kyseessä on musta aukko.

Toisin kuin vuoden 2017 palkinnon tapauksessa, teoreetikko Penrosen työ ei liity suoraan Genzelin ja Ghezin tutkimukseen, vaan on vaikuttanut merkittävästi taustalla. Penrose tunnetaan sekä matemaatikkona että fyysikkona. (Helsingin Keskuskatu on muuten päällystetty hänen kehittämällään Penrosen laatoituksella.)

Penrose on omaperäinen, kekseliäs ja matemaattisesti taitava tutkija, joka on kehittänyt monenlaisia ideoita. Nobelin palkinnon perusteeksi nostettiin se, että hän vuonna 1965 osoitti, että mustien aukkojen muodostuminen on yleisen suhteellisuusteorian väistämätön seuraus.

Ensimmäisen mustaa aukkoa kuvaava yleisen suhteellisuusteorian yhtälöiden ratkaisun löysi fyysikko Karl Schwarzschild vain kuukausi sen jälkeen, kun fyysikko Albert Einstein ja matemaatikko David Hilbert julkaisivat yleisen suhteellisuusteorian lopullisen muotoilun. Schwarzschildin ratkaisu oli pallosymmetrinen, eli samanlainen kaikissa suunnissa. Vuosikymmeniä oli epäselvää, kuvaavatko tämän ratkaisun kummalliset piirteet todellisuutta, vai katoavatko ne, kun tarkastellaan ratkaisuja, jotka eivät ole aivan pallomaisia.

Näitä piirteitä ovat tapahtumahorisontti ja singulariteetti. Jos tarpeeksi massaa on tietyn säteen sisällä, niin mikään ei pääse pakenemaan sen sisältä, ei edes valo. Tämän säteen rajaamaa pintaa kutsutaan tapahtumahorisontiksi. Mustan aukon keskustassa taasen on piste, jossa aika-avaruuden kaarevuus on ääretön ja yleinen suhteellisuusteoria ei päde.

Penrose osoitti lähtien hyvin yleisistä oletuksista, että kunhan tarpeeksi massaa on pakkautunut tietyn säteen sisään, niin se romahtaa mustaksi aukoksi, riippumatta siitä miten massa on jakautunut. Tämä todisti, että mustia aukkoja syntyy, jos yleinen suhteellisuusteoria pitää paikkansa. Palkinnon taustamateriaali loppuu seuraavaan muistutukseen:

“Se missä määrin tapahtumahorisontin ympäröimä musta aukon rakenne todella vastaa yleisen suhteellisuusteorian ennusteita on vielä avoin kysymys. Luonnolla voi olla yllätyksiä varastossa.”

Vuonna 1967, kaksi vuotta Penrosen tuloksen jälkeen, Stephen Hawking sovelsi samaa ideaa koko maailmankaikkeuteen. Hän osoitti että jos maailmankaikkeus laajenee, niin silläkin on jossain singulariteetti – mahdollisesti alussa. Kuten Hawkingin kuoleman jälkeen kirjoitin:

Yhdessä Penrose ja Hawking osoittivat, että singulariteetit ovat yleinen ja oleellinen osa yleistä suhteellisuusteoria: voi sanoa, että yleinen suhteellisuusteoria ennustaa oman loppunsa (eli pätevyysalueensa rajallisuuden).”

Penrose myös keksi vuonna 1969 hänen nimeään kantavan Penrosen prosessin, jonka avulla voi kerätä energiaa pyörivistä mustista aukoista. Tämä hyvin teoreettinen idea oli sittemmin ponnahduslauta todellisten taivaalla näkyvien mustien aukkojen ympärillä pyörivien ainekiekkojen energiantuotannon ymmärtämiseen.

Penrose on myös rohkeasti esittänyt ideoita muun muassa maailmankaikkeuden alkuhetkistä, kvanttigravitaatiosta, kvanttimekaniikan ja tietoisuuden yhteydestä ja aaltofunktion romahtamisesta. (Aikoinaan ehdotin näitä Penrosen kvanttimekaniikkaan liittyviä ideoita pelin Quantum Break materiaaliksi Remedylle asiasta konsultoidessani; en tiedä mitä peliin lopulta päätyi.)

Penrose on ainoa tietämäni fyysikko, joka julkaisee merkittävää tieteellistä materiaalia suurelle yleisölle suunnatuissa kirjoissa. Onkin hämmentävää, miten paljon Penrosen edistynyttä matematiikkaa sisältäviä teoksia ostetaan.

Hän on kirjoissaan myös arvostellut valtavirtatutkimusta niin säieteorian kuin kosmisen inflaationkin osalta. Penrose on kehittänyt oman vaihtoehdon inflaatiolle, jossa maailmankaikkeuden vaiheet toistuvat alkuräjähdyksestä loppuun asti äärettömän monta kertaa. Penrose on yhdessä muiden tutkijoiden kanssa julkaissut artikkeleita, joiden mukaan kosmisessa mikroaaltotaustassa näkyy merkkejä tällaisesta aiemmasta maailmankaikkeuden ajasta. Ainakin osan artikkeleista data-analyysi tosin on huolimatonta, eikä ole kestänyt lähempää tarkastelua. Kosmisen inflaation tueksi sen sijaan on paljon havaintoja.

Menneinä vuosikymmeninä hiukkasfysiikka kahmi Nobelin palkintoja vuosi toisensa perään, mutta vuoden 2012 Higgsin löytämisen jälkeen hiukkasfysiikan Standardimallissa ei ole enää löydettävää, eikä kiihdyttimissä ole nähty mitään sen tuolta puolen. Vuoden 2017 palkinto gravitaatioaalloista, viime vuoden palkinnon Jim Peeblesille kosmologiasta mennyt puolikas ja tämän vuoden palkinto muistuttavat löytöjen tulevan nyt ennemmin taivaalta. Monet pohtivat, koska on kosmisen inflaation vuoro – ja mikä osa siitä palkitaan, kenet kutsutaan Tukholmaan ja ketkä jäävät ilman matkalippua.

18 kommenttia “Luotettava ennustus ja tiheä kappale”

  1. Maallikko sanoo:

    Jos mustan aukon keskustassa on piste, jossa aika-avaruuden kaarevuus on ääretön niin onko mainittu piste äärettömän pieni vai läpimitaltaan vähintään planckin pituuden kokoinen?

    1. Syksy Räsänen sanoo:

      Ennustus mustan aukon keskustassa olevasta singulariteetista on yleisen suhteellisuusteorian piirissä. Yleisessä suhteellisuusteoriassa ei ole kvanttifysiikkaa eikä siten myöskään Planckin pituutta.

      Schwarzschildin mustan auton singulariteetti on pistemäinen, pyörivän mustan aukon singulariteetti on renkaan muotoinen.

      1. Cargo sanoo:

        Tuli mieleen, että olisiko mitenkään mahdollista, että mustan aukon keskustan kaarevuutta rajoittaa sama voima, joka on avaruuden laajenemisen taustalla? Eli kun avaruus puristuu kasaan, niin negatiivinen paine kumuloituu ja estää singulariteetin muodostumisen?

        1. Syksy Räsänen sanoo:

          Avaruuden laajenemisen taustalla ei ole voimaa. Avaruuden laajeneminen on aika-avaruuden kaarevuuden ilmentymä, kuten myös mustan aukon singulariteetti.

          Maailmankaikkeuden kiihtyvän laajenemisen mahdollisesti aiheuttava pimeä energia ei estä singulariteetin muodostumista.

          On useita erilaisia ideoita siitä, mitä singulariteetille tapahtuu -ja yleisemmin, mikä on mustien aukkojen sisärakenne- yleisen suhteellisuusteorian tuolla puolen.

          1. Martti V sanoo:

            Kiihtyvä laajeneminen big rip skenaariossa repii kaiken jopa mustat aukot rikki mutta tällä hetkellä gravitaatio voittaa ylivoimaiseti. Ääretön kaatevuus ei välttämättä ole totuus vaikka suhteellisuusteoria niin ennustaa. Einstein piti jo aikoinaan singulariteettia vastenmielisenä.

          2. Syksy Räsänen sanoo:

            Avaruuden laajenemisessa on siinäkin kyse gravitaatiosta.

          3. Martti V sanoo:

            Onko pimeä energia avaruuden kaarevuudesta johtuvaa potentiaalienergiaa ? Avaruus siis laajenee koska massa menee kohti alimpaa potentiaalia.

          4. Martti V sanoo:

            Kommenttisi siitä, että gravitaatio aiheuttaa laajenemisen on mielenkiinoinen. Tästä on kaiketi eriäviä mielipiteitä, mutta uskon siihen siihen että avaruuden kaarevuus on taustalla.

          5. Syksy Räsänen sanoo:

            Ei, gravitaatio ei aiheuta avaruuden laajenemista, vaan avaruuden laajeneminen on osa gravitaatiota.

            Sen taustalla ei ole avaruuden kaarevuus, vaan laajeneminen on aika-avaruuden kaarevuuden ilmentymä. Asia on järkevän epäilyn ulkopuolella.

            Laajenemisesta, aika-avaruuden kaarevuudesta ja avaruuden kaarevuudesta, ks.

            https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu

            http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/kaareuden_kietoutumista

            https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/suoraviivaista/

  2. Erkki Kolehmainen sanoo:

    In simple terms,he [Penrose] believes that the singularity in Einstein’s field equation at the Big Bang is only an apparent singularity, similar to the well-known apparent singularity at the event horizon of a black hole. The latter singularity can be removed by a change of coordinate system, and Penrose proposes a different change of coordinate system that will remove the singularity at the big bang.”

    Yo. lainaus wikipediasta ei sovi siihen väittämään, mitä Syksy kirjoitti Hawkingin kuoleman jölkeen.

    ”Yhdessä Penrose ja Hawking osoittivat, että singulariteetit ovat yleinen ja oleellinen osa yleistä suhteellisuusteoria: voi sanoa, että yleinen suhteellisuusteoria ennustaa oman loppunsa (eli pätevyysalueensa rajallisuuden).”

    1. Syksy Räsänen sanoo:

      En kommentoi Wikipedia-artikkeleita, koska ne ovat fysiikan kohdalla niin usein epäluotettavia.

      1. Erkki Kolehmainen sanoo:

        Jos ottamassani wikipedian sitaatissa on väärää tietoa, niin korjaa ihmeessä se sinne. Minusta qikipedia on erittäin arvokas tietolähde ja minä arvostan sitä, koska se on ilmainen, kaikkien saatavilla ja kaikkien korjattavaissa toisin kuin monet tieteellisten lehtien artikkelit.

        1. Syksy Räsänen sanoo:

          En käytä aikaani sen enempää Wikipedian fysiikka-artikkelien kommentoimiseen kuin editoimiseen.

          1. Sinikka sanoo:

            Eikö tämä ole hieman arrogantti asenne? Olisi hyvinkin mielenkiintoista, jos me tavalliset pulliaisetkin saisimme lukea valaistuneemman joukon faktatietoa. Vai onko se ajanhukkaa? Että asiat opitaan oikein nuoresta lähtien. Moniko lapsi, nuori, opiskelija jne. lukee Wikipediaa? Ja opimme vääriä asioita. Koska tieto ei ole kaikkien saatavilla. Palvelet yhteistä hyvää, jos jaksat vähän nähdä vaivaa!

          2. Sinikka sanoo:


            Meidän täytyy pohtia, mikä on oikein ja välttää tekemästä sitä, minkä tiedämme vääräksi.

          3. Syksy Räsänen sanoo:

            Yllä oleva sitaatti viittaa siihen, että pitää välttää tekemästä sitä, mikä on moraalisesti väärin.

            Tässä ei ole kyse moraalista, vaan asioiden laittamisesta tärkeysjärjestykseen.

            Wikipedian fysiikka-artikkelien editoimiseen menevä vaiva ei olisi aivan vähäinen.

            Wikipediaan luottaminen on toki iso ongelma (joka ei fysiikan osalta suinkaan ole pahimmillaan).

  3. Jernau Gurgeh sanoo:

    Veritasiumin Derek sattumoisin julkaisi viikko sitten videon Penrosen laatoista. Kesto 20 minuuttia. Suosittelen vahvasti kaikille. Paljon mielenkiintoista asiaa.

    https://www.youtube.com/watch?v=48sCx-wBs34

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *