Kenttätöitä

21.8.2024 klo 22.02, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kirjoittaessani ja puhuessani kosmisesta inflaatiosta tai hiukkasfysiikasta olen usein viitannut asiaan nimeltä kenttä. Sen merkitys saattaa jäädä hämäräksi, ja joskus siitä erikseen kysytään. Selitän tässä hieman tätä fysiikan keskeistä käsitettä, jolla on ollut iso rooli matkalla klassisesta moderniin fysiikkaan.

Matemaattisesti on helppo sanoa mikä kenttä on: se on sääntö, joka liittää jokaiseen avaruuden ja ajan pisteeseen yhden tai useamman numeron. Esimerkiksi ilman lämpötila on kenttä: se on erilainen jokaisessa paikassa ja jokaisena ajanhetkenä. Vastaavasti ilman nopeus on kenttä, joka eroaa lämpötilasta siinä, että sillä on voimakkuuden lisäksi suunta: se kertoo, miten ilma virtaa eri kohdissa.

Lämpötila ja ilman nopeus palautuvat hiukkasiin. Kun katsoo tarkemmin, niin huomaa että ilma koostuu molekyyleistä, jotka törmäilevät toisiinsa. Lämpötila kuvaa sitä, kuinka nopeasti nämä molekyylit liikkuvat paikallisesti törmäillessään toisiinsa. Vastaavasti ilman nopeus kertoo, kuinka nopeasti suuret joukot molekyylejä liikkuvat yhdessä paikasta toiseen.

On myös kenttiä, jotka eivät palaudu hiukkasiin.

Fysiikassa tapahtui 1860-luvulla vallankumous, kun James Maxwell esitti sähkön ja magnetismin yhtenäisteorian, joka selitti myös valon. Maxwellin teoriassa sähköä ja magnetismia kuvaavat sähkö- ja magneettikenttä, jotka voidaan ymmärtää yhtenä kokonaisuutena, sähkömagneettisena kenttänä. Niillä on voimakkuuden lisäksi suunta, kuten ilman nopeudella.

Maxwell oli teoriaa kehitellessään miettinyt sähkö- ja magneettikenttien käyttäytymistä vietereiden, hihnojen ja muiden mekaanisten vertausten avulla. Hän ei ajatellut, että kentät koostuvat pienistä mekaanisista laitteista, mutta fyysikot rupesivat pohtimaan sitä, mistä ne sitten koostuvat. Esitettiin, että sähkö- ja magneettikenttä olisivat eetteriksi nimetyn aineen aaltoja.

Eetteriä tutkittiin vuosikymmeniä, mutta lopulta ajatus osoittautui virheelliseksi: sähkökenttä ja magneettikenttä eivät koostu mistään pienemmästä. Niillä ei ole alirakennetta, ne ovat itsessään perustavanlaatuisia. Tämä yksinkertainen ratkaisu oli mullistava.

Aiemmin fysiikassa oli voinut ajatella kaiken koostuvan hiukkasista. Maxwellin jälkeen tarvittiin kahdenlaisia rakennuspalikoita, hiukkasia ja kenttiä. Hiukkanen on yhdessä paikassa oleva jyvänen, kenttä on kaikkialla. Maailmankaikkeudessa on yksi sähkökenttä, jolla on eri paikoissa eri arvoja, ja yksi magneettikenttä.

Maxwellin löytämää sähkömagnetismia oli vaikea yhdistää kvanttifysiikkaan. Avaimeksi osoittautui 1940-luvulla kentän käsite: yhdistäminen oli mahdollista vain jos kaikki aine koostuu kentistä. Niinpä esimerkiksi elektronit ovat elektronikentän kupruja, kuten fotonit, mistä valo koostuu, ovat sähkömagneettisen kentän aaltoja.

Jokaista hiukkaslajia (elektronit, myonit, neutriinot, kvarkit ja niin edelleen) vastaa yksi kenttä, jonka tihentymiä hiukkaset ovat. Sen sijaan, että kenttiä olisi voinut selittää hiukkasten avulla, hiukkaset selittyivät kentillä. Mutta kentät eivät vain ole toisenlainen tapa kuvata samaa asiaa: kenttä voi tehdä asioita, mihin hiukkaset eivät kykene.

Esimerkin tarjoaa Higgsin kenttä. Toisin kuin sähkökenttä, joka on hyvin erilainen eri paikoissa, Higgsin kenttä on nykyään yhtä voimakas kaikkialla. Samaan tapaan kuin sähköisesti varatut hiukkaset vuorovaikuttavat sähkökentän kanssa, lähes kaikki tunnetut hiukkaset vuorovaikuttavat Higgsin kentän kanssa.

Kuten lämpötilalla, Higgsin kentällä ei ole suuntaa, ainoastaan voimakkuus. Niinpä, toisin kuin sähkökenttä, se ei työnnä hiukkasia mihinkään suuntaan. Sen sijaan se kasvattaa hiukkasten massoja, sitä enemmän mitä vahvemmin ne Higgsin kanssa vuorovaikuttavat. Tätä ei voi selittää hiukkasten avulla: kentän tihentymät ja tämä massojen mekanismi ovat eri puolia kentän käyttäytymisessä.

Higgsin kentän vuorovaikutukset ovat paljon heikompia kuin sähkökentän, ja sen hiukkasten elinikä on hyvin lyhyt, toisin kuin fotonien, jotka ovat ikuisia. Siksi sitä on vaikeampi havaita: Higgsin kentän aallot eli Higgsin hiukkanen löydettiin vasta vuonna 2012, CERNin LHC-kiihdyttimessä.

Higgsin löytäminen vahvisti kaikkien tunnettujen vuorovaikutusten (paitsi gravitaation) yhtenäisteorian, hiukkasfysiikan Standardimallin, kuten radioaaltojen ja muiden uusien sähkömagneettisten aaltojen löytäminen 1800-luvulla vahvisti Maxwellin esittämän sähkön ja magnetismin yhtenäisteorian.

14 kommenttia “Kenttätöitä”

  1. Jyri T. sanoo:

    Aihetoive: Claudia de Rhamin (Imperial College London) ajatus pikkiriikkisen massan omaavista gravitoneista eli ”gravitaation massasta”. Uhka vai mahdollisuus?

    1. Syksy Räsänen sanoo:

      Gravitonien mahdollista massaa on tutkittu vuosikymmeniä, de Rham on tosiaan yksi avainhenkilöitä nykyään, kuten myös Fawad Hassan Tukholmassa, joka oli sattumoisin postdoc-tutkija Helsingissä kun oli jatko-opiskelija. Lisään mahdollisten aiheiden listalle, katsotaan kirjoitanko siitä.

      1. Jyri T. sanoo:

        Samaan syssyyn voisi koplata myösJonathan Oppenheimin ehdotuksen siitä, miten gravitaatio voitaisiin yhdistää kvanttimekaniikkaan satunnaisuuden kautta.

        1. Syksy Räsänen sanoo:

          Siitä tuskin kirjoitan, spekulaatioita on monenlaisia.

  2. Eusa sanoo:

    ”Maailmankaikkeudessa on yksi sähkökenttä, jolla on eri paikoissa eri arvoja, ja yksi magneettikenttä.”

    Eikö ole syytä puhua vain yhdestä sähkömagneettisesta kentästä? Se, mikä näyttää puhtaalta sähkökentältä yhdessä koordinaatistossa, voi näyttää sähkö- ja magneettikentän yhdistelmältä toisessa koordinaatistossa. Raja-arvoisesti kausaliteetin vauhdissa c kentällä olisi vain magneettista merkitystä?

    1. Syksy Räsänen sanoo:

      Kyllä, sähkökenttä ja magneettikenttä ovat osia yhdestä kokonaisuudesta, sähkömagneettisesta kentästä.

  3. robert ekman sanoo:

    pyyntö:

    voisitteko (mikäli ette ole tätä jo tehneet) täsmentää Pimeän virtauksen/Suuren atttrakotrin olemusta meille kuolevaisille.
    kiitos!

    Robert Ekman

    1. Syksy Räsänen sanoo:

      Laitan mahdollisten aiheiden joukkoon.

  4. robert ekman sanoo:

    entä aika? onko aika kenttä?

    1. Syksy Räsänen sanoo:

      Ei. Mutta aika-avaruuden etäisyyksiä ja kaarevuutta kuvaava asia nimeltä metriikka on kenttä.

  5. Heikki Poroila sanoo:

    Maallikon näkökulmasta gravitaatio vaikuttaa mitä suurimmassa määrin kentältä, joka on läsnä kaikkialla tuntemassamme maailmassa. Johtuuko sen sopimattomuus yhtenäisteoriaan siitä, ettemme ole löytäneet gravitaation aiheuttajaa vai liittyykö asiaan myös jotain teoreettista yhteensopimattomuutta?

    1. Syksy Räsänen sanoo:

      Gravitaatio eroaa muista vuorovaikutuksista siinä, että sitä välittävä kenttä ei elä avaruudessa, vaan on aika-avaruus itse (tarkemmin sanoen aika-avaruuden etäisyydet ja kaarevuuden määrittävä kenttä).

      Tästä seuraa teoreettisia ongelmia, kuten se, että kenttäteorioiden muotoilussa on yleensä tärkeä tietää etukäteen miten aika kulkee, mutta gravitaation kohdalla sen määrittävät teorian yhtälöiden ratkaisut, sitä ei tiedetä etukäteen. Muitakin ongelmia on. Gravitaatiosta ja sen yhdistämisestä muihin vuorovaikutuksiin:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/schrodingerin-raketti/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/aika-avaruuden-atomit/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/aika-avaruuden-ainesosat/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/eroon-suuresta-jarjettomyydesta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/painon-valittajasta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/suoraviivaista/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaikki-tai-ei-mitaan/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/miksi-kaiken-teorialla-on-merkitysta/

  6. Joksa sanoo:

    Kuinka tuo kentän perustavanlaatuisuus määräytyy?

    Sähkö- ja magneettikenttä muodostavat sähkömagneetisen kentän, mutta kummallakaan ei ole omaa erillistä hiukkastaan, magneetti- tai sähköhiukkasta, vaan joillakin hiukkaskentillä on sähkövaraus ominaisuus. Eikö siis sähkömagneettinen kenttä ole pikemminkin näiden varauksellisten hiukkaskenttien vuorovaikutusilmiö ja siis ei perustavanlaatuinen?

    1. Syksy Räsänen sanoo:

      Hyvä kysymys. Asia on perustavanlaatuinen jos sitä ei voida selittää minkään muun avulla.

      Sähkömagneettiseen kenttään liittyvä hiukkanen on fotoni. Fotoneita (eli valoa, radioaaltoja, mikroaaltoja jne.) voi olla vaikka ei olisi söhkövarauksia. Tämä sähkömagneettisten aaltojen olemassa olo oli Maxwellin löytämien yhtälöiden merkittävä ennustus (tai siis näkyvän valon osalta selitys).

      Lisää perustavanlaatuisista laeista:

      https://web.archive.org/web/20220618081432/http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/perustuslakien_saatamisjarjestys

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *