Hirvittäviä hyppäyksiä

16.12.2013 klo 02.01, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Huomasin YLEltä uutisen jonka mukaan ”Universumi voi romahtaa koska tahansa – tai sitten ei”. Jutun mukaan on mahdollista, että ”Muutos puristaisi kaiken aineen pieneksi supertiheäksi palloksi. Samalla maailmankaikkeus nykymuodossaan lakkaisi olemasta”. Tiedeuutisissa on tavallista törmätä artikkeleihin, joiden ihmeellisyydelle vetää vertoja vain niiden perättömyys, joten en ajatellut kirjoittaa aiheesta enempää. Kun kuitenkin tulin katsoneeksi asiaa tarkemmin, huomasin että taustalla onkin ihan mielenkiintoista tutkimusta.

YLE oli saanut jutun Tähdet ja avaruus –lehdestä, joka puolestaan oli poiminut sen sivustolta SpaceDaily.com. Kun aihe on vaikea eivätkä toimittajat ole käsittelemiensä asioiden asiantuntijoita, niin kertomus voisi helposti muuttua yhä uskomattomammaksi joka askeleella. Itse asiassa YLEn uutinen on kuitenkin kohtuullinen tiivistelmä SpaceDaily.comin artikkelista. Uutisen poskettomat väitteet ovat tosin kaukana siitä, missä itse tieteellisessä tutkimuksessa on kyse, mutta ne eivät ole SpaceDaily.comin toimittajan keksintöä. Kyseisen sivuston ”uutinen” on nimittäin sanatarkka kopio Eteläisen Tanskan yliopiston lehdistötiedotteesta.

Kuten olen aiemmin sanonut, toimittajia voi syyttää siitä, että he suhtautuvat tutkijoiden lehdistötiedotteisiin kritiikittömästi, mutta suurin osa paisuttelusta on yleensä tutkijoiden itsensä tekosia. (Esimerkkejä voi katsastaa Peter Woitin blogista Not Even Wrong.)

Tutkimus sinänsä on kiinnostava, se koskee Higgsin kenttää. Hiukkasfysiikan Standardimallin Higgsin kenttä täyttää koko avaruuden. Sitä voi verrata sähkökenttään, paitsi että sähkökentällä on voimakkuuden lisäksi suunta, Higgsin kentällä on vain voimakkuus. Higgsin kenttä on tällä hetkellä kaikkialla havaitussa maailmankaikkeudessa yhtä voimakas. Higgsin kentän voimakkuus ilmenee nykymaailmankaikkeudessa lähinnä siten, että tunnetut alkeishiukkaset saavat massansa vuorovaikuttamalla kentän kanssa. (Poikkeuksena Higgsin hiukkanen itse sekä mahdollisesti neutriinot, joiden massojen alkuperästä ei ole varmuutta.) Mitä voimakkaampi Higgsin kenttä on ja mitä vahvemmin hiukkanen vuorovaikuttaa sen kanssa, sitä suurempi hiukkasen massa on.

Varhaisessa maailmankaikkeudessa Higgsin kentän voimakkuus on ollut erilainen kuin nykyään, ja on mahdollista, että se muuttuu tulevaisuudessa. Kentän käytöksen määrää se, miten se vuorovaikuttaa itsensä ja muihin hiukkasiin liittyvien kenttien kanssa. Nämä vuorovaikutukset ovat niin monimutkaisia, että niitä ei pystytä laskemaan täysin tarkasti, teoriaa pitää aina yksinkertaistaa jotenkin. Oleg Antipinin ja muiden tutkimuksessa, joka on toiminut lehdistötiedotteen pohjana, esitetään uudenlainen tapa yksinkertaistaa vuorovaikutusten laskemista. Kysymys on siitä, mitä osia teoriasta otetaan mukaan ja mitä jätetään pois, ja Antipin ja kollegat esittävät hieman erilaista kirjanpitoa kuin mitä yleensä on käytetty.

Tutkijat soveltavat artikkelissaan uutta menetelmää sen laskemiseen, miten Higgsin kenttä käyttäytyy, kun sen voimakkuus on hyvin suuri. Nykypäivänä Higgsin kenttä näyttää olevan stabiili. Tämä tarkoittaa sitä, että jos kentän voimakkuus muuttuu vähän, niin se palaa takaisin vanhaan arvoonsa. Kenttä lepää rauhassa kuin kivi kaivon pohjalla. On mahdollista, että jos kenttä olisi hyvin voimakas, niin se ei olisi enää stabiili, vaan se voimakkuus rupeaisi kasvamaan rajatta. Toisaalta voi olla, että hyvin voimakas kenttä olisi vielä stabiilimpi kuin nykyinen. Kummassakin tapauksessa kenttä saattaa hypätä hirvittävän ison välin hyvin suurelle arvolle, kuin kivi kaivosta viereisen syvemmän kaivon pohjalle, tai pohjattomaan kuiluun. (Kun asian ilmaisee näin, niin se kuulostaa kummalliselta, mutta kvanttimekaniikassa tällaista tunneloitumista tosiaan tapahtuu – aiheesta kenties myöhemmin lisää.)

Mitä merkitystä tällä sitten on? Jos Higgsin kentän arvo kasvaisi rajatta, niin siihen liittyvästä energiatiheydestä tulisi hyvin negatiivinen, mikä johtaisi maailmankaikkeuden romahtamiseen. Toisekseen, jos Higgsin kenttä on vastuussa varhaisen maailmankaikkeuden inflaationa tunnetusta tapahtumasta, niin siihen liittyvä kentän voimakkuus on hyvin suuri, ja kentän käytös pitää tuntea tarkkaan. 

Higgsin kentän stabiilius riippuu sen massasta ja vuorovaikutuksesta itsensä ja muiden hiukkasten kanssa. Standardimallissa Higgsin kenttä on suurilla voimakkuuksilla niin lähellä stabiilin ja epästabiilin rajaa, että tämänhetkisen mittaustarkkuuden rajoissa ei voida sanoa, kummalla puolella se on. Laskuihin vaikuttavat tunnettujen hiukkasten lisäksi kaikki muut hiukkaset. Lienee olemassa ainakin pimeän aineen hiukkanen, ja luultavasti useita muitakin toistaiseksi tuntemattomia hiukkasia, joten pelkästään Standardimallin hiukkassisällöllä tehdyt laskut, kuten Antipinin ja kollegoiden tutkimus, eivät ole viimeinen sana. Artikkelin johtopäätös joka tapauksessa on se, että approksimaatiot Higgsin kentän käyttäytymisestä eivät vielä ole tarpeeksi tarkkoja, että voitaisiin päätellä, mitä tapahtuu kentän ollessa hyvin voimakas.

Miten tästä on hypätty yliopiston lehdistötiedotteeseen, jonka mukaan hiukkasista voi koska tahansa tulla paljon raskaampia, aine puristua supertiheäksi palloksi ja maailmankaikkeus lakata olemasta?

Jos Higgsin kenttä siirtyisi epästabiiliin tilaan, niin tämä saattaisi tosiaan johtaa maailmankaikkeuden romahtamiseen, kuten mainittua. Mutta tästä lehdistötiedotteessa ei vaikuta olevan kysymys, vaan siitä, että kentän voimakkuus hyppäisi stabiiliin tilaan. Tällöin naiivisti ajateltuna hiukkasten massat (ja siten myös energiat) kasvaisivat. Mutta laskuissa Higgsin kentän tilan muuttumisesta ei ole otettu huomioon tätä – laskun koko idea on se, että maailmankaikkeus siirtyy tilaan, jossa kokonaisenergia on sama tai alempi, ei isompi. Jos hiukkasten massojen kasvun ottaisi huomioon, energia kasvaisi. Toisin sanoen, lehdistötiedotteen kuvaama hyppy on mahdoton. Tutkimuksessa ei mitään tällaisia väitteitä ole, romahtamisesta tai muusta maailmanlopusta ei siinä puhuta sanallakaan.

Lehdistötiedotteessa on mainittu yhteyshenkilönä tutkimuksen tekemiseen osallistunut jatko-opiskelija Jens Krog. Hän on myös ainoa henkilö, jota on lehdistötiedotteessa ”haastateltu”. Ei ole selvää, mikä osa tekstistä on hänen käsialaansa ja mikä kenties yliopiston tiedottajien. Ei liene syytä laittaa liikaa painoarvoa sille, että kyseessä on jatko-opiskelija, koska yhtä harhaanjohtavia tekstejä tulee vanhempienkin tutkijoiden nimissä. Yleinen käytäntö sitä paitsi on, että ennen väitöskirjan valmistumista jatko-opiskelijoiden synnit kuuluvat ohjaajien kannettavaksi, ja lehdistötiedotteen sisällön pitäisi olla kaikkien hyväksymä.

Tässä tapauksessa lehdistötiedote oli harhaanjohtava ja virheellinen. Mutta silloinkin kun tiedote kuvaa tutkimuksen sisältöä oikein, on ongelmallista, että toimittajat päättelevät pelkästään tiedotteen lähettämisestä, että jotain merkittävää on tapahtunut. Tämä onkin luonnollista – jos kysymys olisi sellaisesta pienestä askeleesta joita otetaan kymmeniä päivittäin, niin miksi juuri tästä olisi kirjoitettu tiedote? Esimerkiksi muka valoa nopeammiksi neutriinoiksi luullun mittausvirheen tapauksessa asia olisi pitänyt selvittää tutkimusryhmän tai laajemman tiedeyhteisön sisällä eikä uutisoida koko maailmalle.

Olen itse kerran joutunut tällaiseen tilanteeseen. Väitöskirjaopiskelijani Mikko Lavinnon ja Jagellon yliopistossa Krakovassa työskentelevän Sebastian J. Szybkan kanssa kehitimme kosmologisen mallin, jossa on alueita, jotka ovat sisältä isompia kuin ulkoa, tutkiaksemme rakenteiden vaikutusta maailmankaikkeuden laajenemiseen. Nimesimme ne Tardis-alueiksi, Oxford English Dictionaryyn Dr Who –sarjasta päätyneen sanan mukaan; sana tarkoittaa jotakin jonka sisäinen koko on isompi kuin ulkoinen. Nimen takia tutkimus sai huomiota netissä. Yhtä juttua varten toimittaja haastatteli minua, ja siitä tulikin ihan asiallinen. Ajattelin, että matemaattis-luonnontieteellisen tiedekunnan tiedottajaa saattaisi kiinnostaa asian saama huomio, joten laitoin hänelle viestin. Puolitoista tuntia myöhemmin sain yllätyksekseni sähköpostissa lehdistötiedotteen luonnoksen. Soitin tiedottajalle ja sanoin, että parempi olla laittamatta tiedotetta, koska vaikka artikkeli on mielestäni hyvä ja kiinnostava, tiedotteen lähettäminen antaa liiallisen vaikutelman tutkimuksen merkityksestä. (Tiedottaja suhtautui asiallisesti, mutta voin kuvitella hänen miettineen, millaisia hölmöjä jotkut tutkijat ovat: miksi ottaa yhteyttä tiedottajaan, jos ei kerran halua, että tämä tiedottaa?)

Päävastuu tutkimuksesta tiedottamisesta asianmukaisesti on tutkijoilla itsellään. Higgsin hiukkasen löytymisen asiallinen uutisointi osoittaa, että tiedotusvälineet pystyvät esittämään tieteelliset läpimurrot oikeassa viitekehyksessä ja merkitykset paikalleen pistäen, jos niille tarjotaan siihen vankka pohja. Mutta toimittajienkin tulisi tehdä osansa ja etenkin ihmeellisten löytöjen kohdalla lehdistötiedotteiden tai muiden lehtien artikkelien kopioimisen sijaan selvittää miten asian laita todella on.

8 kommenttia “Hirvittäviä hyppäyksiä”

  1. Pekka Janhunen sanoo:

    Jos väärä vakuumi purkautuu oikeaan, se kuulostaa samalta kuin alkuperäinen Guth 1980 kuplainflaatiomalli. En ymmärrä miten kuplan sisältö siinä tapauksessa romahtaisi kasaan, luulisi että se päinvastoin lähtisi laajenemaan (sisäisesti?).

    Ylipäätään kuulostaa minusta kyllä erikoiselta jos kaiken bigbang-rytinän ja myöhemmän suurenergia-astrofysiikan jälkeen maailmankaikkeus ei olisi vielä löytänyt oikeaa vakuumiaan.

  2. Pekka.Janhunen sanoo:

    Lisäys. Ehkä ajatus romahduksesta on omaksuttu Coleman De Luccia 1980 paperista (Gravitational effects on and of vacuum decay). He tarkastelevat kahta tapausta, (1) alkutilan Higgsin potentiaalienergia on nolla ja lopputilan negatiivinen, (2) alkutilan potentiaali positiivinen ja lopputilan nolla. Tapaus (1) vastaisi nykyisen väärän vakuumin romahtamista, tapaus (2) bigbangin aikaista Guth-tyyppistä inflaatiota. Tapauksessa (1) CDL:n mukaan kuplan sisältö romahtaa. Gravitaatiokytkennän mielessä kaiketi kentän potentiaalin absoluuttiarvolla on merkitystä. Vähän heikoilla jäillä kyllä ollaan.

  3. Lentotaidoton sanoo:

    LHC huilii nyt remontissa. Mutta se sai kuitenkin varmistetuksi, että Higgsin bosoni on olemassa ja sen myötä myös että sen tärkeämmän asian eli Higgsin kentän täytyy olla olemassa. Ja ainakin toistaiseksi näyttäisi, että nämä sekä hiukkanen että kenttä olisivat Standardimallin yksinkertaisen mallin mukaisia.

    On (ehkä) luonnollista, että itse kentän käyttäytymiseen aletaan enenevässä määrin tutustua, ja kuten näimme myös mitä villeimpien teorioiden muodossa. Kun Higgsin kenttä löysi miniminsä, ei se ollutkaan nolla, vaan nollasta poikkeava (keskimäärin). Tämä kentän minimin saavuttaminen liitetään (yleisesti) sähköheikkovoiman symmetriarikkoon ja mahdollisesti inflaatioon. Mitä kentän arvo oli ennen sitä, siitä ainakin minä olen saanut käsityksen, että asia on avoin.

    Syksy: ”Jos Higgsin kentän arvo kasvaisi rajatta, niin siihen liittyvästä energiatiheydestä tulisi hyvin negatiivinen, mikä johtaisi maailmankaikkeuden romahtamiseen”. Selittäisitkö hieman. Se on ymmärrettävää, että kentän arvon kasvaessa sen energiatiheydestä tulisi hyvin negatiivinen. Mutta miksi se johtaisi maailmankaikkeuden romahtamiseen? Jos kentän arvo kasvoi (inflaatiossa), niin sehän johti juuri päinvastaiseen eli nopeaan laajenemiseen.

    Kenttä on nyt stabiili. Faasimuutoksethan ovat tapahtuneet aina kosmoksen viilentyessä. Espoossa on päästy jumalattoman lähelle absoluuttista nollapistettä (ja jopa hypätty yli toiselle puolelle). Eikä faasimuutosta näkynyt. Mikä asia johtaisi nyt stabiilin kentän muuttumiseen? Ymmärrän, että muutos voi johtua (vain) kvanttimekaniikasta (tunneloituminen).

    Olisiko kentän mahdollisella muutoksella mitään tekemistä ns. hierarkiaongelman kanssa?

  4. Pekka P sanoo:

    Kirjoitit: ” että tunnetut alkeishiukkaset saavat massansa vuorovaikuttamalla kentän kanssa. (Poikkeuksena Higgsin hiukkanen itse…)”

    Kävin lauantaina 14.12. Tampereen Metsossa kuuntelemassa Nobel-yleisöluennot, joilla itse luennoit pari vuotta sitten. Higgsin bosonia käsittelevässä luennossaan Kimmo Tuominen käsittääkseni (muistaakseni)sanoi Higgsin antavan massan myös itselleen. Ihmettelin sitä silloin. Olenkohan käsittänyt (tapani mukaan) väärin, vai onko fyysikoilla eilaisia näkemyksiä asiasta?

  5. Olli sanoo:

    Elelee työ hötköelko. Ootellaan 20vuotta, niin vastassa lienööp taas uus tottuus, semmone ,itä kukkaa nyt ei ossoo uavistoo!.

    Syksy, kiitos valaisevasta kirjoituksestasi, sellaisia kaivataan aina!

  6. Syksy Räsänen sanoo:

    Lentotaidoton:

    Higgsin kentän vaikutus maailmankaikkeuden laajenemiseen riippuu kentän energiatiheydestä. Mitä isompi energiatiheys, sitä isompi laajenemisnopeus. Jos energiatiheys putoaa nollaan, niin laajeneminen pysähtyy ja maailmankaikkeus alkaa romahtaa.

    Inflaatioon edellyttää isoa positiivista energiatiheyttä. Jotta Higgs voisi onnistuneesti aikaansaada inflaation, Higgsin energiatiheyden pitää siis olla iso ja positiivinen silloin kun kenttä on voimakas. Jos Higgsin energiatiheys on voimakkaalla kentän arvolla negatiivinen, inflaation kanssa tulee ongelmia – voi tosin olla, että kentän voimistuessa energiatiheys ensin kasvaa ja sitten pienenee ja lopulta muuttuu negatiiviseksi. Jos tämä kääntyminen tapahtuu tarpeeksi kaukana siitä kentän voimakkuudesta, jolla inflaatio tapahtuu, ongelmalta vältytään.

  7. Syksy Räsänen sanoo:

    Pekka P:

    Tässä lienee kysymys erilaisista valinnoista popularisoinnissa käytettävistä ilmaisuista. Higgsin kenttä ei anna Higgsin hiukkaselle massaa samalla tavalla kuin muille hiukkasille, mutta se vaikuttaa kyllä Higgsin hiukkasen massaan.

    Muut alkeishiukkaset paitsi Higgs (ja ehkä neutriinot) saavat massansa siitä, että ne vuorovaikuttavat Higgsin kentän kanssa: jos Higgsin kentän voimakkuus olisi nolla, näillä alkeishiukkasilla ei olisi massaa. Higgsin hiukkasella sen sijaan olisi massa vaikka Higgsin kentän voimakkuus olisi nolla. Mutta jos Higgsin kentän voimakkuus olisi nolla tai jos Higgsin hiukkanen ei vuorovaikuttaisi Higgsin kentän kanssa, sen massa olisi erilainen.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *