Kaksi kuilua

18.9.2020 klo 22.32, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Siitä pitäen kun tutkimusryhmä LIGO helmikuussa 2016 ilmoitti havainneensa ensimmäiset mustien aukkojen törmäyksestä syntyneet gravitaatioaallot, niitä on nähty tasaista tahtia. Mustista aukoista on tullut arkea.

LIGOn ja Virgon kaksi ensimmäistä havaintokautta vuosina 2015 ja 2017 saivat haaviin kymmenen mustien aukkojen parin törmäystä sekä yhden törmäyksen, jonka osapuolet olivat luultavasti neutronitähtiä. Havainnot jokseenkin vastasivat odotuksia: neutronitähtiä lukuun ottamatta kohteet olivat mustia aukkoja, joiden massa on kymmenen Auringon massan tienoilla, joita tiedettiin syntyväksi tähtien romahtaessa. Tämä on muuttunut vuoden 2019 huhtikuussa alkaneella kolmannella havaintokaudella, jonka tuloksia on nyt alettu julkaista.

Kesäkuussa 2020 LIGO ilmoitti havainneensa vuoden 2019 elokuussa törmäyksen, jonka osapuolina on 23 Auringon massan painoinen musta aukko ja 2.6 Auringon massan painoinen kappale, jonka luonne on tuntematon.

Gravitaatioaalloista voi lukea ainakin törmäävien kappaleiden massat, pyörimisnopeudet ja etäisyyden. Hyvässä lykyssä kappaleet painavat aaltoihin myös muita jälkiä. Esimerkiksi neutronitähdet venyvät mustia aukkoja enemmän ennen törmäystä, ja tämä vaikuttaa aaltoihin. Näissä elokuun 2019 gravitaatioaalloissa ei näy merkkejä tällaisesta venymisestä. Tämä on odotettavissa, koska kun toisen kappaleen massa on paljon isompi, pienempi kappale sulautuu siihen ennen kuin ehtii juuri muuttaa muotoaan.

Kevyempi kappale voisi siis olla yhtä hyvin neutronitähti kuin musta aukko. Se on kuitenkin neutronitähdeksi ongelmallisen raskas ja mustaksi aukoksi epäilyttävän kevyt.

Mitä raskaampi neutronitähti on, sitä vaikeampi sen on välttää romahtamasta mustaksi aukoksi. Kasassa pysyminen edellyttää sitä, että neutronitähden tiheä ydinaine kannattelee tähteä tarpeeksi tiukasti. Ydinaineen käytös taas riippuu kvarkkien ja niistä muodostuvien hiukkasten käytöksen yksityiskohdista. Neutronitähdet ovatkin esimerkki siitä, miten tähtitieteen (muodikkaammin sanottuna astrofysiikan) tutkimuskohteiden ominaisuudet liittyvät elimellisesti hiukkasfysiikkaan.

Neutronitähden massan tarkan ylärajan määrittäminen on vaikea ongelma, jossa on kuitenkin viime vuosina edetty. Esimerkiksi Niko Jokelan, Aleksi Vuorisen ja yhteistyökumppaneiden tutkimustulosten mukaan yläraja on korkeintaan 2.33 2.8 Auringon massaa. Muiden tutkimusten mukaan yläraja olisi vain 2.33 Auringon massaa. Artikkelissaan LIGO- tutkimusryhmä esittelee muunkinlaisia erilaisia tuloksia, mutta lopulta toteaa, että luultavasti kyseessä ei ole neutronitähti, ellei käsityksemme neutronitähdistä ole pahasti pielessä.

Toinen mahdollisuus on musta aukko. Jos kerran 2.6 Auringon massainen tähti ei pysy kasassa, vaan romahtaa mustaksi aukoksi, niin sitten varmaan on 2.6 Auringon massaisia mustia aukkoja? Tähden romahduksesta syntyvän mustan aukon massa on kuitenkin aina pienempi kuin tähden. Romahdus on kiihkeä tapahtuma, ja osa tähden aineesta iskeytyy pois avaruuteen.

Tähän asti on arveltu, että tähden romahtaessa syntyvän mustan aukon pienin massa on noin 3-5 Auringon massaa. Tässä voidaan olla väärässä.

Voi myös olla, että musta aukko ei ole syntynyt tähden romahduksessa, vaan kappaleiden törmäyksessä. Esimerkiksi elokuussa 2017 havaitun kahden neutronitähden törmäyksen lopputulos luultavasti oli musta aukko, jonka massa on korkeintaan 2.7 Auringon massaa. (Se, että tässäkään törmäyksessä ei nähty merkkejä neutronitähtien venymisestä, muuten viittaa siihen, että neutronitähdet ovat pehmeämmänpuoleisia, joten niiden maksimimassa on pieni.)

Nyt pulmana on monimutkainen syntyhistoria. Ensin kahden neutronitähden pitää kiertää toisiaan ja törmätä, sitten tästä syntyneen mustan aukon pitää päätyä isomman mustan aukon seuralaiseksi ja olla yhdessä niin kauan, että yhtyy siihen. Tyypillisesti alueissa, missä on tiheässä tähtiä, kappaleet kuitenkin sitoutuvat toisiinsa pitkäksi aikaa vain silloin kun ne ovat suunnilleen yhtä massiivisia. Havaitussa tapauksessa isompi kappale on yhdeksän kertaa pienempää raskaampi.

Yksi ratkaisu on se, että pieni kappale on musta aukko, jonka sukuhistoriassa ei ole tähtiä ollenkaan. Mustia aukkoja on saattanut syntyä aikana ennen tähtien olemassaoloa esimerkiksi kosmisen inflaation aikana syntyneistä klimpeistä aineen jakaumassa. On ehdotettu, että pimeä aine muodostuisi sellaisista. Jos kyse olisi noin Auringon massaisista mustista aukoista, niiden olisi tosin odottanut löytyvän jo muutenkin (pimeää ainetta kun on paljon kaikkialla), mutta idea ei ole täysin poissuljettu.

Voi myös olla, että havainto on vihje vielä eksoottisemmasta ja toistaiseksi tuntemattomasta kappaleesta. Syyskuun alussa julkaistiin myös toinen gravitaatioaaltohavainto, jota on vaikea sovittaa tunnettujen kappaleiden muottiin.

Noin 66 Auringon massan painoinen ja noin 85 Auringon massan painoinen musta aukko sulautuivat toisiinsa seitsemän miljardia vuotta sitten, ja signaali tavoitti Maapallon vuoden 2019 toukokuussa, jolloin LIGO ja Virgo sen mittasivat. Kohtaamisessa syntyi 150 Auringon massan painoinen musta aukko, ja gravitaatioaallot kantoivat törmäyksestä pois energiaa 8 Auringon massan verran. Tämä vastaa ihmiskunnan nykyistä energiantuotantoa miljardin miljardin miljardin (10^(27)) vuoden ajalta. LIGO ja Virgo näkivät tapahtumasta viimeiset 0.1 sekuntia, jotka kattavat viimeisen muutaman kierroksen sekä sulautumisen. Tehon maksimi sulautumisen aikana oli noin 10^(56) W, eli noin kymmenentuhatta miljardia miljardia miljardia miljardia (10^(40)) kertaa niin paljon kuin ydinvoimala Olkiluoto 3:n suunniteltu teho.

Tämä on korkeaenergisin tapahtuma, mikä koskaan on nähty. On kuitenkin olemassa paljon isompiakin mustia aukkoja. Linnunradan keskustassa lymyävän mustan aukon massa on neljä miljoonaa Auringon massaa, ja Event Horizon Telescopen viime vuonna kuvaaman galaksin M87 keskustan mustan aukon massa on kuusi miljardia Auringon massaa. Nekin ovat syntyneet pienempien aukkojen törmäyksistä, jollaisia taivaalle 2034 nouseva gravitaatioaalto-observatorio LISA näkee.

Tehdyssä havainnossa oli huomionarvoista se, että törmäävien mustien aukkojen massat olivat lähellä sataa Auringon massaa ja niiden synnyttämän aukon massa on siitä yli. Tämä on ensimmäinen vankalla pohjalla oleva havainto mustasta aukosta, jonka massa sijoittuu suunnilleen Auringon massaisten tähtien jälkeläisten ja galaksien keskustoissa mollottavien jättiläisten väliin, eli välille 100-1000 Auringon massaa.

Yllättävää on se, että välillä 65-135 Auringon massaa ei pitäisi olla tähdistä syntyneitä mustia aukkoja ollenkaan.

Jos tähti on tarpeeksi massiivinen, lämpötila sen ytimessä on niin iso, että valo alkaa muuttua aineeksi. Fotonit muuttuvat elektronin ja sen antihiukkasen positronin pareiksi. Niiden paine on pienempi kuin valon, joten tähden ydin pehmenee. Tämän takia tähti alkaa supistua. Siksi lämpötila kasvaa entisestään, kiihdyttäen ydinreaktioita. Jos tähden massa on 32 ja 64 Auringon massan välillä, tähti vuorotelleen romahtaa ja laajenee, kunnes lopulta heittää pois ulomman kuorensa, niin että sen massa laskee ja ydin rauhoittuu. Jos massa on välillä 64-135 Auringon massaa, prosessi sen sijaan hajottaa tähden kokonaan, eikä jäljelle jää mitään. (Raskaammat tähdet pysyvät kasassa.)

Kaikkiaan tähtien romahduksessa ei siis pitäisi syntyä 64-135 Auringon massaisia mustia aukkoja ollenkaan. On taas kaksi vaihtoehtoa: joko käsityksemme tästä osasta tähtien kehitystä on väärin, tai havaitut kohteet eivät ole tähtien romahduksessa syntyneitä mustia aukkoja.

Kuten 2.6 Auringon massaisen kappaleen tapauksessa, mieleen tulee mahdollisuus, että kyse on mustista aukoista, jotka ovat kasvaneet törmäys kerrallaan. Yksi ongelma on se, että kun kaksi mustaa aukkoa törmäävät, ne eivät säteile pois vain valtavia määriä energiaa, vaan myös liikemäärää. Toisin sanoen pois laukkaavat gravitaatioaallot antavat syntyneelle mustalle aukolle potkun, joka voi heittää sen kauas syntysijoiltaan. Toistuvat mustien aukkojen törmäykset kuitenkin edellyttävät sitä, että tienoilla on paljon tähtiä ja niistä syntyneitä mustia aukkoja: sulautuneiden parien pitää jäädä syntyseuduilleen uusia kohtaamisia varten, muuten ne jäävät yksin.

Nyt on julkistettu vasta 15 gravitaatioaaltosignaalia, mikä viittaa siihen, että tällaiset törmäykset eivät ole harvinaisia. (Ellei ihmiskunnalla ole käynyt poikkeuksellisen hyvä tuuri.) Niinpä niiden pitäisi syntyä olosuhteissa, jotka ovat tavallisia, eivät harvinaisia. LIGO toteaa, että tähtien ja mustien aukkojen ryhmien kehitystä tunnetaan kuitenkin sen verta huonosti, että tällaista vaiheittaista musta aukko -parien törmäämistä ei voida sulkea pois. Toinen vaihtoehto on, jälleen, varhaisina aikoina syntyneet mustat aukot tai jotkut tuntemattomat kohteet.

Havaintojen pieni määrä viittaa myös siihen, että sekä pienten että keskisuurten massojen kuiluista saadaan lisää havaintoja. Jos nähtäisiin vaikkapa alle yhden Auringon massaisen tiiviin kappaleen törmäys, tämä olisi vahva todistus joko varhaisina aikoina syntyneestä mustasta aukosta tai jostain tuntemattomasta kohteesta. On vaikea selittää 2.6 Auringon massan neutronitähtiä ja tähtien romahduksesta syntyviä mustia aukkoja, mutta alle yhden Auringon massan tapauksessa se olisi mahdotonta.

LIGOn ja Virgon kolmas havaintokausi loppui maaliskuussa 2020, koronapandemian takia noin kuukautta suunniteltua aikaisemmin. Seuraavan havaintokausi on kaavailtu alkavaksi vuonna 2022. Laitteita päivitetään ja parannellaan jokaisella tauolla. Kun LIGO pääsee parhaaseen vireeseen, sen odotetaan havaitsevan gravitaatioaaltoja noin kerran viikossa, eli kohteiden lukumäärän pitäisi kasvaa nopeasti. Lisäksi vuonna 2022 japanilaisen KAGRAn pitäisi olla jo mukana jahdissa. Ja kolmannelta havaintokaudelta on vielä tuloksia, joita ei ole julkistettu, ja joukossa kenties uusia yllätyksiä.

Kun ensimmäinen gravitaatioaaltohavainto julkistettiin, kirjoitin, että ne ovat ”täysin uusi kanava maailmankaikkeuteen, ja saattaa löytyä jotain yllättävää”. On mahdollista, että nyt julkistetut havainnot selittyvät vain korjauksilla käsityksissämme neutronitähdistä ja mustien aukkojen kotikontujen väestöstä. Mutta voimme myös olla löytöjen alussa.

Päivitys (19/09/20): Korjattu selitys odotetusta neutronitähtien massan ylärajasta.

28 kommenttia “Kaksi kuilua”

  1. Johannes Dahlström sanoo:

    > (Se, että tässäkään törmäyksessä ei nähty merkkejä neutronitähtien venymisestä, muuten viittaa siihen, että neutronitähdet ovat pehmeämmänpuoleisia, joten niiden maksimimassa on pieni.)

    Mitä tarkoitat pehmeällä tässä asiayhteydessä? Intuitiivisesti ajatellen vuorovesivoimat muovaisivat ”pehmeämpää” kappaletta enemmän kuin ”kovaa”, mutta tarkoitatko tässä sitä, miten hyvin kappale pystyy vastustamaan luhistumista kompaktimmaksi? Eli jos neutronitähdet ovat pehmeitä, pienempi massa riittää romahduttamaan ne mustiksi aukoiksi? Tämän tulkinnan puolesta puhuu myöhemmin mainitsemasi parinmuodostus tähden ytimessä, joka artikkelin sanoin myös ”pehmentää” ydintä muuttamalla säteilypaineen ja painovoiman köydenvedon tasapainoa.

    Kiitos etukäteen selvennyksestä, nämä ovat kiehtovia asioita!

    1. Syksy Räsänen sanoo:

      Näin voisi helposti ajatella! Asia on kuitenkin tässä tapauksessa toisin päin.

      Syynä on se, että pehmeämpi neutronitähti lysähtää enemmän kasaan eli on pienempi. Pieni neutronitähti taasen venyy törmäyksessä vähemmän kuin iso.

  2. Lentotaidoton sanoo:

    ”Jos massa on välillä 64-135 Auringon massaa, prosessi sen sijaan hajottaa tähden kokonaan, eikä jäljelle jää mitään”.

    Ei mitään mitä? Tarkoittanet ei selvää näkyvää massaa (esim neutronitähti tai jokin eksooottisempi vastaava) vaan vain säteilyä ja loittonevia roiskeita? JOS tällä massavälillä olevia tähtiä/aukkoja (tai matkalla sellaisiksi) olisi (niinkuin näyttäisi) ja ne hajoaisivat niin mikä asia voisi olla sellaisen astrofysikaalinen ilmenemismuoto? Miten se todennettaisiin (”ei mikäästä” eli tyhjästä lähtevinä roiskeina)?

    1. Syksy Räsänen sanoo:

      Tähti hajoaa kokonaan, eli jäljelle ei jää tiivistä kappaletta.

      Odotetaan siis, että tämän massaisia tähtiä syntyy, mutta ne hajoavat kuvatulla tavalla. En tiedä mitä mahdollisuuksia tällaista hajoamista on havaita.

  3. Miguel sanoo:

    Ymmärtääkseni gravitaatioaallot havaittiin lopulta matemaattisilla malleilla, jotka sopivat havaintoihin. Voivatko noiden mallien puutteellisuus selittää ”anomalioita”

    1. Syksy Räsänen sanoo:

      Gravitaatioaaltoja etsitään kahdella tavalla.

      Yksi on se, että on laskettu, millaisia gravitaatioaaltoja mustien aukkojen ja/tai neutronitähtien törmäyksistä (ja muista lähteistä, kuten kosmisista säikeistä) yleisen suhteellisuusteorian mukaan syntyy. Kun tietää mitä etsii, se on helpompi löytää.

      Toinen on se, että etsitään mitä tahansa aaltosignaalia datasta.

      Tässä isojen mustien aukkojen tapauksessa dataa on aika vähän, vain neljä aallonharjaa 0.1 sekunnin ajan. (Mitä raskaampi kohde, sitä vähemmän kappaleiden kierroksia ennen törmäämistä LIGO ja Virgo näkevät.) Vaikka ennustettu kahden suunnilleen ympyräradalla kiertävän mustan aukon lähettämä aalto sopii dataan, voi olla että siihen siis sopii hyvin jokin muukin malli.

      Yksi mahdollisuus, jota LIGO käsittelee, on se, että mustien aukkojen rata on voimakkaasti elliptinen, eli puristunut ympyrä. Teoreettisesti on kuitenkin epätodennäköistä, että kaksi mustaa aukkoa kauaa kiertäisivät toisiaan voimakkaasti elliptisellä radalla – ja järjestelmän pitäisi olla (havaintojen pienen määrän takia) tavallinen, ei poikkeuksellinen.

      1. Lentotaidoton sanoo:

        Aiemmin olet kirjoittanut: LIGOn pääasiallinen analyysi perustuu heidän gravitaatioaaltokirjastossaan olevaan mallin vertaamiseen, mutta he etsivät myös mitä tahansa taustasta erottuvaa signaalia.

        Jostain löysin tämän: Approximately 250 000 template waveforms are used to cover this parameter space.

        1. Syksy Räsänen sanoo:

          Joo. Nuo perustuvat pienempään määrään (noin 3400) simulaatioita. Simulaatioiden dataa sitten prosessoidaan erilaisille malleilla muidenkin tilanteiden kattamiseksi, ja tästä saadaan nuo sapluunat.

          Mutta myös yleisiä periodisia signaaleja etsitään olettamatta valmiiksi tarkkaa muotoa. LIGOn artikkeleissa annetaankin usein löydän varmuus sekä sapluunan kanssa että ilman. Edellinen on isompi, jälkimmäisessä on vähemmän ennakko-oletuksia.

  4. Eusa sanoo:

    Kyllähän kohtuullisen paljon hylätään signaaleja, jotka näyttävät liikaa joltain muulta kuin gravitaatioaalloilta, mutta joille ei löydy kuitenkaan kuunalista selitystäkään. Mm. Hossenfelder kritisoi, ettei näitä yritetäkään analysoida astronomisesti.

    1. Syksy Räsänen sanoo:

      Olisiko sinulla lähdettä väitteellesi?

        1. Syksy Räsänen sanoo:

          Sabine Hossenfelder ei tuossa kirjoituksessa esitä tuollaista väitettä.

          1. Eusa sanoo:

            Ok. Hän esittää väitteen, joka sisältää sekä kritiikin hyvännäköisten signaalien astrofysikaalista alkuperää että hylättyjen tunnistamattomien häiriöiden ei-astrofysikaalista alkuperää kohtaan. ”He heittävät pois tietoa, joka ei näytä siltä miltä he haluaisivat sen näyttävän… Eikä meillä ole myöskään riippumatonta osoitusta, että hyvännäköiset signaalit olisivat astrofysikaalisia…”

            http://backreaction.blogspot.com/2019/09/whats-up-with-ligo.html?showComment=1567656897221&m=1#c8243452224998666405

            Tuossa kommentti aikaisemmasta blogimerkinnästäään osoittaen, ettei Sabine halua logiikkaansa tulkittavan vain yksisuuntaisesti.

            Teoriasta johdetut odotukset ovat mahdollinen kompastuskivi gravitaatiotähtitieteen alkutaipaleella. Kunhan tekniikka paranee, varmasti päästään tilanteeseen, että tähtitieteellinen havainto voidaan yhdistää signaaleihin ilman ennakkosapluunaa ja gravitaatiosäteilyn tapahtumakirjosta saattaa kehkeytyä yhä monipuolisempi tutkimuskenttä…

          2. Syksy Räsänen sanoo:

            Kuten tässäkin merkinnässä kirjoitin, signaaleja tunnistetaan jo nyt ilman valmista sapluunaa. Näin on itse asiassa tehty ensimmäisestä havainnosta lähtien.

            Tämä riittäköön tästä.

  5. Erkki Tietäväinen sanoo:

    Tästä on varmaan joskus ollut puhe, mutta kysyn silti: Jos maailmankaikkeudessa olevien kaikkien mustien aukkojen arvioitua yhteismassaa verrataan kaikkien näkyvien kappaleiden arvioituun yhteismassaan, niin kumpi olisi suurempi ja kuinka paljon?

    1. Syksy Räsänen sanoo:

      Jos pimeä aine ei koostu mustista aukoista, niiden osuus massabudjetissa on mitätön. Linnunradan keskustan mustan aukon massan osuus koko massasta on noin 1/250 000. En tiedä mikä on paras arvio pienempien mustien aukkojen lukumäärälle, mutta niidenkin yhteenlaskettu osuus jää varmaan alle tuhannesosan. Lisäksi galaksiryppäissä on paljon massaa kaasussa galaksien välillä, mikä laskee mustien aukkojen osuutta.

      Jos pimeä aine koostuu mustista aukoista, niitä on noin 5 kertaa niin paljon kuin ytimistä ja elektroneista koostuvaa ainetta.

      1. Erkki Tietäväinen sanoo:

        Vielä jatkokysymys: Mustien aukkojen yhteismassa lisääntyy koko ajan, kun näkyvää ainetta päätyy niiden syövereihin. Se tarkoittanee sitä, että näkyvän maailmankaikkeuden massa samalla vähenee. Koostuuko kaukaisen tulevaisuuden maailmankaikkeus siis mustista aukoista, tai ehkä jopa vain yhdestä mustasta aukosta?

        1. Syksy Räsänen sanoo:

          Mustia aukkoja syntyy vain tähtien romahduksesta. Useimmat tähdet eivät romahda mustiksi aukoiksi, eikä suurin osa nökyvästä aineesta ole tähdissä vaan kaasuna.

          Mustat aukot syövät vain pienen osan aineesta. Suurin osa aineesta ei päädy niin lähelle, että joutuisi mustaan aukkoon.

  6. Joksa sanoo:

    Mistäköhän syystä useissa lähteissä mainitaan että tuon 66 ja 95 auringon massaisten mustien aukkojen törmäyksistä jäljelle jäänyt musta aukko olisi vain 142 auringon massainen? Jos se pitää paikkaansa niin kysymys voivatko mustat aukot sittenkin säteillä massaenegiaansa (eli vaikuttaa) tapahtumahorisonttiensa ulkopuolelle. Silloinhan tapahtumahorisontin kausaalinet määritelmä olisi paikaansa pitämätön, ja ajatus että myös informaatiota katoaisi mustista aukoista alkaisi vaikuttaa ilmeiseltä. Ikäänkuin teoriassa kaivattaisiin vielä pientä säätöä, vai?

    1. Syksy Räsänen sanoo:

      Yksinäinen musta aukko ei säteile. Kun mustat aukot kohtaavat, niiden muodostama systeemi säteilee energiaa. Tässä tapauksessa systeemi säteilee energiaa noin 8 Auringon massan verran, kuten tekstissä kirjoitan. Mustien aukko -parien havaitseminen perustuu tähän teorian ennustamaan piirteeseen.

      Ks. esim. tämä havainnollistava simulaatio: https://www.youtube.com/watch?v=c-2XIuNFgD0&ab_channel=SXSCollaboration

  7. Erkki Kolehmainen sanoo:

    ”…noin kymmenentuhatta miljardia miljardia miljardia miljardia (10^(40)) kertaa niin paljon kuin ydinvoimala Olkiluoto 3:n suunniteltu teho..”

    Syksyn jutuissa on yhtä paljon epävarmuutta kuin siinä käynnistyykö Olkiluoto 3 koskaan? Siinä mielessä hyvin valittu vertauskohta. Mutta jos Syksy haluaa oikein suuria lukuja vertailla, niin siihen sopii hyvin USA:n valtionvelka 22 000 000 000 000 $ (Uusi Suomi 13.2.2019). Minusta tuo luku on tähtitieteellinen.

    1. Syksy Räsänen sanoo:

      Teho ja hinta eivät ole vertailukelpoisia, koska niillä on eri yksikkö.

  8. Joksa sanoo:

    Selitys ei minua tyydytä lopputuloksen ollessa se että joko jo kahden erillisen tai loppuvaiheessa yhdistyneen tapahtumahorisontin takaa on hävinnyt massenegiaa joka vaikuttaa gravitaatioaaltojen muodossa ympäröivään aika-avaruuteen.

    Ymmärtääkseni mustien aukkojen singulariteetit pysyvät koko ajan jonkun tapahtumahorisontin sisällä, joko omansa tai yhdistyneen. Alastomien singulariteettien sanotaan olevan mahdottomia joten mainitsemasi ”systeemi” ei kai siten voi olla mikään sellainen. Näinollen vaihtoehtoa sille että massaenergia säteilee gravitaatioaaltoina ympäröivään aika-avaruuteen tapahtumahorisontin ylittäen ei kai sitten ole? Gravitaatioaallothan kuitenkin kantavat energiaa, ja näinollen, informaatiota.

    1. Syksy Räsänen sanoo:

      Kuten videosta näkyy, mustien aukkojen tapahtumahorisontit muuttuvat, kun ne tulevat lähelle toisiaan. Tapahtumahorisonttien yhteenlaskettu pinta-ala ei koskaan pienene, mutta mustien aukkojen yhteenlaskettu massa voi pienentyä.

      1. Joksa sanoo:

        Video näytäisi demoavan kaareutumisilmiöitä ottamatta mitenkään kantaa prosessin energiatalouteen. Pitäisin sitä tarkemman pohtimisen arvoisena, havainnot kun eivät tuntuisi tukevan kaikilta osin vallitsevia teorioita. Hawking lienee päätynyt samasuuntaisiin näkemyksiin (valonkin osalta) kun kutakuinkin hylkäsi osin itse määrittelmänsä tapahtumahorisontti -rajapinnan todeten että ”the absence of event horizons mean that there are no black holes – in the sense of regimes from which light can’t escape to infinity”.

        G-aaltojahan generoituu jo ennen yhdentymistä ja generoinnin vaatima energia ulosmitataan erillisten horisonttien sisältä joten niiden sekä erillisten että yhteenlaskettujen alojen pitäisi pienetä. Yhtäältä teorian mukaan ja toisaalta vastaisesti. Pelkästään yhdentymishetkellä tapahtuva massaenergian pieneneminen jättäisi kysymykset avoimiksi. G-aalloille teoreettinen horisontti ei ole este, tuntuisi luontevalta että ne syntyisivät horisonttien sisällä ja aaltoilisivat tarvitsemansa energioiden kera ulos. Mitätöiden Hawkingin formuloiman tapahtumahorisontin vahvan kausaalisen määritelmän, jonka siis Hawking itsekin mitätöi. Vahvasti tuohon määritelmään silti edelleen ankkuroidutaan.

        1. Syksy Räsänen sanoo:

          Video havainnollistaa kaikki efektit huomioon ottavaa yleisen suhteellisuusteorian numeerista laskua. Siinä ei jätetä mitään huomiotta, ja lasku kertoo senkin mitä energialle tapahtuu. Energia ei tule horisonttien sisältä.

          Kaikki tehdyt gravitaatioaaltohavainnot ovat täysin sopusoinnussa yleisen suhteellisuusteorian ennusteiden kanssa.

          Tuo Hawkingin kommentti liittyy Hawkingin säteilyyn, jolla ei ole tämän asian kanssa mitään tekemistä.

          Tämä riittäköön tästä.

  9. Lentotaidoton sanoo:

    Joksa: ”Ymmärtääkseni mustien aukkojen singulariteetit pysyvät koko ajan jonkun tapahtumahorisontin sisällä, joko omansa tai yhdistyneen. Näinollen vaihtoehtoa sille että massaenergia säteilee gravitaatioaaltoina ympäröivään aika-avaruuteen tapahtumahorisontin ylittäen ei kai sitten ole? Gravitaatioaallothan kuitenkin kantavat energiaa, ja näinollen, informaatiota.”

    Täytyy muistaa, miten massivisten tähtien lopputulemuksena syntyvät mustat aukot muodostuvat. Nehän muodostuvat jo olemassaolevan (tietysti) gravitaatiokentän kasvaessa tiettyyn pisteeseen. Ei se gravitaatiokenttä siitä mihinkään katoa (mustan aukon sisään?) – päinvastoin. Ei se ole missään ”piilossa” siellä tapahtumahorisontin sisällä ja sitten vaikuttaisi jotenkin ”tapahtumahorisontin ylittäen”. Se on fyysinen objekti, vaikkakin vähän kummallisempi.

    Kun heilautan kättäni niin se heilauttaa samalla esim Kuuta tai mitä tahansa ympäristön esinettä (mutta tietysti täydellisesti mittaamattomalla määrällä). Kun kaksi musta aukkoa yhtyy niin niiden gravitaatiokentät ”heiluttavat” ympäristöään niin julmasti, että ”pärskeet” voidaan havaita jopa nyt havaitulta n 800 milj valovuoden etäisyydeltä.

  10. Syksy Räsänen sanoo:

    Muistutuksena, että tämä kommenttiosio ei ole paikka omille pohdiskeluille ja teorioille fysiikasta. (Tämä liittyy muutamaan julkaisemattomaan kommenttin.) Kysymykset ja kommentit ovat muuten tervetulleita.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *