Harppu ja suuruus
Koeryhmä LIGOn helmikuun 2016 ilmoitus ensimmäisestä gravitaatioaaltojen suorasta havainnosta antoi vahvan myötätuulen uusille gravitaatioaaltokokeille. Jatkuvat uudet löydöt eivät ole intoa ainakaan laannuttaneet.
Kuusi päivää LIGOn ilmoituksen jälkeen Intian hallitus hyväksyi LIGOn ja Virgon kanssa yhteistoiminnassa olevan IndIGO-havaintolaitteen rakentamisen. Edistyneempää teknologiaa käyttävä japanilainen KAGRA aloittanee havainnot LIGOn ja Virgon rinnalla niiden palatessa kehään vuonna 2022. LIGOn menestys myös toi Yhdysvaltojen avaruusjärjestö NASAn takaisin LISA–satelliittiprojektiin, jonka se oli vuonna 2011 rahanpuutteessa jättänyt.
Kiinalaiset gravitaatioaaltokokeet, joita valmistellaan melko erillään muun maailman yhteistyöstä, ovat kiinnostava osa tätä gravitaatioaaltoryntäystä.
Yksi niistä on TianQin, jonka voinee vapaamuotoisesti kääntää ”avaruusharpuksi”. Koejärjestely on samankaltainen kuin LISAssa. Kolme satelliittia mittaa välistensä etäisyyksien muutosta lähettämällä toisilleen lasersäteitä. Muodostelman läpi kulkeva gravitaatioaalto venyttää sen etäisyyksiä eri tavalla eri suunnissa, mikä vaikuttaa valonsäteiden matka-aikoihin.
TianQinissä herättää huomiota nopea aikataulu. Projektia ehdotettiin vuonna 2014, teknologiaa testaavaa satelliittia TQ-1 ruvettiin suunnittelemaan vuonna 2016, satelliitti sai virallisen hyväksynnän 2018, laukaistiin Maata kiertävälle radalle joulukuussa 2019, ja on ollut toiminnassa siitä pitäen. TianQinin on määrä aloittaa tieteelliset mittaukset vuonna 2035.
Vertailun vuoksi, LISA-koetta ehdotettiin vuonna 1993, siinä käytettävää teknologiaa testaavan LISA Pathfinderin suunnittelu alkoi vuonna 1998, Pathfinder nousi avaruuteen vuonna 2015 ja LISA on määrä laukaista avaruuteen vuonna 2034. LISAlla kestää noin vuosi matkata paikalleen Aurinkoa kiertävälle radalle, joten jos kaikki menee suunnitelmien mukaan, niin tieteelliset mittaukset aloitetaan vuonna 2035 tai 2036.
On tietysti nopeampaa kulkea toisten tasoittamaa polkua kuin olla tienraivaaja. TianQin voi kuitenkin edetä vinhemmin myös siksi, että koe on portaan verran vaatimattomampi.
TianQinin on määrä kiertää Maata, ei Aurinkoa. Tämän säästää sen vuoden, mikä Aurinkoa kiertävälle radalle matkaamiseen menee, ja laukaisu on halvempi. Lisäksi mittausdatan lähettäminen Maapallolle on helpompaa, kun laite on ihan vieressä, Kuuta lähempänä. Kääntöpuolena on se, että Maan lähiseudut eivät ole yhtä tyhjiä kuin kaukaisempi avaruus, joten satelliitteihin vaikuttavien häiriöiden välttäminen voi olla vaikeampaa.
TianQin on myös LISAa pienempi. LISAssa satelliittien etäisyys toisistaan on 2.5 miljoonaa kilometriä, TianQinissä 170 000 kilometriä. Kymmenen kertaa pienemmän koon takia laite on kymmenen kertaa vähemmän herkkä etäisyyden muutosten mittari. Siispä TianQin ei pysty havaitsemaan niin heikkoja gravitaatioaaltoja kuin LISA. Sen sijaan LISA pystyy näkemään melkein kaiken minkä TianQinkin, jälkimmäinen voi tosin olla pienillä aallonpituuksilla vähän herkempi.
Toistaiseksi TianQin on aikataulussa ja koesatelliitti TQ-1 on ylittänyt sille asetetut odotukset, mutta on käsittääkseni yhä jäljessä LISA Pathfinderin teknologian tarkkuudesta.
Nopea eteneminen on sikäli oleellista, että TianQin on itsenäisenä kokeena mielekäs vain, jos se saa tuloksia ennen LISAa. Muutoin se jää apulaiseksi, joka tarjoaa riippumattoman vahvistuksen osalle LISAn havainnoista. Useampi eri suunnassa mittaava laite auttaa myös gravitaatioaaltojen värähtelysuuntien (eli polarisaation) mittaamisessa ja niiden lähteiden paikallistamisessa taivaalla.
TianQin-ryhmä korostaakin kansainvälisen yhteistyön tärkeyttä. Mukana on Kiinan ulkopuolisia tutkijoita, mutta LISA-ryhmään ei tietääkseni ole juuri oltu yhteydessä, ja projekti näyttää etenevän omilla raiteillaan sivuille katsomatta.
Sama vaikuttaa pätevän toiseen kiinalaiseen gravitaatioaaltoprojektiin, nimeltään Taiji, mikä tarkoittanee suurta tai ylittämätöntä äärimmäisyyttä. Myös Taiji on lähettänyt koesatelliitin avaruuteen, syyskuussa 2019. Siinä missä TianQin yrittää kiriä kevyemmin kuormattuna LISAn ohi, Taiji on lähellä LISAa sekä aikataulultaan että rakenteeltaan. Taijissa on kolme satelliittia, joiden on määrä lentää Aurinkoa kiertävälle radalle samoihin aikoihin LISAn kanssa. Niiden etäisyydeksi on suunniteltu kolme miljoonaa kilometriä, viidennes enemmän kuin LISAssa.
Kohteiden paikallistamisen lisäksi kahdessa satelliittijärjestelmässä on tieteen kannalta se etu, että havaintoja voi tehdä silloinkin, kun yhden laitteet ovat jostain syystä suljettuina tai niissä on häiriöitä. Taijia mainostetaankin osana ”LISA-Taiji-verkostoa”, mutta en oikein tiedä onko LISA-ryhmän kanssa sovittu asiasta.
Pian nähdään miten hankkeet etenevät. Kiinan tiedeakatemian kansallisen avaruustiedekeskuksen johtaja Wu Ji on ehdottanut TianQin- ja Taiji-projektien yhdistämistä, ja jos haluaa kuroa kiinni LISAn etumatkan, ei ole varaa hidastella. Yhdysvaltojenkin osallisuuteen LISA-projektissa voi tosin tulla vielä yllätyksiä seuraavan 15 vuoden aikana.
”Taijia mainostetaankin osana ”LISA-Taiji-verkostoa”, mutta en oikein tiedä onko LISA-ryhmän kanssa sovittu asiasta…. Yhdysvaltojenkin osallisuuteen LISA-projektissa voi tosin tulla vielä yllätyksiä seuraavan 15 vuoden aikana.”
Yllätyksiä voi tosiaan tulla jo vaikka pienemmällä perioodilla, katsotaan nyt ensin esim USA:n vaalit. USA:n ja Kiinan välit eivät kaikkein lämpimimpiä ole. Korona, tai jokin vieläkin hullumpi este koko maapallon taloudessa, voi myös sanoa oman sanansa. Tiedekin on osa yhteiskuntaelämää ja siinä on jotenkin yhdessä pärjättävä. Valitettavasti tiedekään ei mainostetusta arvoneutraalisuudestaankaan huolimatta ole haavoittumatonta.
Olet aiemmin kirjoittanut:
”Tämä etäisyys on sata miljoonaa kertaa pienempi kuin niiden atomien koko, joista peilit on rakennettu ja tuhat kertaa pienempi kuin protonin koko
tunnelien pituus muuttuu protonin tuhannesosan verran gravitaatioaallon kulkiessa niiden läpi.
LISAn tarkkuus olisi valtavan paljon maanpäällisia detektoreita suurempi ja se kuulisi gravitaatioaaltoja jokseenkin kaikkialta näkyvästä maailmankaikkeudesta
LISAn tähtäimessä on myös tyystin erilainen kohde, nimittäin maailmankaikkeuden ensimmäisen sekunnin miljardisosan sadasosan aikana tapahtunut Higgsin kentän olomuodon muutos. Siinä syntyneiden gravitaatioaaltojen aallonpituus oli hyvin pieni. Sen jälkeen maailmankaikkeus on kuitenkin laajentunut yli tekijällä miljoona miljardia ja aallot ovat venyneet, aivan kuten valo. Niinpä niiden nykyinen aallonpituus sattuu LISAn haarukkaan, vaikka ei olekaan varmaa, ovatko ne niin voimakkaita, että LISA pystyy niitä havaitsemaan.”
LISAn tapauksessa tietysti kaikki maanpäälliset häiriöt jäävät pois. Mutta tulisiko joitain spekulatiivisia ”kosmologisia” häiriöitä tilalle? Jos 4 km tunneli muuttuu protonin tuhannesosan verran, niin kuinka pieni on/olisi LISAn pituuksien ero pienimmillään elikä ”LISAn haarukka”? Erittäin kiintoisaa on/olisi tuo mahdollisuus Higgsin kentän olomuodon muutoksessa syntyneiden gravitaatioaaltojen tunnistamiseen. Yo tekstistäsi on kulunut 3 vuotta, onko uutta kerrottavaa?
Avaruudessa on omat häiriönsä, kuten satelliitteihin iskevät varatut hiukkaset.
Toisaalta LISA näkee Linnunradan noin 20 000 valkoisten kääpiöiden kaksoistähtijärjestelmän synnyttämää kohinaa, josta muu signaali pitää erottaa.
LISAn maksimiherkkyys on vain samaa suuruusluokkaa kuin LIGOn, eli 10^(-21) suhteellinen muutos etäisyyksissä.
Higgsin kentän olomuodon muutoksista kenties syntyvien gravitaatioaaltojen muoto ja korkeus riippuu siitä, miten muutos tarkalleen tapahtuu. Standardimallissa muutos on niin sujuva, että gravitaatioaaltoja syntyy niin vähän, että LISA ei näe niitä. Jos prosessi on monimutkaisempi, niin korkeus saattaa olla tarpeeksi iso LISAn sihtiin. Tästä on kymmeniä erilaisia vaihtoehtoja.
Tarkan signaalin selvittäminen eri tapauksissa on Helsingissä Mark Hindmarshin tutkimusryhmän yksi pääasiallinen tutkimuskohde. Kirjoitin työstä vähän täällä:
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kun-kuplat-kohtaavat/