Higgs ja maailmankaikkeuden synty

30.9.2017 klo 12.51, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Pidin eilen Tutkijoiden yössä Fyysikkoseuran 70-vuotistapahtumassa Pecha Kucha –puheen. Puheeseen kuuluu 20 kuvaa, joista jokainen näkyy 20 sekuntia. Kuvien vaihtumisen vaikutelma tuskin välittyy tekstin sekaan laitettuna, joten jätän ne pois (yhteen niistä minulla taitaakin olla oikeudet vain esitykseen, ei www-sivuille). Mutta puheen sanat olivat jokseenkin seuraavanlaiset.

Fundamentaalinen fysiikka luotaa todellisuutta perustavanlaatuisimmalla tasolla. Tällä hetkellä on päästy siihen, että on kaksi pilaria, joihin kaikki periaatteessa nojaa. Yksi pilari on kvanttikenttäteoria. Sen tärkein osa on hienosyinen, vakaa ja kaunis rakenne jolle on annettu yhtä aikaa vaatimaton ja suureellinen nimi: Standardimalli. Kaikki mitä Maapallolla on, ja mitä tahansa täällä tapahtuu (gravitaatiota lukuun ottamatta) noudattaa Standardimallin sääntöjä.

Standardimalli on saavutuksena vähintään yhtä merkittävä kuin ihmiskunnan mikään arkkitehtoninen tai teknologinen rakennelma. Se kuitenkin eroaa niistä siten, että Standardimallia ei ole rakennettu, vaan se on löydetty. Fysiikka on todellisuuden arkeologiaa, jossa pyramideja ei kaiveta esiin menneisyyden hiekasta, vaan arkisen kokemuksen alta.

Standardimallin viimeinen pala saatiin paikalleen vuonna 2012, kun CERNin LHC-kiihdyttimen haaviin jäi Higgsin hiukkanen. Higgsin hiukkanen on tihentymä Higgsin kentässä, joka täyttää avaruuden ja antaa massat muille hiukkasille.

Nyt kun Higgsin hiukkanen on löydetty ja sen ominaisuudet on mitattu, niin Standardimallista tiedetään periaatteessa kaikki. Kiihdyttimillä etsitään tietä sen tuolle puolen ja yritetään saada kiinni tuntemattomista laeista, säännöistä Higgsin takana. Toistaiseksi mitään uutta ei ole löytynyt, joten katseet suunnataan taivaalle.

Kuten Kari Enqvist meille kertoi, taivaalla näkyvä kosminen mikroaaltotausta on kirjaimellisesti valokuva 14 miljardin vuoden takaa. Mikroaaltotausta syntyi, kun valo ja aine irtosivat toisistaan ensimmäisen kerran. Tummat täplät merkitsevät kohtia, missä oli enemmän ainetta. Tiheät alueet vetävät gravitaation kautta puoleensa lisää massaa ja kasvavat. Ne ovat siemeniä, joista galaksien verkko versoaa. Kaikki maailmankaikkeuden rakenteet juontavat juurensa mikroaaltotaustassa näkyviin sadastuhannesosan kokoisiin epätasaisuuksiin, suurimmasta pienimpään, satojen miljardien valovuosien pituisista galaksien rihmoista galakseihin, aurinkokuntiin, planeettoihin ja kaikkeen mitä niissä on. Myös meidän ulkomuotomme, luontomme ja kaikki kulttuurimme moninaisuus on peräisin näistä sattumanvaraisista kupruista. Siinä kaikki.

Nämä kuprut puolestaan saattavat palautua Higgsin kenttään.

Menestynein selitys rakenteen siementen alkuperälle on kosminen inflaatio. Lyhykäisyydessään ajatuksena on se, että maailmankaikkeuden alkuhetkinä, ensimmäisen sekunnin murto-osien perukoilla, avaruuden laajeneminen kiihtyi. Kiihtyvä laajeneminen teki avaruudesta tasaisen, kuin pöytäliinan vetäisi tiukaksi.

Kiihtyvästä laajenemisesta oli vastuussa jokin kenttä, joka täytti koko avaruuden, kenties Higgsin kenttä. Kentän gravitaatio ei vedä puoleensa, vaan hylkii, joten avaruuden alueet etääntyvät kiihtyvällä tahdilla. Kvanttifysiikan mukaan mikään ei ole täysin tasaista, kaikessa on kvanttivärähtelyjä, niin myös inflaatiota ajavassa kentässä. Inflaation aikana avaruuden nopea laajeneminen venyttää kentän vähäiset värähtelyt hiukkasfysiikan mittakaavasta kosmisiin mittoihin ja jäädyttää ne paikalleen, niin että ne eivät enää värähtele, vaan kiteytyvät siemeniksi.

Inflaation lopuksi kenttä -ehkä Higgsin kenttä- hajoaa tavalliseksi aineeksi, joka perii sen epätasaisuudet. Siellä missä kentän arvo on isompi, syntyy enemmän hiukkasia, mukaan lukien fotoneita, ja 14 miljardia vuotta myöhemmin kvanttivärähtelyjen jäljet hohtavat taivaalla piirrettynä mikroaaltojen näkymättömällä valolla.

Inflaatiossa keskeistä on siis toisaalta kvanttivärähtelyt ja toisaalta maailmankaikkeuden laajeneminen. Avaruuden laajeneminen perustuu fundamentaalin fysiikan toiseen tukipilariin, yleiseen suhteellisuusteoriaan.

Inflaatio on ensimmäinen –ja toistaiseksi ainoa– fysiikan alue, missä kvanttifysiikka ja yleinen suhteellisuusteoria ovat kohdanneet siten, että on päästy kokeellisesti testaamaan niiden yhteisiä ennustuksia. Inflaatiossa yhdistyvät lait, jotka hallitsevat yllä ja alla olevaa todellisuutta.

Jos Higgs on vastuussa inflaatiosta, niin tämä tarkoittaa sitä, että taivaalla miljardien valovuosien mittakaavassa näkyvä galaksien jakauma määräytyy LHC-kiihdyttimessä mitatuista hiukkasten ominaisuuksista.

Lisäksi Higgs-inflaatiossa on sellainen erityispiirre, että Higgs kytkeytyy aika-avaruuteen poikkeuksellisella tavalla, niin että Higgs-inflaation jättämistä vihjeistä taivaalla, erityisesti inflaation aikana syntyneiden gravitaatioaaltojen jäljistä, on mahdollista päätellä mitkä ovat aika-avaruuden ainesosat. Yleisestä suhteellisuusteoriasta, joka kuvaa aika-avaruutta, on nimittäin erilaisia versioita, emmekä tiedä mikä niistä on oikea: onko yleinen suhteellisuusteoria sellainen kuin sen muotoili Albert Einstein vuonna 1915, 1925, 1930, vai Abhay Ashtekar vuonna 1986, vai aivan muunlainen? Mutta tämän kertominen tarkemmin veisi meidät jo toiseen tarinaan.

14 kommenttia “Higgs ja maailmankaikkeuden synty”

  1. Eusa sanoo:

    Jos laadit ”toisen tarinan” merkinnän yleisen suhteellisuusteorian versioista, pyydän että voisit kuvata Einstein-Cartan-Kibble-Sciama -teorian ja loop quantum -gravitaation pyrkimyksiä.

    1. Syksy Räsänen sanoo:

      Loop quantum gravityssä on kyse (nimensä mukaisesti) kvanttigravitaatiosta, ei yleisen suhteellisuusteorian eri muotoilusta. (Se perustuu tässäkin mainittuun Ashtekarin muotoiluun.) Saatan kirjoittaa siitä jossain vaiheessa. Einstein-Cartanin teoriaa tuskin täällä käsittelen.

  2. Syksy Räsänen sanoo:

    Muistutuksena (viitaten kommentteihin joita ei ole julkaistu), tämä kommenttiosio ei ole oikea paikka omien fysiikan spekulaatioiden esittelemiseen.

  3. Mikko sanoo:

    Mitä ovat suhteellisuusteorian eri versiot? Mitä ero niissä on? En ole kuullutkaan että Albert Einstein on tehnyt siitä eri versioita tai muotoiluja.

    1. Syksy Räsänen sanoo:

      Tämän kertominen tarkemmin veisikin jo toiseen tarinaan. Yleisestä suhteellisuusteoriasta on erilaisia käsitteellisesti erilaisia muotoiluja, jotka kuitenkin yleisen suhteellisuusteorian ja tietynlaisen ainesisällön tapauksessa ovat fysikaalisesti identtisiä. Higgs-inflaation tapauksessa näin ei kuitenkaan ole. Tämä on eräs tutkimuskohteeni, asiasta kenties lisää jossain myöhemmässä merkinnässä.

  4. Sunnuntaikosmologi sanoo:

    Eikö ole niin että sekä LHC:n että LIGO:n saavutukset tähän mennessä ovat olleet lähinnä sitä että ovat kokeellisesti vahvistaneet sen mitä niiden oletettiinkin vahvistavan ?
    Jo nämä saavutukset ovat toki mittaamattoman arvokkaita. Mutta onko tilanne sekä astrofysiikassa että hiukkasfysiikassa se että alan peruskurssien oppikirjat eivät välttämättä juurikaan muutu seuraavan 25 vuoden aikana ?

    1. Syksy Räsänen sanoo:

      Asia on juurikin näin. Tosin LIGOn kohdalta sillä varauksella, että mustien aukkojen oli odotettu olevan hieman pienempiä. En tiedä kuinka tärkeä löytö tämä on tähtien kehityksen tutkimiselle.

      Edellinen merkittävä yllättävä havainto kosmologiassa ja hiukkasfysiikassa oli kiihtyvä laajeneminen noin 20 vuotta sitten. Hiukkasfysiikasssa tämä onkin ongelma, olen kirjoittanut siitä mm. täällä:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/nelja-vuosikymmenta-eramaassa/

      1980-luvulta 2000-luvulle kosmologiassa tapahtui valtavasti kehitystä niin teorian kuin havaintojen osalta. Voi olla että tahti tasaantuu, mutta on mahdotonta sanoa, mitä seuraavan 25 vuoden aikana löydetään.

  5. Arska sanoo:

    Mustien aukkojen lähestyessä ja sulautuessa vapautuu energiaa, samoin kaiketi inflaatiossa. Mahdollinen gravitaation välittävä hiukkanen varmaankin täytyisi olla ilman massaa, jotta vapautuva energia tosiaan jäisi gravitaatioaaltoina taivuttamaan aika-avaruutta. Mitä sanoo fyysikko?

    1. Syksy Räsänen sanoo:

      Mustien aukkojen lähestyessä toisiaan ja sulautuessa tosiaan systeemi lähettää valtavia määriä energiaa, viimeisen sekunnin aikana enemmän kuin näkyvän maailmankaikkeuden kaikki tähdet yhteensä aikana.

      Gravitaatioaallot, jotka käyttäytyvät kuten massattomat hiukkaset, kuljettavat tämän energian pois mustien aukkojen törmäysalueesta. Niiden suhteesta hiukkasiin tarkemmin, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/painon-valittajasta/

      Inflaatiolle kokonaisenergia ei ole hyvin määritelty käsite (yleisessä suhteellisuusteoriassa se voidaan määritellä vain erityisissä tapauksissa). Mutta jos tarkastelee tietyssä tilavuudessa yhteenlaskettua energiatiheyttä, niin se tosiaan kasvaa valtavasti inflaation aikana. Prosessilla ei kuitenkaan ole mitään tekemistä gravitaation välittämisen kanssa.

  6. Lentotaidoton sanoo:

    ”erityisesti inflaation aikana syntyneiden gravitaatioaaltojen jäljistä, on mahdollista päätellä mitkä ovat aika-avaruuden ainesosat”.

    Muistamme kaikki BICEP2den onnettomasti päättyneet seikkailut. Onko asian tiimoilta kuulunut sen jälkeen mitään mielenkiintoista? Tutkimusryhmähän jatkoi työskentelyään. (vai tarkoititko tässä taustasäteilyä, sekin toki pohjautuu inflaation gravitaatioaaltojen fluktuaatioihin?)

    1. Syksy Räsänen sanoo:

      Kyllä, tarkoitin mikroaaltotaustassa näkyviä gravitaatioaaltojen jälkiä. Viimeisin raja inflaatiossa syntyneiden gravitaatioaaltojen voimakkuudelle on vuodelta 2015, jolloin Planck ja BICEP2/Keck yhdistivät tuloksensa.

      Uusia gravitaatioaaltoja etsiviä satelliitteja suunnitellaan Euroopassa, Yhdysvalloissa ja Japanissa. Helsingin yliopiston fysiikan laitoskin on eurooppalaisessa Core-projektissa mukana Hannu Kurki-Suonion johdolla. Näistä seuraavan sukupolven laitteista kaavaillaan noin sata kertaa nykyisiä tarkempia. Palaan kenties niihin myöhemmin.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *