Kylmä jälki
Maailmanhistorian isoimman tieteellisen kokeen kolmas kausi on alkamassa. CERNin hiukkaskiihdyttimen Large Hadron Collider (LHC) suprajohtavat magneetit on jäähdytetty kahden kelvinin kylmyyteen, ja tänään, kolmen vuoden tauon jälkeen, on määrä laittaa hiukkassuihku taas kiertämään 27 kilometrin kehää sata metriä maan alla. Suihkut on tarkoitus ohjata törmäämään 10. toukokuuta, ja koedataa aletaan keräämään kesäkuussa.
Ensimmäisen kerran hiukkassäde kiersi LHC:n tunnelissa 10. syyskuuta 2008. Ei kestänyt kahta viikkoa, kun LHC jouduttiin sulkemaan, kun heikkolaatuinen magneetti ylikuumeni ja rikkoi säiliön, josta vapautui kuusi tonnia nestemäistä heliumia kiihdytintunneliin. Vian korjaamisen jälkeen kiihdytin käynnistettyä uudelleen noin vuoden kuluttua. Kokeita päästiin tekemään maaliskuussa 2010, vaikkakin vain puolella alun perin suunnitellusta törmäysenergiasta, jotta ongelma ei toistuisi.
4. heinäkuuta 2012 CERN julkisti LHC:n ensimmäisen löydön: koeryhmät ATLAS ja CMS olivat havainneet Higgsin hiukkasen. Tuon hiukkasen olemassaolon lähes 50 vuotta aiemmin selittäneet teoreetikot Peter Higgs ja François Englert palkittiin vuoden 2013 fysiikan Nobelilla, mutta sen löytäneet kokeelliset fyysikot sivuutettiin.
Higgs on toistaiseksi ollut myös LHC:n ainoa löytö – ainakin mitä tulee perustavanlaatuiseen fysiikkaan. Odotukset olivat suuret. 1970-luvulla kasaan saatuun hiukkasfysiikan Standardimalliin oli vuosikymmenten varrella rakenneltu useita laajennuksia. LHC:n kokeiden odotettiin erottelevan niiden välillä ja osoittavan uuden suunnan hiukkasfysiikassa. Toivotuin lahja oli supersymmetria, mutta myös ylimääräisillä ulottuvuuksilla ja teknivärillä oli kannattajansa. Jotkut jopa varautuivat siihen, että LHC:n törmäyksissä näkyisi niin paljon uusia ilmiöitä, että niitä olisi vaikea erottaa toisistaan.
LHC:n ensimmäinen kausi loppui helmikuussa 2013. Kahden vuoden päivittämisen ja parantelun jälkeen kiihdytin palasi kehään maaliskuussa 2015. Tekniikan puolesta toinen kausi sujui erinomaisesti. Törmäysten määrä saatiin kohotettua kaksinkertaiseksi alkuperäisiin suunnitelmiin verrattuna, vaikka energia jäikin yhä hieman suunniteltua alhaisemmaksi.
Sen sijaan fysiikkaan jouduttiin pettymään. LHC:n kokeet löysivät neljän ja viiden kvarkin sidottuja kimppuja (mikä on palauttanut mielenkiintoa heksakvarkkeihin, mahdollisiin kuuden kvarkin kimppuihin) ja tekivät tarkkoja mittauksia tunnettujen hiukkasten ominaisuuksista, mutta mitään perustavanlaatuista uutta ei näkynyt. Toista kautta kuvaa hyvin se, että eniten huomiota saanut tulos, joka poiki satoja tieteellisiä artikkeleita, osoittautui lopulta pelkäksi kohinaksi. Käteen jäi vain tiukempia rajoja: jos uusia hiukkasia on olemassa, niiden pitää olla yhä raskaampia tai heikommin vuorovaikuttavia, jotta niitä ei olisi havaittu.
Kun LHC aloittaa kolmannen kauden datan keräämisen kesäkuussa, on kulunut kymmenen vuotta Higgsin hiukkasen löytämisestä. Uuden fysiikan jäljet eivät enää tunnu lämpimältä. Jotkut ovat jopa puhuneet hiukkasfysiikan kuolemasta. Vaikka mahdollisesti uuteen fysiikkaan viittaavia merkkejä on eri kokeissa nähty, yksikään ei toistaiseksi ole varmistunut. Enemmän odotuksia kohdistuu tällä hetkellä astrofysiikan ja kosmologian kokeisiin, kuten joulukuussa alkavaan gravitaatioaaltokokeiden LIGO, Virgo ja KAGRA yhteiseen havaintojaksoon.
LHC on nyt tehokkaampi kone kuin koskaan ennen, ja kolmannen kauden odotetaan lähes kolminkertaistavan aiemmin kerätyn kokonaisdatamäärän. Lisäksi on viimein tarkoitus saavuttaa alkuperäinen maksimienergia. Myös ymmärrys laitteistosta ja data-analyysistä on kehittynyt, ja luvassa on monipuolisempia ja huolellisempia analyysejä kuin koskaan ennen. Ei ole mahdollista ennustaa, mistä uudet löydöt tulevat, ja jos LHC:n ulottuvilla on merkkejä tuntemattomasta, niiden havaitsemiseen on entistä paremmat mahdollisuudet.
Kolmas kausi jatkuu vuoden 2025 loppupuolelle, jonka jälkeen on luvassa kolmen vuoden tauko. Sen aikana on tarkoitus jälleenrakentaa LHC uudeksi kiihdyttimeksi nimeltä HL-LHC. HL-LHC:ssä on vahvemmat magneetit ja tehokkaampi jäähdytysjärjestelmä, jotta se pystyy törmäyttämään samassa ajassa kymmenen kertaa enemmän hiukkasia kuin LHC. Päätöksiä seuraavan sukupolven kiihdyttimistä ei ole vielä tehty, koska ei tiedetä olisiko niillä mitään löydettävää.
Päivitys (20/04/22): Aloitus viivästyi, suihkun on määrä käynnistyä perjantaina 22.4..
12 kommenttia “Kylmä jälki”
Vastaa
Vastavuoroinen suhde
Fysiikkaa usein kehutaan sanomalla, että se on empiirinen tiede. Olen itsekin kurssillani Fysiikkaa runoilijoille nostanut empiirisyyden yhdeksi kolmesta fysiikkaa määrittelevästä piirteestä, teorioiden ja matemaattisen mallintamisen rinnalle.
Joskus empiirisyydellä tarkoitetaan vain sitä, että teorian ennustuksia verrataan havaintoihin. Empiirisyydessä on kuitenkin kyse monimutkaisemmasta ja vastavuoroisemmasta suhteesta teorian ja havaintojen välillä. Havaintoja ei käytetä vain teorioiden testaamiseen, vaan myös niiden rakentamiseen. Ja aivan kuten vain havainnot voivat varmentaa, mitkä teoriat pitävät paikkansa, ainoastaan teoriat voivat vahvistaa, mitkä havainnot ovat oleellisia.
Kosmisen inflaation löytäminen 1980-luvulla havainnollistaa asiaa. Keskeinen inflaatioideaan johtanut havainto on se, että maailmankaikkeus näyttää samanlaiselta joka puolella. Ennen inflaation löytämistä tämä ei ollut sen enempää ristiriidassa minkään tunnetun teorian kanssa kuin yhdenkään niistä ennustus. Jos empiirisyyden käsittäisi vain ennustusten testaamisena, tällä havainnolla ei siis olisi mitään merkitystä.
Tutkijat kuitenkin päättivät nostaa havainnon seikaksi, joka kaipaa selitystä. Ratkaisuksi esitettiin se, että hiukkasfysiikan suuren yhtenäisteorian olomuodon muutokseen liittyvä tyhjön energia johtaa avaruuden laajenemisen kiihtymiseen varhaisina aikoina eli kosmiseen inflaatioon. Tämä kiihtyvä laajeneminen tasoittaa avaruuden.
Pian hahmotettiin, että inflaation aikana kvanttivärähtelyistä syntyy epätasaisuuksia aineen jakaumassa, ja nämä toimivat kaiken myöhemmän rakenteen siemeninä. Tämä teoreettinen oivallus ohjasi laskemaan täsmällisesti, millaisia siemeniä inflaatio synnyttää, sekä tekemään havaintoja kosmisesta mikroaaltotaustasta ja galaksien jakaumasta, joihin näitä ennusteita voi verrata.
Ongelmaa siitä, että maailmankaikkeus näyttää suuressa mittakaavassa samalta kaikkialla oli ensin yritetty tuloksetta ratkaista vain yleisen suhteellisuusteorian keinoin. Jotkut suhteellisuusteoreetikot vastustivatkin inflaatiota, koska he pitivät sen hiukkasfysiikan puolelta tulevia ideoita yleiselle suhteellisuusteorialle vieraina. Ehkä tunnetuin hiukkasfysiikan huonosta vaikutuksesta valittava suhteellisuusteorian taitaja on Nobelilla vuonna 2020 palkittu Roger Penrose, joka piti erityisesti olomuodon muutosta ongelmana.
Pian itse asiassa osoittautuikin, että teoria, jossa olomuodon muutokseen liittyvä tyhjön energia ajaa inflaatiota on ristiriidassa havaintojen kanssa. Ajatukselle suuresta yhtenäisteoriasta ei ole löytynyt havainnoista tukea, ja se on sittemmin mennyt pois muodista.
Oleellista oli kuitenkin se, että päädyttiin soveltamaan hiukkasfysiikan käsitteitä ja työkaluja kosmologiaan ja hylättiin puhtaan suhteellisuusteoreettinen lähestymistapa. Pian kehitettiinkin inflaatiolle lukuisia malleja, jotka sopivat havaintoihin ja ovat ennustaneet niitä erinomaisesti.
Tämä on esimerkki siitä, miten teoria voi olla hedelmällinen, vaikka se on väärin. Jos empiirisyyden ymmärtäisi naiivisti vain teorioiden testaamisena havaintojen kautta, virheellisillä teorioilla ei olisi empiiristä arvoa. Tutkimuksessa havaintoja kuitenkin käytetään myös teoreettisen ajattelun perusteiden uudelleen arvioimiseen.
Teknologian kehityksessä näkyy samanlainen vuorovaikutus. Uuden teknologian mahdollistamat havainnot johtavat uudenlaisiin teoreettisiin ideoihin, jotka osoittavat millaisia kokeita kannattaisi tehdä. Tätä varten puolestaan kehitetään teknologiaa, jota ei muuten olisi tultu ajatelleeksi.
Koska ymmärryksemme rakentuu aiemman ja osittain virheellisen tiedon pohjalle, empiirisyyden ytimessä oleva käsitysten pohtiminen havaintojen kautta on tärkeä tapa arvioida uudelleen ajattelun perusteita. Samasta syystä empiirisyyden osuutta tieteessä ei voi pelkistää yhdeksi metodiksi, jonka seuraaminen varmasti johtaisi edistykseen.
7 kommenttia “Vastavuoroinen suhde”
-
Esimerkki suuresta hedelmällisestä teoriasta, jonka oma maaperä kuihtui. Voitko selventää mitkä havainnot viittaa siihen, ettei olomuodon muutosta tapahtunut ennen inflaatioita? Tarkoittaisi, että inflaatiokenttä olisi primääri energian olomuoto.
-
Kiitos vastauksesta.
-
Pitäisikö yhtenäisteorian vaatima higgsin kaltainen kenttä olla vielä olemassa jossain muodossa? Ilmeisesti kevyempi higgsin serkku on melko poissuljettu.
-
-
”Koska ymmärryksemme rakentuu aiemman ja osittain virheellisen tiedon pohjalle, empiirisyyden ytimessä oleva käsitysten pohtiminen havaintojen kautta on tärkeä tapa arvioida uudelleen ajattelun perusteita.”
Millaista noituutta ovatkaan olleet Aristoteleen antiikkisen fysiikan kannattajille Galileon inertialaki, eli että kappale voi liikkua ilman jatkuvaa ulkoista voimaa, tai Newtonin painovoimalaki, jossa voima välittyy ilman kosketusta. Sittemmin epätarkkuusperiaate löi lopullisesti jauhot suuhun Aristoteleen perikunnalle. Olisi kovin mieluisaa tietää, että minkä kaiken suhteen me nyt 2000-luvulla elämme ’antiikin aikaa’. Ehkäpä aika-avaruuden neliulotteinen ja jatkuva rakenne tulee jonakin päivänä menemään lopullisesti säpäleiksi.
-
”Ehkäpä aika-avaruuden neliulotteinen ja jatkuva rakenne tulee jonakin päivänä menemään lopullisesti säpäleiksi.”
Siinä missä toiset näkevät paradigmojen muuttuvan, näkevät toiset vain nousevan vuoroveden, joka kuljettaa saastan pois.
Itse olen sitä mieltä, että empirian kaltaiseksi kriteeriksi tulisi nostaa myös se, miten epäparadoksaalisesti ihmismieli ilmiömaailman selityksen kokee. Ihmiseltä ihmiselle ja tiedettä elämää varten on edelleen hyvä ohjenuora.
Vastaa
Merkkejä muinaisuudesta
Puhun tiistaina 12. huhtikuuta kello 18.30 Kirkkonummen koulukeskuksen auditoriossa (Kirkkotallintie 6) otsikolla Merkkejä muinaisuudesta – mitä jos pimeä aine on mustia aukkoja?. Puhun myös oman tutkimukseni kulusta aiheen parissa.
Tilaisuuden järjestää Kirkkonummen komeetta. Siihen on vapaa pääsy.
6 kommenttia “Merkkejä muinaisuudesta”
-
Saattaa hyvinkin olla, ettei ihmismielen intuitio tavoita kaikkea sitä, mitä kaukoputkessa tai mikroskoopissa näkyy, muttei se myöskään johdata rakentamaan niitä epätodellisia pilvilinnoja, joita ns. moderni luonnontiede meidän eteemme maalailee. Kuvaavaa tai peräti oireellista on se, ettei itse ongelman (pimeä aine tai energia – tai mikä lie) reaalisuudesta ole aina varmaa tietoa, saati sitten sen mielikuvituksellisen ratkaisun osalta! Fyysikoiden tulisikin ottaa askel taaksepäin ja opittava uudelleen nöyriksi. Nämä tyhmänylpeät luonnontieteilijät ovat olleet taitavia, mutta nyt he ovat saaneet sumun vain sakenemaan – usvan, joka ei kanna ketään joka vilpittömin mielin haluaa astua sen päälle ja tavoitella uutta, perustavanlaatuista tietämystä. Eräänä mahdollisena ratkaisuna olisi lisätä fenomenologisen analyysin opintojaksoja luonnontieteiden perustutkintoihin, esimerkiksi Husserl on aina muodissa ja hänen terävä ajattelunsa olisikin kuin raikas tuulahdus hermeettisen kulttuurin ummehduttamaan laitosilmaan.
-
Eikö jatkuvan inflaation nollaenergiauniversumia sovi mainita tässä yhteydessä?
Vastaa
Myös me, kierros 3/We too, round 3
(The decision of the University of Turku to hire Christian Ott and then cancel the hire, has attracted international attention, so this post is both in Finnish and English. The English version is below the Finnish text. See also these two earlier posts on the topic.)
(Tämä on jatkoa kahdelle aiemmalle merkinnälle.)
Minut sekä ystäväni ja kollegani Till Sawala on haastettu oikeuteen epäiltyinä törkeästä kunnianloukkauksesta ja törkeästä yksityiselämää koskevan tiedon levittämisestä. Syynä on se, että kun astrofyysikko Christian Ott päätettiin palkata Turun yliopistoon, toimme esille hänen häirintätaustaansa ja arvostelimme päätöstä.
Turun yliopisto tiedotti 1. helmikuuta 2018 päättäneensä palkata Ottin maaliskuun alusta alkaen kahdeksi vuodeksi. Ott oli lähtenyt Caltechin yliopistosta 31. joulukuuta 2017 sen todettua hänen syyllistyneen sukupuoleen perustuvaan häirintään kahta naispuolista jatko-opiskelijaa kohtaan. Helmikuun 7. päivä Turun yliopisto perui palkkauspäätöksen, tiedeyhteisön vastustettua sitä.
Caltechin tapauksen yksityiskohdista voi lukea tästä, tästä ja tästä. Caltechissä opiskellut ja asiasta yli 30 Ottin tapaukseen liittyvän henkilön kanssa puhunut Casey Handmer on myös kirjoittanut siitä katsauksen. Hän avaa tapahtuman taustoja ja kulttuuria, jossa häiritsijöiden suojeleminen on tavallista. (En ole kaikista hänen toimintaehdotuksistaan samaa mieltä.) Turun tapauksesta voi lukea näistä kahdesta merkinnästäni.
Huhtikuussa 2019 poliisi aloitti esitutkinnan minusta, Till Sawalasta ja Turun yliopiston Jari Kotilaisesta. Meitä epäiltiin törkeästä kunnianloukkauksesta ja törkeästä yksityiselämää koskevan tiedon levittämisestä koskien Ottin tapausta. (Kotilainen pudotettiin pois epäillyistä esitutkinnan aikana.)
Kesäkuussa 2020 syyttäjä päätti, että ei nosta syytettä minua ja Tilliä vastaan. Hän perusteli tätä sillä, että emme ole sanoneet Ottista mitään valheellista ja olimme kirjoittaneet vain hänen toiminnastaan julkisessa virassa tai vastaavassa tehtävässä. Lain mukaan ”kunnianloukkauksena ei pidetä arvostelua, joka kohdistuu toisen menettelyyn politiikassa, elinkeinoelämässä, julkisessa virassa tai tehtävässä, tieteessä, taiteessa taikka näihin rinnastettavassa julkisessa toiminnassa ja joka ei selvästi ylitä sitä, mitä voidaan pitää hyväksyttävänä”.
Syyttäjä totesi myös, että tapausta ”on käsitelty erittäin laajasti eri medioissa”. Esille tuomamme seikat olivatkin yleistä tietoa. Ottista häiritsijänä olivat kirjoittaneet vuodesta 2016 alkaen Nature, Science, Scientific American, Huffington Post, Vice, Washington Post ja Wired, monien muiden julkaisujen ohella.
Apulaisvaltakunnansyyttäjä ja valtionsyyttäjä päättivät kuitenkin maaliskuussa 2021 avata esitutkinnan uudelleen. Tällä viikolla minä ja Till saimme tietää, että meitä vastaan on nostettu syytteet. Ott hakee meiltä yli sadantuhannen euron korvauksia, ja syyttäjä vaatii meille tuntuvia sakkoja tai ehdollista vankeutta.
Ott haastoi myös Turun yliopiston oikeuteen. Hän vaati yliopistoa maksamaan 25 vuoden palkat sekä vahingonkorvauksia ansionmenetyksestä, julkisuuden aiheuttamasta kärsimyksestä, matka- ja majoituskustannuksista ja oikeudenkäyntikuluista – yhteensä pitkälti yli miljoona euroa. Ottin mukaan on Turun yliopiston syytä, että hän ei saa enää alaltaan töitä, koska palkkauksen peruminen on johtanut häntä koskevien ”virheellisten huhujen leviämiseen maailmalla”. Turun Sanomat esitti Ottin uhrina ja julkaisi artikkeleita, joissa oli harhaanjohtavia ja virheellisiä väitteitä.
Yliopisto vetosi puolustuksessaan muun muassa siihen, että se oli jo tarjonnut Ottille kahden vuoden palkan – eli summan, jonka hän olisi saanut, ellei palkkausta olisi peruttu. Yliopiston mukaan päätös purkaa Ottin työsopimus ei perustunut hänen häirintätaustaansa (”menneisyyttä koskeviin huhuihin”) vaan siihen, että Ottin palkkaamista “vastustettiin voimakkaasti sekä yliopiston sisällä että sen ulkopuolella” sekä ”yliopiston saamalle vihamieliselle palautteelle ja kielteiselle ilmapiirille sekä muuttuneille olosuhteille”.
Maaliskuun 4. päivä 2022 Varsinais-Suomen käräjäoikeus antoi päätöksensä, joka on luettavissa tässä. Oikeus määräsi yliopiston maksamaan Ottille työsopimuksen perusteettomasta päättämisestä 20 kuukauden palkan sekä osan matka- ja majoituskuluista. Muut vaatimuksen hylättiin. Ott on ilmoittanut valittavansa hovioikeuteen. Tuomio on jokseenkin samanlainen kuin oikeusjutussa, jonka Ott nosti Tukholman yliopistoa vastaan, koska tämäkin oli perunut Ottin palkkauksen.
Minun ja Tillin oikeusistunto on 3. toukokuuta. Prosessiin voi mennä paljon aikaa, vaivaa ja rahaa, etenkin jos se jatkuu käräjäoikeudesta eteenpäin. Esimerkiksi toimittaja Johanna Vehkoon tapauksessa korkeimpaan oikeuteen asti menneen absurdin kunnianloukkaussyytteen käsittely kesti yli viisi vuotta.
Tapaus muistuttaa siitä, että vaikka tieteessä on kyse väitteiden järjestelmällisestä ja kriittisestä arvioinnista tosiasioiden pohjalta, tiedeyhteisö koostuu ihmisistä, ja siinä esiintyy samanlaisia ongelmia kuin kaikissa yhteisöissä. Häirintä, perättömien kanteiden tekeminen häirintään puuttuvia ihmisiä vastaan, kiusaaminen, ahdistelu, syrjintä, ja muut inhimilliset ongelmat kaikki vaikuttavat toimintaympäristöön ja tieteen tekemiseen.
Ainakaan tämä oikeusjuttu (toisin kuin Ottin häirintä) ei kohdistu opiskelijoihin, jotka ovat tutkijayhteisössä heikoimmassa asemassa, vaan kahteen pidemmälle edenneeseen tutkijaan. Toivon mukaan tapauksen saama julkisuus kiinnittää huomiota pääasiaan –häirintään– ja edesauttaa toimia sitä vastaan.
* * *
Me and my friend and colleague Till Sawala are going on trial for severe defamation and severe spreading of information in a manner than violates privacy. The reason is that when University of Turku decided to hire the astrophysicist Christian Ott, we discussed his harassment background in public and criticised the decision.
University of Turku made public on February 1 2018 that it had decided to hire Ott for two years from the beginning of March. On December 31 2017 Ott had left Caltech after it had found him guilty of gender-based harassment of two female graduate students. On February 7 University of Turku cancelled the hire, after opposition from the science community.
Details of the Caltech case have been reported here, here ja here. Casey Handmer, who studied at Caltech and spoke with more than 30 people involved in the case has also written an overview of it. She discusses the background and the culture where harassers are routinely protected. (I don’t agree with all of her recommendations.) Details on the Turku case can be found in these two blog entries by me.
In April 2019 the police opened a preliminary investigation of me, Till Sawala and Jari Kotilainen at the University of Turku. We were suspected of severe defamation and severe spreading of information in a manner than violates privacy. (Kotilainen was dropped from the list of suspects during the preliminary investigation.)
In June 2020 the prosecutor decided that he will not press charges against me and Till, on the grounds that nothing we said about Ott was false, and we had written about him only as concerns his actions in public office or its equivalent. According to Finnish law, “criticism that is directed at a person’s activities in politics, business, public office, public position, science, art or in comparable public activity and that does not obviously exceed the limits of propriety does not constitute defamation”.
The prosecutor also noted that the case has been very widely discussed in different media. Indeed, the facts we highlighted were common knowledge. Ott had been discussed as a harasser since 2016 by alkaen Nature, Science, Scientific American, Huffington Post, Vice, Washington Post ja Wired, among many other publications.
However, in March 2021 the deputy prosecutor general and a state prosecutor decided to reopen the preliminary investigation. This week me and Till were informed that we have been charged. Ott demands over 100 000 euros in damages, and the prosecutor is calling for heavy fines or a prison sentence on probation.
Ott has also sued the University of Turku. He wanted the university to pay his salary for 25 years, as well as damages for loss of income, suffering due to publicity, travel and accommodation costs and trial costs – over a million euros altogether. Ott argued that it is the University of Turku’s fault that he can’t get a job in his field anymore, because cancelling the hire has led to “false rumours spreading around the world” about him. The newspaper Turun Sanomat presented Ott as the victim and published articles with misleading and false claims. (In Finnish.)
In its defence, the university appealed to the fact that it had already offered to pay Ott full two years’ salary – the sum he would have gotten had the hire not been cancelled. The university said that the decision to cancel the hire was not based on his harassment background (“rumours about his past”), but on the fact that the hire was “strongly opposed both inside and outside the university” and “hostile feedback to the university and negative atmosphere as well as changed circumstances”.
On March 4 2022 the district court of Southwest Finland gave its ruling, available here. (In Finnish.) The court ordered the university to pay Ott 20 months salary for terminating his contract without cause, as well as some travel and accommodation costs. The court ruled against Ott’s other demands. Ott has said he will complain to the appeals court. The ruling is along the same lines as in the case that Ott brought against the University of Stockholm for cancelling his hire.
Me and Till will go on trial on May 3. The process can take a lot of time, energy and money, especially if it goes to higher courts. For example, in the case of the journalist Johanna Vehkoo, an absurd defamation case went all the way to the supreme court, taking five years.
This case is a reminder of the fact that even though science is about evaluating claims systematically and critically, the scientific community consists of people, and has the same kind of problems as any other community. Harassment, retaliating with baseless lawsuits against people who tackle harassment, bullying, abuse, and other human problems all affect the environment where science is made.
At least this lawsuit (unlike Ott’s harassment) does not target students, who are in the most vulnerable position in the research community, but two more advanced researchers. Hopefully publicity for the case will help to bring attention to the main issue –harassment– and spur action against it.
8 kommenttia “Myös me, kierros 3/We too, round 3”
-
On varmasti kurjaa kokea oikeusprosessin aiheuttamaa epävarmuutta, mutta kurja on varmasti Ottinkin tilanne, kun kärpäsestä tehdää härkänen. Pitääkö hänellä olla loppuelämänsä poltinmerkki otsassa? Me emme voi tietää kaikkea, mutta kupletin juoni on hyvinkin saattanut olla sellainen, että akateemisesti keskinkertainen jatko-opiskelija on käyttänyt naisellisia avujaan hyödyksi vaativan tutkimusprojektin loppuun saattamiseen. Miksi muuten Ott olisi ”päässyt” lähettämään sadoittain aikaavieviä viestejä – vahingossako? Sitten jos vaativassa työssä nousee seinä vastaan, niin katkeruus nousee pintaan ja ammutaan vähän joka suuntaan.
-
Miten sinun ja Till Sawalan woke-sota liittyy URSA:n toimintaan ja tähtitieteeseen? URSA:n sivut on ihan väärä foorumi henkilökohtaisten ongelmiesi käsittelyyn.
-
Tutkijoiden ja opiskelijoiden toimintaympäristön turvallisuus ilman häirintää ja perusteettomia oikeustoimia on oleellisia siinä kuin jotkut kaukoputkien ominaisuudet mitkä nekään eivät kaikkia kiinnosta. Entisenä tiedeyhteisön jäsenenä kiinnostelee ensin mainittu itseasiassa enemmän, ja toivon ettei tästä tapauksesta tule kohtuutonta henkilökohtaista ongelmaa Syksy Räsäselle ja Till Sawalanille jotka ovat tehneet työtä toimintaedellytysten ylläpitämiseksi ja korjaamiseksi. Jatkamme Ursan jäsenmaksuja ihan mielellään kun näistä asioista kuullaan. Ihan oikea järjestys tiedostaa nämä ensin yhteisön omilla foorumeilla ja vasta sitten Hesarissa.
Sen sijaan tällainen tähtitieteeseen liittyvä keskustelupalsta ei mun mielestäni ole oikea paikka jonkinlaiselle ideologiselle vastustushuomiolle. Jos ”woke-sodasta” (mitä ikinä tarkoittaakaan) on jotain haittaa URSAn tehtävälle, niin perustelut esille mieluummin.
-
Olen Iloinen, että sinä ja Till olette asiasta julkisesti puhuneet. Pidän Ottia hyvin hölmönä, jollei hän tajua, että asia oli palkkaamisensa aikaan usealtakin suunnalta tiedossa, ja että esim. Tuorlalaisia se kismitti ja raivostutti, ja irceissään ties missä siitä jauhoivat.
Vastaa
Yhden merkin varassa
Suhteellisuusteorialla on vaikean teorian maine. Gravitaatiota kuvaavan yleisen suhteellisuusteorian tapauksessa tämä on ansaittu: sen ymmärtäminen vaatii hienostuneen matemaattisen koneiston omaksumista. Suppea suhteellisuusteoria on kuitenkin aika yksinkertainen. Vaikeinta on se, että pitää luopua vanhoista aikaa ja avaruutta koskevista käsityksistä.
Suppean suhteellisuusteorian ytimessä on nimen mukaisesti suhteellisuus. Sama pätee kuitenkin myös Isaac Newtonin kehittämään klassiseen mekaniikkaan. Erona on se, mikä on suhteellista ja mikä ei.
Suure on suhteellinen, jos sen arvo on erilainen eri havaitsijoille. Esimerkiksi tasainen nopeus on suhteellista niin klassisessa mekaniikassa kuin suppeassa suhteellisuusteoriassa. Ohi kiitävän junan nopeus on laiturilla seisovan ihmisen suhteen 100 kilometriä tunnissa, mutta junassa istuvan koiran suhteen junan nopeus on nolla.
Suhteellisen vastakohta on absoluuttinen. Esimerkiksi nopeuserot ovat absoluuttisia: sekä laiturilla seisojalle että junassa istujalle junan ja yllä liitävän lentokoneen välinen nopeus on 400 km/t.
Millään kokeella ei voi erottaa, onko jokin kappale paikallaan vai liikkuuko se tasaisella nopeudella, koska tämä riippuu havaitsijasta. Sen sijaan muutoksia nopeudessa ja nopeuseroja voi mitata.
Klassisessa mekaniikassa vastaavasti paikka on suhteellinen mutta paikkavälit ovat absoluuttisia. Ei ole mitään erityistä avaruuden keskipistettä, jokainen voi asettaa sen minne haluaa. Mutta kappaleiden etäisyydet ovat samoja kaikille. Sama juttu ajanhetken ja aikavälien kanssa. Ajan nollakohdaksi voi valita hetken 2022 vuotta sitten tai eilisen, oman maun mukaan, mutta aikavälit ovat absoluuttisia.
Klassisessa mekaniikassa etäisyydet noudattavat Pythagoraan lausetta. Jos vaikkapa kynän kärjen ja pään välinen etäisyys on x-suunnassa x ja y-suunnassa y, niin kynän pituudelle L pätee L2 = x2 + y2. Jos kääntää koordinaatistoa, niin x muuttuu ja y muuttuu, mutta L ei muutu. Toisin sanoen etäisyydet x-suunnassa ja y-suunnassa ovat suhteellisia, mutta kokonaisetäisyys –eli pituus– on absoluuttinen.
Laajennetaan nyt tarkastelua siten, että tarkasteltavat pisteet voivat olla eri ajanhetkinä. Esimerkiksi voidaan kysyä, mikä on etäisyys sen pisteen välillä, missä kynä irtoaa kädestäni ja sen pisteen välillä, missä se iskee lattiaan. Klassisessa mekaniikassa mitataan vain etäisyyksiä paikassa ja ajassa erikseen. Voidaan siis laskea käteni ja lattian välinen etäisyys paikassa ja irrottamisen ja lattiaan kolahtamisen välinen etäisyys ajassa.
Suppeassa suhteellisuusteoriassa yhdistetään etäisyys ajassa ja paikassa etäisyydeksi aika-avaruudessa. Jos tapahtumien etäisyys ajassa on t, niiden etäisyydelle aika-avaruudessa M pätee M2 = – c2 t2 + x2 + y2, missä c on valonnopeus. (Tarkemmin sanottuna, etäisyyden M neliö on tuon lausekkeen itseisarvo.)
Vältän yhtälöitä tässä blogissa, koska niiden käyttöön tottumattomalle yhtälöt vaikeuttavat lukemista sen nopeuttamisen sijaan. Tein nyt poikkeuksen havainnollistaakseni sitä, miten yksinkertainen suppea suhteellisuusteoria on. Koko teoria nimittäin seuraa siitä, että tuo etäisyys M aika-avaruudessa on absoluuttinen, eivät etäisyydet ajassa ja paikassa erikseen.
Erona klassiseen mekaniikkaan on siis vain se, että aika- ja paikkaetäisyyksiä mitataan yhdessä, ja aikavälin edessä on miinusmerkki plusmerkin sijaan. Tällä pienellä matemaattisella erolla on isoja fysikaalisia seurauksia.
Aivan kuten etäisyydet x-suunnassa ja y-suunnassa ovat klassisessa mekaniikassa suhteellisia, aikavälit ja paikkavälit ovat suppeassa suhteellisuusteoriassa suhteellisia. Klassisessa mekaniikassa avaruuden kiertäminen muuttaa x– ja y-etäisyyksiä. Vastaavasti suppeassa suhteellisuusteoriassa nopeuden vaihtaminen muuttaa aika- ja paikkaetäisyyksiä. Koska nopeus on suhteellista, myös aika- ja paikkavälit ovat suhteellisia.
Tämä on esimerkki symmetrian merkityksestä fysiikassa. Klassisessa mekaniikassa fysiikan lait ovat samat riippumatta siitä, mihin suuntaan avaruudessa katsoo. Toisin sanoen klassinen mekaniikka on symmetrinen kierroissa – eli muunnoksissa, jotka eivät muuta pituuksia. Suppea suhteellisuusteoria on vastaavasti symmetrinen muunnoksissa, jotka eivät muuta aika-avaruuden etäisyyksiä. Symmetria on tärkein näitä teorioita määrittävä tekijä.
Suppea suhteellisuusteoria on kokeellisesti tarkasti varmennettu, ja sen pätevyys on järkevän epäilyn ulkopuolella. Sen ilmiöt ovat kuitenkin arkijärjen vastaisia: mitä nopeammin kappaleet liikkuvat, sitä lyhyempiä ne ovat, ja sitä hitaammin niiden kellot kulkevat; myös samanaikaisuus on suhteellista. Kaikki tämä outous palautuu yhteen miinusmerkkiin.
30 kommenttia “Yhden merkin varassa”
-
”Koko teoria nimittäin seuraa siitä, että tuo etäisyys M aika-avaruudessa on absoluuttinen, eivät etäisyydet ajassa ja paikassa erikseen. […] Suppea suhteellisuusteoria on vastaavasti symmetrinen muunnoksissa, jotka eivät muuta aika-avaruuden etäisyyksiä.”
Riittääkö tuo myös selittämään kaksosparadoksin? Tuli vaan mieleen, että jos alussa ja lopussa ollaan yhdessä, niin eikö silloin kuljeta yhtä pitkä matka M aika-avaruudessa? Jos siis avaruudellisesta lähtöpisteestä matkalle lähtevä kaksoinen kulkee avaruudellisesti pidemmän matkan, niin symmetrian perusteella kyseisen reissun tulee olla ajallisesti lyhyempi? En kyllä tiedä tuleeko tuollaisesta selityksestä hullua hurskaammaksi, vaikka se olisikin oikein 🙂
-
”…sen /suhteellisuusteorian) ymmärtäminen vaatii hienostuneen matemaattisen koneiston omaksumista.”
Eikö matematiikka ole kieli? Onko siis niin, ettei suhteellisuusteoiaa voi ymmärtää kuin matamatiikaksi. Tulee heti mieleen se käsitys, että Koraani on osattava ulkoa ja nimenomaan arabiaksi muuten sen ymmärtää väärin. Itse olen sitä mieltä, että kaikki kehittyneet ja elävät kielet kelpaavat ja riittävät niin suhteellisuus- kuin kvantiiteoriankin ymmärtämiseen.
-
”Millään kokeella ei voi erottaa, onko jokin kappale paikallaan vai liikkuuko se tasaisella nopeudella, koska tämä riippuu havaitsijasta.”
No voi mutta. Ilmiöpohjainen aistihavainto liikkuvan kappaleen törmäämisestä esimerkiksi kaukalon laitaan on mitä suurimmassa määrin todellinen tapahtuma. Jos siis kaukalon laidalla oleva tarkkailija havaitsee kyseisen tapahtuman, niin asianlaita todellakin on niin; jos kappale kolahtaa, niin sen on täytynyt olla liikkeessä! Myös ihmismielen kokemus ajan hetkittäisestä kulumisesta on varminta mahdollista tietoa, eikä siinä ole mitään suhteellista, koska on vain yksi subjekti. Siispä aika on jotakin sellaista, joka subjektin kokemana vain kuluu. Ainakaan toistaiseksi eivät fyysikot pysty menemään toisten pään sisään, vaikka he mielellään jakelevat omnipotentteja selityksiään milloin mistäkin. Toisaalta vaihtoehtoinen luonnontieteen aikakäsitys ei anna mitään ymmärrystä ajasta. Husserl kiteytti asian nokkelasti: ”Einstein ei muotoile uudelleen sitä tilaa ja aikaa, jossa meidän elävä elämämme kulkee.” Voin väittää, että jokainen itselleen rehellinen totuudenetsijä jakaa Husserlin näkemyksen. Lopuksi on myös todettava, että käsitys liikkeen suhteellisuudesta on jo itsessään hieman naiivi, sillä fyysikoidenkin noudattaman kaksiarvoisen logiikan mukaan liikettä joko on tai ei ole. Myös luonnontieteen tutkijan auto joko liikkuu tai on pysähdyksissä, vaikka hän pitäisi silmiään kiinni.
Mutta en suinkaan väitä, että modernit fysikaalisen maailman teoriat antaisivat vääriä vastauksia. Päinvastoin: numeeriset tulokset voivat hyvinkin olla oikein, mutta ne on saavutettu vääristä lähtökohdista. Suhteellisuusteoria on eräs tällainen ongelmallinen kehitelmä, jonka ”näin se vain on” -tyyppisiin vastauksiin on syytä suhtautua varauksella. Ehkäpä alati kehittyvä tiede jonakin päivänä asettaa teoreettiset viitekehykset oikeaan asentoon ja samalla huomioi myös ihmisen luonnollisen näkökulman.
-
”mitä nopeammin kappaleet liikkuvat, sitä lyhyempiä ne ovat, ja sitä hitaammin niiden kellot kulkevat; myös samanaikaisuus on suhteellista”
Suhteellisuusteorian yhtälöt määrittelevät havainnoijien mukana kulkevien kellojen näyttämät mutta ei ankkuroi niitä universaaliin aikaan. Universumissa kaiken absoluuttisesta samanaikaisuudesta – nykyhetkestä – ei ole mitään ulospääsyä, riipumatta mitä kunkin kello satuu näyttämään. Suhteellisuusteorian kosmologinen malli oikeastaan postuloi asian kosmologisen periaatteen muodossa.
Nopeammin liikuvien kappaleiden lyhentyminen lienee ilmaisun epätäsmällisyyttä. Olettaisin että ainoastaan liikkujan koordinaatisto muuttuu liikkeen suunnassa, fyysinen kappale ei koe fysikaalisia muodonmuutoksia jos se kääntyilee liikesuuntaansa nähden, pyörii tms, eikä tämä liikujan koordinaatiston muutos ei muuta ympäivän avaruuden mittasuhteita etäisen havainnojan näkökulmasta.
-
Ajan absoluuttisen luonteen puuttumisen todistaisi vaikkapa jos historian saatossa edes joku olisi saannut tavata itsestään nuoremman version, muutoinhan sille on hyvinkin vahva peruste. Vaikkakin hieman eri mielessä kuin ST:ssä, joka ei ole onnistunut todentamaan ajan suunnan käänettävyyttä tai epäjatkuvuutta. Ajan absoluuttista luonnetta ilmentävät myös ajan/entopian suunnan pysyvyys sekä kausaalisuuden rikkoutumattomuuden periaate, eri sanoin ja eri kattavuudella ilmaistuina.
”protonin näkökulmasta, se on pallomainen, mutta toinen protoni on sitäkin litistyneempi” kuulostaa minusta juurikin koordinaatistomuunnosjutulta. Kiinnostaisi kyllä kuinka protonien litteydet on mitattu, vai olisiko asia päätelty epäsuorasti prosessin kulusta, eli kyse voisi olla pikemminkin prosessin käyttäytymisestä kuin fysikaalisesta muodonmuutoksesta?
Sisänsä arkijärjelläkin ymmärrettävää että tasaisessa vauhdissa ei havaitse litistymisilmiötä eikä liike-energiaa, vasta sitten törmätessä 🙂
-
Kiitos että selvennät näitä käsitteitä yleistajuisesti. Arvostan suppean suhteellisuusteorian denialismin arvosteluasi. Pidin paljon viittaamastasi artikkelista, jonka kirjoitit Kari Enqvistin kanssa, edelleen ja jo silloin kuin se ilmestyi. Kuten kirjoitatte sivulla 56:
”CERNin Large Hadron Colliderissa ja muissa hiukkaskiihdyttimissä liikkuu hiukkasia yli 99.99 prosentilla valon nopeudesta, ja niihin liittyviä havaintoja on toistettu miljardeja kertoja. Itse asiassa suppean suhteellisuusteorian pätevyys on järkevän epäilyn ulkopuolella, eikä hiukkaskiihdyttimien tarkoituksena ole testata sitä. Oikeampaa on todeta, että niiden toimivuus perustuu siihen, että suhteellisuusteoria pitää paikkansa.”
Tämä menee ohi varsinaisen merkinnän, mutta näihin filosofiaan liittyviin kommentteihin haluaisin sanoa, että tasokkaimmissa kv. julkaisuissa otetaan vakiintuneet fysiikan teoriat lähtökohdaksi ja katsotaan, mitä ne sanovat tarkasteltavan asian, esim. ajan luonteesta. Kommenteissa parjattu eternalismi on olennaisesti perusteltu samanaikaisuuden suhteellisuudella ja sopimuksellisuudella (nyt tulee mainostettua, mutta argumentoin tämän näkemyksen puolesta täällä: https://arxiv.org/pdf/2202.06661 ).
-
Kiitos. Kaava absoluuttisesta etäisyydestä on maallikollekin ymmärrettävä kiteytys teoriasta. Onko ajan termi etäisyys aikadimensiossa kynän ja sen pudottajan välillä? Termi näyttää dominoivan arkisia tilaetäisyyksiä. Miten etäisyys eroaa hiukkaskiihdytetyn protonin ja sen tutkijan välillä?
-
Aloin tässä muutaman oluen jälkeen aprikoimaan tuota aika-avaruuteen ympätyn ajan luonnetta. Hermann Bondin ja monen muun ohella myös John Wheeler lyttäsi ajatuksen jostakin paikankaltaisesta euklidisen avaruuden koordinaatista: “Equal footing, yes; same nature, no.” Kyseessähän on prosessia kuvaava suure, esim. heilurikellossa heilurin heilahdusten tai atomikellossa atomien värähtelyn lukumäärä. Nyt jos tehdään ajatuskoe, jossa kvanttimekaanisen epämääräisyyden voimakkuutta kuvaava Planckin vakio saisi huomattavasti suuremman arvon, niin eivätkö voimistuneet (satunnais)fluktuaatiot sotke klassisen ymmärryksen ajan kulusta? Siis jo pienen hetken perästä alkaisivat kaksi muutoin identtistä kelloa käymään eri tahtiin, eikä aikaa voisi ymmärtää kuin jollakin keskiarvoisella tavalla. Tokihan kelloissa on tavallisestikin jokin epätarkkuus, mutta epätarkkuus on luonteeltaan myös fundamentaalista.
Valonnopeuden suuruus ja Planckin vakion pienuus saavat ajan ”kulkeemaan” newtonilaisittain, mutta aika on joka tapauksessa sekä suhteellista että epämääräistä. Adios muchachos, eternalismo!
Vastaa
Taivasta täyttämässä
1600-luvulla eläneen tähtitieteilijä Johannes Keplerin havainnoilla oli keskeinen rooli sen osoittamisessa, että Maa kiertää Aurinkoa. Kepler oli myös vakuuttunut siitä, että maailmankaikkeus on äärellinen. Hän esitti todisteeksi sen, että jos maailmankaikkeus olisi ääretön, niin tähdet täyttäisivät taivaan.
Mitä kauempana tähdet ovat, sitä himmeämmiltä ne näyttävät. Mutta mitä kauemmas menee, sitä enemmän tähtiä on, ja jos tähdet ovat jakautuneet tasaisesti, niiden lukumäärä kasvaa samaa tahtia kuin mitä kirkkaus laskee. Se johtopäätös, että äärettömässä maailmankaikkeudessa yötaivaan pitäisi olla yhtä kirkas kuin Auringon pinta, tunnetaan nimellä Olbersin paradoksi asiasta 200 vuotta Keplerin jälkeen kirjoittaneen Heinrich Olbersin mukaan. (On tavallista, että asioita ei nimetä niitä ensimmäiseksi pohtineiden mukaan.)
Emme tiedä onko maailmankaikkeus ääretön. Mutta koska maailmankaikkeuden ikä on äärellinen ja valo matkaa äärellisellä nopeudella, näemme vain äärellisen etäisyyden päähän, ja lisäksi tähtiä on ollut olemassa vain äärellisen ajan.
Toinen syy yötaivaan mustaan on se, että näemme vain pienen osan valon (eli sähkömagneettisen säteilyn) aallonpituuksista. Näkyvää valoa lähettäviä tähtiä on harvassa, mutta esimerkiksi mikroaaltotaivas on kauttaaltaan kirkas. Kosmiset mikroaallot näyttävät millainen maailmankaikkeus oli 380 000 vuoden iässä. Jos haluaa nähdä myöhempiä aikoja, pitää tarkastella muita aallonpituuksia.
Vetykaasu on erityisen kiinnostava radiolähetin. Vetyatomi koostuu protonista ja elektronista. Kummallakin on ominaisuus nimeltä spin, eli ne käyttäytyvät kuin pyörisivät jonkin akselin ympäri. Vetyatomin toiseksi yksinkertaisimmassa tilassa protoni ja elektroni pyörivät samaan suuntaan, ja yksinkertaisimmassa tilassa ne pyörivät vastakkaiseen suuntaan. Kun vetyatomiatomi siirtyy samansuuntaisesta tilasta yksinkertaisimpaan tilaan, se lähettää valoa, jonka aallonpituus on 21 cm, eli radioaallon.
Maailmankaikkeuden atomeista 90% on vetyä, ja vetykaasua on kaikkialla, sielläkin missä ei ole tähtiä. Niinpä 21 cm säteily on erinomainen tapa saada selville mitä maailmankaikkeudessa tapahtuu. Tämä säteily on (gravitaatioaaltoja ehkä lukuun ottamatta) ainoa viestintuoja ajalta kosmisen mikroaaltotaustan syntymisen ja tähtien syttymisen välillä – eli maailmankaikkeuden ensimmäisen noin 100 miljoonan vuoden aikana.
Tänään Phil Bull Queen Mary University of Londonista puhui 21 cm säteilystä Helsingin yliopiston fysiikan osaston kosmologiaseminaarien sarjassa. Radiotähtitiedettä on tehty 1930-luvulta asti, mutta se on näkyvän valon tai mikroaaltojen havaitsemista jäljessä. Asian voi ilmaista myös niin, että kyseessä on nouseva ala.
Ennen viime vuosia taivasta on tarkkailtu radioaallonpituuksilla joko pieneltä alueelta tarkkaan (niin että näkee kaukana olevia ja siksi himmeitä kohteita), tai sitten laajalta alueelta niin että näkee vain lähellä olevia tai poikkeuksellisen kirkkaita kohteita.
Nykykosmologiassa halutaan kattava kuva tapahtumista, mikä edellyttää sitä, että katsoo yhtä aikaa laajasti ja syvälle. 2000-luvulla tämä on tullut teknologisesti mahdolliseksi. Nykyiset 21 cm teleskoopit näkevät noin maailmankaikkeuden ensimmäisen miljardin vuoden ikään asti.
Koska kaukaiset radiolähteet ovat heikkoja, kuvista eivät erotu esimerkiksi yksittäiset kaukaiset galaksit tai vetypilvet, vaan isompien kokonaisuuksien säteily. Mutta vaikka radioaaltokartat ovat epätarkkoja, niistä näkee ison mittakaavan rakenteen ja sen kehityksen siinä mielessä selvemmin kuin näkyvästä valosta, että vetykaasu on tasaisemmin jakautunut. Havaintoja ei tehdä vain niistä poikkeuksellisista paikoista, missä sattuu olemaan galakseja, vaan kaikkialta. Lisäksi vetykaasu noudattaa pimeän aineen jakaumaa tarkemmin kuin galaksit, ja suurin osa maailmankaikkeuden aineesta on pimeää ainetta.
Iso ongelma on se, että kosminen 21 cm säteily on noin tuhat kertaa heikompaa kuin Linnunradan ja muiden galaksien lukuisten tähtitieteellisten kohteiden lähettämät radioaallot. Vielä isompi ongelma on ihmisten laitteiden tuottama säteily; erityisesti kännykät tukiasemineen ovat iso häiriön lähde.
Jos kosminen signaali tulisi kaikkialta samalla 21 cm aallonpituudella, roskat olisi helppo suodattaa: heitettäisiin vain pois kaikki signaalit, missä on mukana muita aallonpituuksia. Mutta koska maailmankaikkeus laajenee, säteily venyy. Miljardin vuoden iässä 21 cm pituisena lähteneen säteilyn aallonpituus on nykyään noin puolitoista metriä, ja myöhemmin syntyneen jotain tältä väliltä, lähtöhetkestä riippuen.
Bull on mukana MeerKAT-koeryhmässä, joka mittaa 21 cm säteilyä Etelä-Afrikassa. MeerKATin antennit tulevat osaksi parhaillaan rakennettavaa kansainvälistä SKA-teleskooppia. MeerKAT ja muut kokeet ovat jo setvineet maailmankaikkeuden historiaa yhdistämällä 21 cm säteilyn kartat mittauksiin galakseista. Koska galaksidata on parempaa, on helpompaa lisätä siihen 21 cm havainnot kuin käyttää niitä yksin.
Bull arvioi, että kestää ainakin 3-5 vuotta ennen kuin pelkistä 21 cm havainnoista saadaan luotettavia kosmologisia tuloksia. Hänen mukaansa juuri se, että ala on kosmista mikroaaltotaustaa ja gravitaatiolinssejä jäljessä tekee siitä mielenkiintoisen, koska saa olla mukana kehittämässä jotain uutta
21 cm kokeet eivät vielä näe niin kauas kuin infrapunavaloon painottunut teleskooppi JWST. Radioteleskooppeja kuitenkin rakennetaan koko ajan lisää, teknologia kehittyy ja tutkijat ymmärtävät paremmin millaiset teleskoopit ovat sopivimpia. Kun 21 cm teleskoopit pääsevät vauhtiin, ne näkevät asioita, mitä mitkään muut kokeet eivät voi havaita.
Kaukaisemman tulevaisuuden mahdollisuutena Bull mainitsi Cosmic Visions -projektissa pohditun mahdollisuuden rakentaa kraatteriin Kuussa ritilä, jota käytettäisiin radioteleskooppina. Näin pääsisi eroon sekä ihmisten tuottamasta radiosaasteesta että Maan ilmakehästä, joka imee osan radioaalloista.
Koska kosmiset rakenteet kuten galaksit kasvavat ajan myötä, varhaisina aikoina ne olivat yksinkertaisempia. Niinpä kauas katsoessa saa selvemmän kuvan siitä, millaisia olivat kosmisen inflaation aikana ensimmäisen sekunnin perukoilta syntyneet rakenteen siemenet, ennen kuin gravitaatio sotki ainetta galakseiksi ja muuksi puuroksi.
Yksi kosmologian isoimpia kysymyksiä on, miksi maailmankaikkeuden laajeneminen on viimeisen muutaman miljardin vuoden aikana kiihtynyt. Asian selvittämisessä on tärkeää saada tarkkoja havaintoja maailmankaikkeuden laajenemisnopeudesta myös varhaisilta ajoilta. Voi olla, että käsissämme on nyt vain osa palapeliä.
Päivitys (17/02/22): Korjattu typo: neutronista -> elektronista.
4 kommenttia “Taivasta täyttämässä”
-
”Mutta koska maailmankaikkeus laajenee, säteily venyy.”
Kaverini puolesta kyselen, että jos valoa tarkastellaan hiukkasmuodossa, niin miten avaruuden laajeneminen voi vaikuttaa siihen millään tavalla? Ja voiko pelkkä avaruuden laajeneminen vaikuttaa 0,999c nopeudella liikkuvan massahiukkasen olemukseen?
Vastaa
Parhaaksi katsomallaan tavalla
Kirjoitin vuonna 2019 siitä, että Helsingin yliopiston matemaattis-luonnontieteellinen tiedekunta kehotti tutkijoita kirjoittamaan ilmaiseksi artikkeleita Tekniikan Maailmaan. Tiedekunnan viestintäosasto perusteli tätä muun muassa sillä, että ”monet rahoittajat edellyttävät tulosten laajaa julkaisua ja yhteiskunnallista vaikuttavuutta” ja että artikkelit parantavat yliopiston julkisuuskuvaa.
Totesin seuraavasti:
”Suotavaa olisi, että Helsingin yliopistokin puolustaisi tutkijoiden oikeutta korvaukseen tekemästään työstä sen sijaan, että se myötävaikuttaa sellaisen yhteiskunnan rakentamiseen, missä ihmisten odotetaan tekevän kaupallisille tahoille työtä palkatta.”
Yliopisto on kuitenkin mennyt vielä oudompaan suuntaan.
Huomasin toissaviikolla tähtitieteilijä Mikko Tuomen mainitsevan Twitterissä, että kaupallinen julkaisija nimeltä MustRead pyysi häntä kirjoittamaan heille ilmaiseksi. Mikäs siinä, ei ole kummallista, että yritys haluaa välttää palkkakuluja.
Outoa on se, että Helsingin yliopisto on leikissä mukana.
Kyseessä ei tällä kertaa ole vain yhden tiedekunnan linjaus. Keskushallinnon viestintä on syyskuussa tiedottanut, että Helsingin yliopisto on viiden muun korkeakoulun tavoin tehnyt sopimuksen MustRead Akatemian kanssa, ja kannustaa tutkijoita kirjoittamaan sinne. (Yliopiston avoimuuskäytännön mukaisesti tiedote ei ole ulkopuolisten luettavissa.)
Tiedotteen mukaan ”Mustread Akatemia on journalistinen, Suomen keskeisille päättäjille ja vaikuttajille suunnattu media”, joka ”tarjoaa tuoretta tutkimustietoa päättäjille helposti luettavassa muodossa”.
Tiedotteessa ei mainita palkkioista, mutta kysyttäessä viestintä varmisti, että kirjoittajille ei makseta mitään. Sen sijaan Helsingin yliopisto maksaa MustReadille siitä, että se julkaisee tutkijoiden sille ilmaiseksi kirjoittamia tekstejä.
Pyysin Helsingin yliopistolta nähtäväkseni MustReadin kanssa solmitun sopimuksen. Se on nyt luettavissa täällä. (Hämmentävää kyllä, sopimus on solmittu vasta puolitoista kuukautta sen jälkeen, kun siinä sovittu maksullinen toiminta on aloitettu.) Yliopisto kuitenkin poisti sopimuksesta tiedot siitä, kuinka paljon se MustReadille maksaa. Yliopisto perusteli hinnan salaamista sillä, että muuten joku voisi tarjota yliopistolle samaa palvelua halvemmalla (lihavointi lisätty):
”MustReadin ilmoittaman mukaan hintatieto on liikesalaisuus, koska sen päätyminen kilpailijoiden käsiin voisi aiheuttaa yritykselle merkittävää vahinkoa. Yrityksen kanta ei sido yliopistoa, vaan yliopiston pitää arvioida, voiko tietoa objektiivisesti pitää yksityisen liikesalaisuutena. Tässä tapauksessa yliopiston arvio on, että tieto on yksityisen liikesalaisuus (laki viranomaisten toiminnan julkisuudesta 24 § 1 mom 20 k). Sopimuksen muut ehdot ovat julkista tietoa, ja hintatiedon päätyminen julkiseksi tekisi kilpailijoille helpoksi esimerkiksi tarjota vastaavaa palvelua hieman alempaan hintaan.”
Kerrottuani haluavani valittaa salauspäätöksestä julkisia hankintoja koskevan lain nojalla yliopisto kertoi, että sopimuksen arvo on alle 60 000 euroa, eli se ei ole julkisia hankintoja koskevan lain piirissä.
Helsingin yliopiston strategian mukaan yliopiston ydintehtävien toteuttaminen perustuu avoimuuteen, ja yliopisto on tunnettu ”avoimista, akateemisen vapauden ja yhteisöllisten ja demokraattisten vaikutusmahdollisuuksien mukaisista toimintatavoistaan”. (Tiedonsaannista ja yrityssuhteista yliopistolla voi lukea entisen Helsingin yliopiston hallituksen jäsenen Thomas Wallgrenin kirjeestä muille silloisille hallituksen jäsenille.)
Sopimuksen mukaan järjestelyn tarkoituksena on ”vahvistaa tutkijoiden ja yhteiskunnan vuoropuhelua”. Tutkitun tiedon merkitys on yhteiskunnassa entistä isompi, ja on tärkeää, että se huomioidaan poliittisessa päätöksenteossa kattavammin. Osoittaisi puutteellista ymmärrystä yhteiskunnallisesta päätöksenteosta pitää ongelman ytimenä sitä, että päättäjillä ei ole tietoa saatavilla ja tilanne korjaantuu heille artikkeleita pyytämättä kirjoittamalla. Tämä ei kuitenkaan tarkoita, etteikö tällainen popularisointi ja tärkeiden tutkimustulosten ja -kysymysten esille tuominen olisi arvokasta ja hyödyllistä.
Sitä suuremmalla syyllä siitä tulee saada korvaus. Jos yliopiston palkkalistoilla oleva tutkija puhuu vaikkapa yliopiston avoimessa tilaisuudessa tai kirjoittaa yliopiston julkaisuun, tämän voi katsoa kuuluvan hänen työtehtäviinsä. Sisällön tuottaminen kaupalliselle yritykselle on eri asia.
Kysyin miten yliopisto oikeuttaa sen, että se maksaa siitä, että kaupallinen toimija teettää tutkijoilla palkatonta työtä. Yliopiston viestintä vastasi, että yliopistolaisten tehtäviin kuuluu yhteiskunnallinen vuorovaikutus, ja ”jokainen toteuttaa sitä työajallaan parhaaksi katsomallaan tavalla”. Viestintä rinnasti MustRead Akatemiaan kirjoittamisen Tiedekulman tapahtumiin osallistumiseen ja siihen, että yliopiston viestintä kirjoittaa yliopiston kanavissa julkaistavia uutisia. Kysymykseen siitä, eikö kaupallisten toimijoiden yliopiston mielestä tarvitse maksaa yliopistolaisille heidän työstään, viestintä ei vastannut.
Ilmeisesti yliopisto ei tunnista eroa siinä, että kirjoittaa yliopistolle (tai muulle yleishyödylliselle voittoa tavoittelemattomalle taholle) tai kaupalliselle toimijalle – tekstien tekijänoikeudet muuten jäävät MustReadille, eivät kirjoittajille.
Se, että yliopisto esittää ilmaisen työn tekemiselle yritykselle tapana toteuttaa yliopiston työntekijöiden velvollisuuksia on jo sinänsä ongelmallista. Se, että yliopisto maksaa tästä yritykselle, osoittaa, että se ymmärtää rahallisen korvauksen merkityksen, mutta ei katso sen kuuluvan yliopistolaisille. Yliopistojen työilmapiiristä on viime vuosina puhuttu paljon. Tällainen asenne sitä tuskin parantaa.
Olen usein kirjoittanut siitä, miten tieteellisten lehtien kustantaminen on järjestetty kaupallisten kustantajien ehdoilla tavalla, joka merkittävästi haittaa tieteen tekemistä. (Ks. täällä, täällä, täällä, täällä, täällä, täällä, täällä ja täällä.) Yliopistoilla olisi tärkeä tehtävä uusien ei-kaupallisten lehtien tukemisessa ja julkaisemisen bisnesmallin hylkäämisessä.
Tässä onkin käynyt toisin päin. Kuten Mikko Tuomi toteaa, ”tieteellisen julkaisemisen kyseenalaiset käytännöt ovat siis leviämässä tiedeviestintään: tutkijat tekevät työn, yliopisto maksaa, ja raha ja työ menevät kaupallisen toimijan liikevoitoksi”.
Järjestely osoittaa kaikkiaan huonoa harkintakykyä. Viestinnän mukaan kyseessä on vuoden kestävä kokeilu. Kaikki ottavat joskus harha-askelia, oleellista on se, miten tunnistaa ja korjaa virheensä. Yliopisto voi alkaa maksaa kirjoittajille jo nyt (ja takautuvasti), lopettaa tällaisten sopimusten tekemisen, ja ruveta puolustamaan tutkijoiden oikeutta korvaukseen työstään. (Ammattiliitto Tieteentekijöiden liiton palkkiosuosituksiin voi tutustua täällä.)
Yliopisto mainostaa mielellään arvojaan, mutta oikeasti ne määrittyvät teoilla, eivät julkilausumilla. Se, miten Helsingin yliopisto nyt muuttaa toimintaansa kertoo paljon siitä, millainen se on.
20 kommenttia “Parhaaksi katsomallaan tavalla”
-
En voisi olla enempää samaa mieltä kanssasi. Tiedän, että esim. Valtioneuvosto voi pyytää oppituolin haltijalta lausuntoa ajankohtaisesta asiasta jossain lakiasiassa esim. viran puolesta tehtynä, aika kiireesti, ilmaiseksi. Mutta en voisi kuvitella, että esim. yksityinen lakifirma tekisi sen ilmaiseksi, ja jos kyseinen firma konsultoi tätä professoria, se maksaa tälle palkkion. Puhumattakaan tilanteesta, että yliopisto alkaisi maksamaan tälle yksityiselle lakifirmalle (joka laskuttaa asiakastaan) vielä erikseen lisää. Tuohon tieteen edistämiseen akateemisessa hengessä talkoina sen sijaan haluan uskoa, ja se tuottaa iloa monille halvalla. Esim. tämä blogi.
-
Ja lisäykseksi, etten tiedä sidonnaisuuksiasi, tai maksaako Ursa jotain blogista ja paljonko, eikä asia minulle kuulu. Uskoisin, että Ursa toimii kestävästi ja oikein tässä asiassa.
-
Yliopistojen ja yksityisten yritysten välillä on iät ja ajat toiminut yhteistyö varsinkin tuotekehityksessä ja tutkimuksessa. Oulun yliopiston ja it-sektorin yhteistyö on yksi tunnetuimmista. Minulla ei ole tietoa siitä kumpi silloin on maksava osapuoli. Ehkä se on yritys, joka ostaa tietotaitoa yliopistolta? Mielestäni tällainen yhteistyö on erittäin tuloksellista ja hyödyttää molempia osapuolia.
Tuo blogikirjoituksessa mainittu MustRead -tapaus ei minulle oikein aukea. Olisiko niin, että yliopistolta palkkaa saavan tutkijat työsopimukseen kuuluu myös artikkelien kirjoittaminen yliopiston osoittamille tahoille ilman eri korvausta?
-
EU:n juuri julkaistuissa korkeakoulupoliittisissa suosituksissa painotetaan eniten korkeakoulujen yrittäjyyskasvatusta kaikilla aloilla. Yrittäjyyshenkisyyttä näyttävät painottavan suomalaisetkin yliopistot. Yrittäjyysideaan ei kai kuulu, että yliopistolaiset antavat ilmaiseksi työpanostan yritysten käyttöön ja luopuvat vielä tekijänoikeuksistaan. Millaisia yrittäjiä Helsingin yliopisto on nyt kouluttamassa? – Esimerkki osoittaa, miten absurdia on poiketa yliopistojen humboldtilaisista tavoitteista kovin pitkälle.
-
Mielestäni voisi oll aika tervehdyttää pelisääntöjä.
Linja löytyisi ehkä siitä, että kova, loogisesti perusteltu ja yhteiseen tieteelliseen kielioppiin perustuva tutkimustuotanto velvoitettaisiin yhteiseksi ja mahdollisimman vapaaksi globaaliksi omaisuudeksi. Sen sijaan tulkinnat ja analyysit sekä katsaustyyppiset julkaisut, samoin kuin mielialoihin vetoavat kannanotot; kaikki persoonallisempi tuotanto olisi tekijänsä omaisuutta ja kauppatavaraa.
Todellinen tutkimus ehkä selkeytyisi – jätettäisiin kiire johtopäätöksille ja jatkotoimille demokraattiseen markkinakäsittelyyn, jossa median ylilyönnitkin saisivat temmellyskenttänsä ilman, että tutkijoita saisi siteerata miten sattuu; velvoite tarkistuttaa haastattelut ja maksaa niistä.
Tällä hetkellä on valitettavan sekavaa ja laadullisesti sietämättömän vaihtelevaa tulosten esittely mediassa. Follow the money. Selvät crackpotit tunnistettaisiin suoremmin?
Mutta avain olisi siinä, että vertaisarvioitavaan järjestelmään ladatessa ei voisi asettaa maksumuuria, vaan ansiot olisi kerättävä muuten uskottavuuttaan rakentaen.
-
En ole perehtynyt asiaan, mutta ehkäpä yliopisto maksaa Mustread Akatemialle siitä hyvästä, että he spämmäävät kaikkien yhteiskunnallisten päättäjien sähköpostit täyteen HY:n tutkijoiden hengentuotoksia – ja vielä useampana aaltona. Tällöin myös nimitys Mustread selittyisi luonnollisella tavalla 🙂
-
Off-topic, mutta liittyy julkaisemiseen. Tämän ”lehden” nettisivulla https://www.walshmedicalmedia.com/scholarly/extraterrestrial-life-journals-articles-ppts-list-1879.html on kaksi muka minun kirjoittamaa ”artikkelia”. Minulla ei ole kuitenkaan niiden kanssa mitään tekemistä. Olen pyytänyt poistamista käyttäen heidän webbilomaketta (muuta yhteydenottokanavaa sieltä ei löytynyt), mutta viestiin ei ole vastattu eikä valeartikkeleita poistettu.
-
Onko teillä yliopistojen tutkijoilla oikeus kieltäytyä, ilman sanktioita, kirjoittamasta artikkeleita Mustreadille? Tai esimerkiksi jopa tehdä yhdessä päätös joukkokieltäytymisestä?
-
Tarkoitin kaupallisetn toimijoiden ja tutkimuslaitosten välisiä ”lehmänkauppoja”. Kansainvälisesti sponsorointi on hieman erilaista kuin Suomen sosiaalidemokratiassa.
Vastaa
Perintö lukkojen takana
Tänään tulee kuluneeksi yhdeksän vuotta Aaron Swartzin kuolemasta. Swartzilla oli merkittävä rooli RSS-syötteiden, Creative Commons -lisenssin ja Reddit-sivuston kehittämisessä, sekä Yhdysvaltojen internet-sensuurilakialoitteen SOPA kaatamisessa. Swartz muistetaan kuitenkin parhaiten työstä, joka koitui hänelle kuolemaksi: tieteellisten artikkelien saatavuuden parantamisesta.
Swartz latasi vuosina 2010-11 JSTOR-tietokannasta koneelleen miljoonia tieteellisiä artikkeleita MIT-yliopiston kirjaston verkon kautta, johon hänellä oli pääsy ja josta ne olivat saatavissa. Ei tiedetä, mitä Swartz aikoi artikkeleilla tehdä: oliko tarkoituksena tutkia niitä vai tuoda ne avoimesti saataville. Swartz oli aiemmin käyttänyt toista artikkelitietokantaa tilastolliseen tutkimukseen, ja oli toisaalta laittanut miljoonia oikeusasiakirjoja avoimesti verkkoon. FBI oli tutkinut Swartzia jälkimmäisen takia, ja lopettanut todettuaan, että toiminnassa ei ollut mitään laitonta.
Swartz oli mukana kirjoittamassa vuonna 2008 julkaistua Guerrilla Open Access Manifestoa, missä arvosteltiin ihmiskunnan tieteellisen perinnön pitämistä suuryritysten omaisuutena ja kehotettiin tuomaan artikkeleita julkisesti saataville:
”There is no justice in following unjust laws. It’s time to come into the light and, in the grand tradition of civil disobedience, declare our opposition to this private theft of public culture.”
JSTOR ja MIT eivät lopulta halunneet viedä Swartzia oikeuteen, mutta MIT ei myöskään tukenut häntä. Yhdysvaltojen viranomaiset uhkasivat laittaa Swartzin vuosikymmeniksi vankilaan tehdäkseen hänestä varoittavan esimerkin, samaan tapaan kuin Julian Assangesta, joka on hänkin edistänyt demokratiaa parantamalla dokumenttien saatavuutta.
Kamppailu syytteitä vastaan kulutti loppuun Swartzin taloudelliset ja henkiset varat, ja hän teki itsemurhan. Swartzin elämästä on vapaasti katsottavissa kelpo dokumentti The Internet’s Own Boy: The Story of Aaron Swartz.
Tällä hetkellä vapaan julkaisemisen sissimanifestin ajatuksia toteuttaa kazakstanilaisen Alexandra Elbakyanin perustama tietokanta Sci-Hub. Sivusto aloitti toimintansa alkuvuodesta 2011, muutama kuukausi sen jälkeen, kun Swartz oli ladannut JSTOR-artikkeleita. Nyt Sci-Hubissa on yli 88 miljoonaa tieteellistä artikkelia vapaasti saatavilla. Suurin osa on otettu kustantajien sivuilta ja laitettu avoimesti esille vastoin heidän tahtoaan.
Sci-Hubissa on saatavilla niin uusia kuin vanhoja artikkeleita avoimesti ja helposti, ja laajemmin kuin missään muualla. Vauraiden maiden yliopistojen tutkijat pääsisivät osaan artikkeleista käsiksi myös kirjastonsa kautta, mutta silloinkin kun se on mahdollista, artikkelien etsiminen on usein vaivalloista, kirjastojen ja kustantajien käyttöliittymät monasti kömpelöitä, ja käytetyt formaatit toisinaan epäkäytännöllisiä.
Sci-Hubista löytyy kaikki suoraan yhden hakurivin kautta kätevässä pdf-formaatissa. Sci-Hub on käytännöllinen varsinkin, kun tekee töitä yliopiston verkon ulkopuolella, mikä on viime aikoina yleistynyt. Monille ympäri maailmaa Sci-Hub on kätevän sijaan korvaamaton, koska heidän instituuteillaan ei ole varaa kustantajien kohtuuttomiin hintoihin – tai he eivät ole osa mitään instituutiota.
Elbakyan on Sci-Hubilla tehnyt avoimen tieteen eteen enemmän kuin kukaan muu 2000-luvulla. Tämän takia hänkin on oikeusjuttujen kohteena.
Elbakyanin henkilökohtaista vapautta on suojannut se, että hän ei asu Yhdysvaltojen eikä sen liittolaisten alueella. Elbakyan on Yhdysvalloissa määrätty maksamaan 19.8 miljoonaa dollaria korvauksia, mutta hän ei ole osallistunut oikeudenkäynteihin, eikä hänen ole tarvinnut välittää tuomioista.
Vaikka pääsy Sci-Hub-tietokantaan on estetty monissa maissa, jotka pyrkivät turvaamaan suuryritysten voittoja tieteellisen tiedon saatavuuden kustannuksella, tätä on helppo kiertää, koska sillä on monta eri osoitetta. Artikkelien varastointia ollaan varmuuden vuoksi siirtämässä myös hajautettuun muotoon.
Tieteelliset kustantajat American Chemical Society, Elsevier ja Wiley ovat nostaneet uuden oikeusjutun, jossa ne vaativat Intiaakin estämään pääsyn Sci-Hubiin. Elsevier on sattumoisin erityisen pahamaineinen tieteellisten instituutioiden hyväksikäyttäjä.
Elsevier ja kumpp. ovat ryydittäneet kannettaan perättömillä väitteillä siitä, miten Sci-Hub uhkaa tieteellisen tiedon luotettavuutta, yksittäisten ihmisten henkilökohtaisten tietojen turvallisuutta sekä kirjastojen turvallisuutta – laittamalla avoimesti saataville julkisesti julkaistuja tieteellisiä artikkeleita alkuperäisessä muodossaan. Tällaisten tarinoiden keksiminen osoittaa, että kustantajat eivät itsekään luota asiansa oikeutukseen.
Poikkeuksellisesti Elbakyan on Intiassa osallistunut oikeuskäsittelyyn. Syynä on se, että maan lainsäädäntö tunnustaa opetuskäyttöön liittyvän rajoituksen tekijänoikeuksiin. Intian tuomioistuinten päätöksellä saattaa olla esimerkillisiä seurauksia tieteelle tekijänoikeuksien uudelleen arvioinnin kautta.
Tieteellisten artikkelien tekijänoikeudet ovatkin omituinen tapaus. Niiden kohdalla termi tekijänoikeus on harhaanjohtava, englannin sana copyright –kopiointioikeus– on oikeampi. Tieteelliset kustantajat eivät ole artikkelien tekijöitä, tilaajia tai maksajia. Ne eivät nykyään tee niiden eteen muuta kuin yhdistävät kirjoittajan, editorin ja vertaisarvioijat, joista ketkään (paitsi joskus editorit) eivät edes saa kustantajalta maksua työstään.
Nykyinen tieteellinen julkaisujärjestelmä on tuhoisa, se syö miljardeja euroja tieteestä joka vuosi. Olen kirjoittanut tieteellisen julkaisemisen ongelmista aiemmin suomeksi täällä, täällä, täällä, täällä, täällä, täällä ja täällä. Viimeisin katsaukseni on julkaistu englanniksi avoimen ja ilmaisen tieteellisen edelläkävijälehden Open Journal of Astrophysics blogissa.
Tekijänoikeusjärjestelmää tarvitaan taiteellisen, teknologisen, ja journalistisen työn tekijöiden toimeentulon turvaksi, mutta nykyisen tieteellisen julkaisemisen saralle sitä ei ole tarkoitettu, eikä se palvele siinä yhteistä etua.
Järjestelmä on luotu aikana, jolloin lehtiä julkaistiin vain paperilla. Tieteelliset artikkelit olivat saatavilla kirjastojen hyllyillä, missä niitä saattoi kuka tahansa käydä lukemassa. Jos kirjastossa ei ollut jotain artikkelia, sen valokopion saattoi tilata toisesta kirjastosta.
Nyt tieteellisten kirjastojen hyllyvalikoimia karsitaan, ja artikkelit etsitään pääsääntöisesti verkosta. Koska kustantajilla on oikeus artikkeleihin, ne vaativat maksua niistä joka vuosi uudelleen, vanhan kertamaksun sijaan. Niinpä vaikka kaupalliset kustantajat lopettaisivat julkaisemisen tänään, tiedeyhteisö joutuisi maksamaan omien kättensä hedelmistä suuryrityksille hamaan ikuisuuteen.
Ongelmaa voi ratkoa monesta suunnasta. On oleellista tukea avoimia verkkoarkistoja kuten arXivia ja niitä käyttäviä avoimia lehtiä. On myös aiheellista kysyä, miksi tutkijat tekevät vertaisarvioijina ja editoreina ilmaista työtä suuryrityksille, joiden voitot menevät muiden taskuihin.
Julkaisemisjärjestelmää uudistava open access -liike on toistaiseksi painottanut yhteistyötä ja neuvotteluita suuryritysten kanssa, ja tulokset ovat jääneet vaatimattomiksi. Miksi yritykset vapaaehtoisesti siirtyisivätkään vähemmän voittoja tuottavaan käytäntöön, saati edistäisivät toimintamalleja, jotka tekevät ne tarpeettomiksi?
Mutta vaikka julkaisutapa uudistettaisiin, vanhojen artikkelien saatavuuden voi taata vain siirtämällä ne yritysten holveista julkiseksi omaisuudeksi. Tämä edellyttää suoraa toimintaa, tai lakimuutosten ajamista kansalaistottelemattomuuden keinoin. Aaron Swartzin sanoin, tieteellisen perintömme pitäisi kuulua kaikille, ei olla suuryritysten lukkojen takana.
8 kommenttia “Perintö lukkojen takana”
-
Hei! Olisiko tästä aineksia sinulle aiheeksi?
https://www.quantamagazine.org/the-most-famous-paradox-in-physics-nears-its-end-20201029/
-
Samoilla linjoilla kanssasi. Sci-Hubissa on tosin se ongelmallinen piirre, että se perustuu (ymmärtääkseni) tunnusten/salasanojen kalasteluun. Kyse ole pelkästä PDF-tiedostojen latauksesta. Kukaan ei varmuudella tiedä, mihin käyttäjien tiedot lopulta päätyvät, nehän ovat rahan arvoista tavaraa.
VPN päällä pystyy avaamaan ja lataamaan journaalien sivuilta ja JSTOR:n kautta näppärästi. -
Päädyin yhden American Philosophical Association blogi-postauksen kautta tänne https://scholarlykitchen.sspnet.org/2018/09/18/guest-post-think-sci-hub-is-just-downloading-pdfs-think-again/
”Sci-Hub is not just stealing PDFs. They’re phishing, they’re spamming, they’re hacking, they’re password-cracking, and basically doing anything to find personal credentials to get into academic institutions.”
Muistan lukeneeni Sci-Hubista ladatuista artikkelien alalaidasta, minkä yliopiston tunnuksilla se on ladattu. Eli jotenkin se hyödyntää (taas käsittääkseni) kalastettuja tietoja. Jonkinlaista kyberrikollisuutta.
-
En tunne kunnolla Sci-Hubin toimintaa mutta kaipa sen pyörittämiseen jotain kepulikonsteja liittyy. Ei savua ilman tulta.
Selvennykseksi, ei ollut tarkoitus hurskastella, käytän itse Sci-Hubin lisäksi mm. Library genesistä, joka on akateemisten kirjojen kannalta hyvä. Ja siis olen tietysti sitä mieltä että tiede pitäisi olla avoimesti saatavissa kaikille.
Vastaa
Näkymä keski-ikään
Perjantaina koittaa pitkään odotettu päivä: jouluaattona 24.12. kello 14.20 Suomen aikaa James Webb Space Telescope (JWST) nousee avaruuteen. JWST:stä kiinnostuneille voi suositella Natalie Wolchoverin monipuolista artikkelia Quantassa.
Teleskooppia on suunniteltu yli 30 vuotta, se on 14 vuotta myöhässä, ja projekti on ylittänyt alkuperäisen budjettinsa 20-kertaisesti. JWST:n hinta on nyt noin kymmenen miljardia, samaa suuruusluokkaa kuin maailman suurimman tieteellisen koelaitteen, CERNin LHC-kiihdyttimen.
Viivytykset ja kustannusten paisuminen ei ole isojen kokeiden kohdalla poikkeuksellista, etenkin kun kyse on avaruuteen menevästä teknologiasta. Vuonna 1990 aloittanut JWST:n edeltäjä Hubble Space Telescope oli laukaistaessa ylittänyt budjettinsa kuusinkertaisesti, ja sen pääpeilissä oli iso hiomavirhe, jonka korjaaminen maksoi paljon lisää.
JWST on hienostuneempi ja vaikeampi laite, jonka hintaa kasvattaa sekin, että teleskooppi on liian iso mahtuakseen sellaisenaan rakettiin. Teleskooppi avautuu vasta avaruudessa kahden viikon aikana matkalla havaintoasemaansa, joka on puolentoista miljoonan kilometrin päässä Maasta suoraan poispäin Auringosta, tähtitieteen ja kosmologian satelliittien keitaassa.
Yksi syy JWST:n kokoon on se, että teleskooppi ei havainnoi näkyvää valoa, vaan havainnoi pääasiassa infrapunavaloa. Infrapunavalon aallonpituus on isompi kuin näkyvän valon (minkä takia silmämme eivät sitä havaitse). Koska kuvan tarkkuus riippuu valon aallonpituuden ja teleskoopin koon suhteesta, infrapunateleskoopin pitää olla isompi kuin näkyvän valon teleskoopin.
Infrapunavalo läpäisee osan tomusta, jonka taakse ei näkyvällä valolla pysty katsomaan. Lisäksi se auttaa JWST:n tärkeässä tutkimuskohteessa, eksoplaneettojen ilmakehän koostumuksen mittaamisessa ja elämän merkkien etsimisessä. Tämä tehdään katsomalla miltä planeettaa kierrättävän tähden valo näyttää silloin, kun se kulkee planeetan ilmakehän läpi ja silloin kun se menee planeetasta ohi. Ilmakehän molekyylit imevät tehokkaasti eripituisia infrapuna-aaltoja, eli poistavat ne havaitsemastamme tähden valosta, jättäen siihen sormenjälkensä. Samasta syystä infrapunahavaintoja on vaikea tehdä Maan pinnalta.
Kosmologian kannalta infrapuna-alue on tärkeä keski-ikäisen maailmankaikkeuden ymmärtämiselle. Maailmankaikkeus on noin 14 miljardia vuotta vanha. Valon äärellisen nopeuden takia mitä kauemmas katsoo paikassa, sitä varhaisempiin aikoihin näkee. Meillä on hyviä havaintoja muutamalta viime miljardilta vuodelta – niitä on helppo havaita, koska kohteet ovat lähellä ja niitä on paljon. Meillä on myös hyviä havaintoja varhaisesta maailmankaikkeudesta muutaman ensimmäisen minuutin kohdalta kevyiden alkuaineiden kautta ja 380 000 vuoden kohdalta kosmisen mikroaaltotaustan kautta. Mutta siitä välistä, kymmenien tai satojen miljoonien vuosien ajalta, havaintomme ovat puutteelliset.
Yksi ongelma on se, että mitä varhaisempiin aikoihin katsoo, sitä himmeämpiä kohteet ovat, eli sitä kauemmin joutuu tuijottamaan samaa kohtaa taivaasta niiden kiilun näkemiseksi. Toinen ongelma on se, että keski-iässä ja sitä aiemmin galakseja ja muita aineklimppejä on vähemmän nähtäväksi, kun niitä ei ole vielä ehtinyt paljon muodostua.
JWST näkee galakseja ja tähtiä ajalta, jolloin maailmankaikkeus oli noin 200 miljoonaa vuotta vanha, kenties galaksien ja tähtien ensimmäisen sukupolven. Maailmankaikkeuden laajenemisen takia valon aallonpituus on noilta ajoilta venynyt noin 20-kertaiseksi, joten galakseista ja tähdistä näkyvän aallonpituuden alueella matkaan lähtenyt valo on nykyään infrapunavaloa. Samaan tapaan valo, joka irtosi aineesta maailmankaikkeuden ollessa 380 000 vuotta vanha, on venynyt tekijällä 1090, joten se on nykyään mikroaaltoja. JWST:n infrapunahavainnot paikkaavat aukkoa varhaisen ajan mikroaaltojen ja myöhäisen maailmankaikkeuden näkyvän valon välillä.
On epäselvää, miten galaksit ovat kasvaneet niin aikaisin niin isoiksi kuin mitä on havaittu, ja miksi niiden keskustojen mustat aukot ovat niin raskaita. Varhaisten galaksien näkeminen suoraan auttaa selvittämään näiden mustien aukkojen syntyä: miten ne ovat ehtineet kerätä romahtaneista tähdistä niin paljon massaa, vai tarvitaanko kenties niiden siemeniksi muinaisia mustia aukkoja, jotka ovat muodostuneet kauan ennen kuin tähtiä oli olemassa.
Tähtien saralla yksi eksoottinen ehdotus on se, että ensimmäisten tähtien pääasiallinen energianlähde ei ollut atomiydinten fuusio, vaan niiden keskustaan kertyneen pimeän aineen annihilaatio, ja JWST auttaa hylkäämään tai vahvistamaan tämän idean.
Näiden muutaman mainitsemani tutkimuskohteen lisäksi JWST:llä toteutetaan monia havaintoprojekteja ja luodataan useita tähtitieteen ja kosmologian kysymyksiä. JWST, kuten Hubble-teleskooppi, on yleislaite ja kiinnostavinta on se, mitä ei osata odottaa.
Jos kaikki sujuu suunnitelmien mukaan, JWST aloittaa datan keräämisen kesällä. Teleskoopin on määrä toimia vähintään 5 ja toivottavasti ainakin 10 vuotta, ja usein satelliitit kestävät suunniteltua pidempään. Mutta ensin saa jännittää sitä, saadaanko laite laukaistua onnistuneesti taivaalle ja avautuuko se ongelmitta.
Päivitys (21/12/21): Korjattu, että JWST havaitsee myös näkyvää valoa.
15 kommenttia “Näkymä keski-ikään”
-
Kyllä JWST itse asiassa havaitsee myös näkyvää valoa, ei vain niin laajalta kaistalta kuin Hubble. Lyhyimmät aallonpituudet jäävät näkemättä ja JWST havaitsee aallonpituudet 600 nanometristä 28,3 mikrometriin.
-
Yksi asia ihmetyttää koskien JWST-teleskoopin sijoituspaikkaa. Aurinkotuulihan aiheuttaa Maan magneettikenttään ”hännän” joka ulottuu kauas Maan kiertoradan ulkopuolelle täsmälleen siihen suuntaan johon teleskooppi sijoitetaan. Jos teleskooppi osuu tähän heiluvaan magneettikentän häntään, siitä voisi seurata melkoisia sähkömagneettisia häiriöitä. Onko siis niin ettei magneettikentän häntä ulotu noin kauas missään olosuhteissa?
-
Kuka omistaa JWST:n tuottaman datan? Onko sen omistaja NASA, tutkimusryhmät tai onko data avointa? Ylipäätänsä onko teleskooppien keräämä dataa kerätty yhteen tietokantaan tai onko se ns jokaisen tutkijan kovalevyllä? Ilmeisesti kokeellisessa fysiikassa tutkimusdataa joskus piilotellaan mustasukkaisesti, eikä haluta luovuttaa edes vertaisarviointia varten.
-
Netissä liikkuu huhuja, että NASA suunnittelisi JWST:n ”robottitankkaamista” ennenkuin 10 vuoden kuluessaa, jotta toiminta voisi jatkua. Mitä tiedätte tästä?
-
Jänniä hetkiä. Tarkoitus on löytää jälkiä myös alkukantaisista mustista aukoista, jotka ovat yksi selitys pimeälle aineelle.
-
JWST:n kymmenen miljardin hinta ei ole kova, koska Suomellakin oli yksinään vara allokoida sama määrä rahaa F-35-hävittäjiin. JWST oletettavasti antaa hyödyllistä dataa, mitä ei voi sanoa pimeän aineen hiukkasia metsäsätävistä ksenonpöntöistä, vaikka niihin kerättäissin kaiken maailman ksenon.
Vastaa
Kehityskeskustelua
Koska fysiikan tutkimuskysymykset ovat pitkälle erikoistuneita ja niiden setvimiseen käytetty matematiikan kieli on kovin erilainen hyvin inhimillisen ajattelun ja viestinnän välineiksi kehittyneet kielet (kuten suomi ja englanti), tutkimuksen ja sen populaarin esityksen välillä on kuilu. Tämän takia popularisoinnista ei ole juuri hyötyä tutkimuksen tekemiselle. Asian kääntöpuoli on se, että kun lähestyy fysiikkaa yleistajuisen selittämisen kannalta, tulee pohtineeksi sellaisia kysymyksiä, joita ei tutkiessa ajattele.
Esimerkki tästä on se, että kun valmistelin viime kuussa Harppi-festareille esitystä kosmisesta inflaatiosta, mietin pitäisikö minun sanoa, että fyysikot ovat löytäneet inflaation vai että he ovat kehittäneet sen.
Kehittämisen puolesta puhuu se, että fysiikan malleja ja teorioita ei voi suoraan havaita tai mitata kokeista kuin uusia saaria tai eläinlajeja. Lisäksi mallien ja teorioiden tekeminen on sosiaalista ja luovaa toimintaa, missä keksitään erilaisia ideoita, laitetaan tunnettuja palasia yhteen ja ehdotetaan uusia. Havainnoilla on touhussa joskus isompi ja joskus pienempi rooli. Toisinaan, kuten inflaation ja yleisen suhteellisuusteorian kohdalla, lähes kaikki havainnot tehdään vasta mallin tai teorian esittämisen jälkeen. Silloinkin kun havainnot ovat keskeisiä, niiden tehtävä on auttaa valitsemaan sopiva jatke tunnetuille teorioille.
Kehittämisestä sopisi puhua senkin takia, että suurin osa fyysikkojen malleista ja teorioista on väärin. On esitetty satoja erilaisia malleja siitä, miten inflaatio on täsmälleen tapahtunut: inflaatiosta vastuussa oleva kenttä voi vuorovaikuttaa eri tavalla ja johtaa erilaisiin ennusteisiin, tai kenttiä voi olla useita. Näistä malleista korkeintaan yksi kuvaa todellisuutta, tai koko idea inflaatiosta saattaa olla väärin. Tuntuisi oudolta sanoa, että voi löytää asian, jota ei ole olemassa.
Ilmaisu löytäminen voi toisaalta olla sopiva siksi, että fysiikan teoriat kuvaavat todellisuuden piirteitä, jotka eivät riipu siitä, ovatko ihmiset vielä ymmärtäneet niitä vaiko eivät. Asiaa voi hahmottaa siten, että on olemassa äärettömän monta erilaista matemaattista rakennetta, eli tapaa yhdistää asioita loogisesti toisiinsa. Niistä kuitenkin vain yksi kuvaa todellisuutta, eli on fysiikkaa. (Tämä on yksinkertaistettu kuva. Oikeasti fysiikan eri alueiden kuvaamisessa käytetään monia matemaattisia rakenteita, jotka eivät välttämättä ole täsmällisesti yhteensopivia, mutta kuvaavat joitakin piirteitä tarpeeksi tarkasti. Ilmiö nimeltä emergenssi liittyy tähän.)
Fysiikan tutkimuksen voi käsittää luonnonlakien etsimisenä matematiikan maastosta havaintoja apuna käyttäen, ja siten on sopivaa puhua löytämisestä. Käytännössä tämä näkyy siten, että kun ollaan oikeilla jäljillä, niin asiat loksahtavat kohdalleen rakenteen ohjatessa ajattelua.
Esimerkiksi kosmisen inflaation haluttiin kestävän pitkään, jotta se ehtisi tasoittaa avaruuden ja tehdä siitä saman näköisen kaikkialla. Siksi esitettiin, että inflaatiota ajavan kentän arvo muuttuu hyvin hitaasti, jotta siltä kestää kauan heikentyä niin paljon, että inflaatio loppuu. Koska kenttä on melkein samanlainen koko inflaation ajan, myös sen kvanttivärähtelyt ovat melkein samanlaisia. Mitä varhaisemmin kvanttivärähtelyt syntyvät, sitä pidemmäksi ne ehtivät venyä avaruuden koko ajan laajetessa.
Niinpä inflaatio ennustaa oikein, että kvanttivärähtelyistä periytyvät kosmisessa mikroaaltotaustassa ja galaksien ison mittakaavan jakaumassa näkyvät epätasaisuudet ovat melkein samanlaisia niiden pituudesta riippumatta. Vielä tarkemmin, koska inflaation aikana kentän arvo laskee hitaasti, sen energiatiheys pienenee ja kvanttivärähtelyt heikkenevät vähän. Inflaatio siis ennustaa, että varhaisempina aikoina syntyneet eli pidemmiksi venyneet epätasaisuudet ovat hieman voimakkaampia, minkä havainnot ovat osoittaneet oikeaksi.
Pimeän aineen kohdalla on käynyt samoin. Pimeän aineen näkymättömyys on selitetty sillä, että se koostuu hiukkasista, joilla ei ole sähkövarausta. Tästä seuraa se, että ne eivät voi muodostaa molekyylejä ja siksi jäähtyä ja klimppiytyä yhtä tehokkaasti kuin tavallinen aine. Tämä selittää sen, että tavallinen aine on tiivistynyt galaksien keskustaan ja pimeä aine on levittäytynyt laajemmalle.
Samalla tulee selväksi, miksi galaksit muodostuvat niin varhain. Kosmisesta mikroaaltotaustasta näkyy, että 14 miljardia vuotta sitten tavallisen aineen tiheys oli sama kaikkialla sadastuhannesosan tarkkuudella. 14 miljardia vuotta on liian lyhyt aika sille, että noin pienistä epätasaisuuksista syntyisi galakseja. Koska pimeä aine ei vuorovaikuta valon kanssa, se ei näy suoraan kosmisessa mikroaaltotaustassa, ja sen tiheyserot ovat isompia kuin tavallisessa aineessa, ja nopeuttavat galaksien muodostumista pimeän aineen kasojen vetäessä tavallista ainetta puoleensa.
Ainoa vaihtoehto pimeälle aineelle on se, että gravitaatiolaki on erilainen kuin yleisessä suhteellisuusteoriassa. Tässä tapauksessa on kuitenkin pitänyt keksiä erilaisia ideoita eri havaintojen selittämiselle, sen sijaan että kaikki seuraisi suoraan yhdestä ideasta. Tämä on yksi syy siihen, miksi pimeää ainetta pidetään huomattavasti todennäköisempänä selityksenä.
On tietysti myös matemaattisia rakenteita, jotka jonkin aikaa näyttävät sopivan havaintoihin mutta osoittautuvat sitten vääriksi. Esimerkki tästä on suurten yhtenäisteorioiden kosmiset säikeet vaihtoehtona inflaatiolle.
Voisi sanoa, että väärätkin teoriat on löydetty matematiikan maastosta. Mutta minusta tuntuu silti, että löytämisestä sopii puhua vain oikeaksi osoittautuneiden teorioiden ja mallien kohdalla. Inflaatio on hyvin onnistunut idea, mutta sitä voi vielä järkevästi epäillä. Ehkä minun olisi Harppi-festareilla pitänyt puhua kehittämisestä eikä löytämisestä, vaikka tuntuukin siltä, että ollaan lähellä aikaa, jolloin tuo sana on paikallaan.
16 kommenttia “Kehityskeskustelua”
-
”Pimeän aineen näkymättömyys on selitetty sillä, että se koostuu hiukkasista, joilla ei ole sähkövarausta. Tästä seuraa se, että ne eivät voi muodostaa molekyylejä ja siksi jäähtyä ja klimppiytyä yhtä tehokkaasti kuin tavallinen aine. Tämä selittää sen, että tavallinen aine on tiivistynyt galaksien keskustaan ja pimeä aine on levittäytynyt laajemmalle.”
Onko kukaan pellepeloton esittänyt sellaista, että sopivissa olosuhteissa ’näkyvä sähkövaras’ voisi flipata ’pimeäksi sähkövaraukseksi’, jota sitten vastaan ’pimeä valo’? Tuollainen pimeä vuorovaikutus olisi sitten huomattavasti heikompaa verrattuna näkyvään sähköiseen voimaan ja siten mahdollistaisi havainnot.
-
Mitä pimeän aineen tiheysjakaumasta tällä hetkellä tiedetään? Onko jotain pääteltävissä sen perusteella miten paljon pimeää ainetta on eri ”tyyppisissä” galakseissa (esim onko esim eroja sillä miten kaukana galaksit ovat meistä) ja toisaalta miten pimeä aine on jakaantunut galaksien sisällä?
Ilmeisesti pimeä aine galaksien sisällä ei ole voimakkaasti ”klimpittynyt” tähtien ympärille, koska sen pitäisi varmaankin vaikuttaa mittaustietoon, mitä tähdistä tällä hetkellä kertyy (tai onko olemassa tähtitason mittaustietoa, jossa pimeän aineen vaikutus näkyy?)
Ja tähän vielä jatkokysymys: jos oletetaan että pimeä aine on jakautunut tasaisesti esim linnunradan sisällä, niin kuinka suurta näkyvän aineen massaa se vastaisi aurinkokunnassa (vaikka pallon tilavuus, jonka säde on Pluton kiertoradan etäisyydellä auringosta)?
-
”Ainoa vaihtoehto pimeälle aineelle on se, että gravitaatiolaki on erilainen kuin yleisessä suhteellisuusteoriassa. Tässä tapauksessa on kuitenkin pitänyt keksiä erilaisia ideoita eri havaintojen selittämiselle, sen sijaan että kaikki seuraisi suoraan yhdestä ideasta. Tämä on yksi syy siihen, miksi pimeää ainetta pidetään huomattavasti todennäköisempänä selityksenä.”
Jospa nyt ollaankin tilanteessa, missä yleinen suhteellisuusteoria on kovattava vielä yleisemmällä teorialla kuten Newtonin mekaniikka kvanttiteorialla 1900-luvun alussa, jotta päästään eteenpäin?.
-
Tämä on juuri sitä, mistä olen aina tilaisuuden tullen ”saarnannut”. Kun tutkijat pitävät jotain seikkaa (tässä tapauksessa gravitaatiolakia) annettuna totuutena, ilmiöiden – kuten pimeän aineen – selittämisessä, ei millään päästä eteen päin kun annettu lähtökohta on virheellinen. Gravitaatiolakia rustaamalla pimeän aineen dilemmasta ja monesta muustakin selittämättömästä voitaisiin hyvinkin päästä eroon.
Mistä löytyisi se ”uusi Einstein”, joka korjaisi sukupolvien ajan tutkimusta jarruttaneet virheet?
-
-
Martti Vlle: Myös hypoteettisiä leptokvarkkeja käsittelee mainio Räsäsen aikaisempi blogi: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/suti-ja-vasara/
Lue myös kommentoinnit.
-
Pahoittelut epäselvästä kysymyksestä, joka lähti ennen aikojaa, mutta vastaus taisi olla mitä hain. Tuohon aikasempaan blogiin juuri viitaten, kokeisiin sopiva leptokvarkki on liian kevyt (40Tev) yhtenäisteorioiden vaatimaan protonin hajoamisajan alarajaan, mikä varmaan vähentää kyseisten teorioiden tutkimusta.Toki korkeammilla energiaskaaloilla voi tapahtua tuntemattomia asioita kuten kolme leptokvarkkityyppiä vuorovaikuttavat keskenään vielä raskaamman bosonin kautta.
-
”Tuon hiukkasen olemassaolon lähes 50 vuotta aiemmin selittäneet teoreetikot Peter Higgs ja François Englert palkittiin vuoden 2013 fysiikan Nobelilla, mutta sen löytäneet kokeelliset fyysikot sivuutettiin.”
Oliko koko Nobelia välttämätöntä edes myöntää, sillä jo edesmennyt Philip Warren Anderson teorisoi kyseisen bosonin toimintatavan? Jotenkin kornia myöntää juhlavaa palkintoa haaskalinnuille. Ja haaskalinnuista puheenollen: miksi Andrea Ghezille piti myöntää palanen Nobelista, jos kerran Reinhard Genzel oli jo aiemmin havainnoinut Sagittarius A* -mustan aukon olemassaolon Linnunradan keskustassa? Tuolla logiikalla osuus Nobelista pitäisi myöntää myös havaitsemisen varmistuksen varmistukselle. Ehkäpä kyseessä oli jonkinlainen tasa-arvopalkinto.
Philip Anderson oli löytänyt samantyyppisen mekanismin kuin Higgs ja Englert, mutta eri yhteydessä. Kyse ei ollut hiukkasfysiikasta, eikä hänellä ollut Higgsin hiukkasta. Anderson kertoo oman näkemyksensä ideoiden kehityksestä tässä: https://www.nature.com/articles/nphys3247
Kaikki tiede rakentuu aiemmalle (tosin Higgs ja Brout eivät kaiketi tienneet Andersonin työstä).
Vuoden 2020 Nobel-palkinnon perusteluista voi lukea täältä: https://www.nobelprize.org/uploads/2020/10/advanced-physicsprize2020.pdf
Pidetään jatkossa kommentit asiallisina.
Jos hiukkasfysiikan mittaus viritetään etsimään täsmälleen sitä, minkä teoria ennustaa, miten sillä edes voitaisiin löytää mitään muuta?
Tämä ei ole pelkästään retorinen kysymys, eli annatko muutamia vastaesimerkkejä.
Jotkut mittaukset on säädetty tarkkaan etsimään tietynlaista signaalia, toiset ovat yleisempiä.
Ensinnäkin ne mittaukset, jotka etsivät tarkkaan jotain signaalia, voivat silti yllättää, koska samanlaisen signaalin voikin tuottaa jokin muu asia. Esimerkiksi koe Super-Kamiokande oli rakennettu etsimään protonin hajoamisesta syntyvää valoa, mutta havaitsikin valonvälähdyksiä, joiden avulla saatiin osoitettua että neutriinoilla on massa.
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/sekoittumista/
Toisekseen, on monia erilaisille tietylle signaalille suunnattuja mittauksia. LHC:n datasta tehdään satoja erilaisia tarkasteluja.
Kolmannekseen, usein mitataan ensisijaisesti poikkeamia odotetusta signaalista, ja vasta kun jotain nähdään, mietitään miten sen selittäisi.
Millä energiatasoilla ollaan seuraavissa LHC kokeissa? Uusia hiukkasia kaivataan selittämään ilmiöitä standarsimallin ulkopuolelta. W primen esiintyminen on nostettu yli 3Tev
Toisen kauden aikana energia per protoni saatiin nostettua arvoon 6.5 TeV (eli yhteensä 13 TeV), kesäkuussa se on tarkoitus nostaa arvoon 6.8 TeV ja myöhemmin arvoon 7 TeV.
Tätä ei voi suoraan verrata uuden hiukkasen massaan, koska kaikkea törmäysenergiaa ei saada käytettyä yhden uuden hiukkasen massaan, vaan raja massalle riippuu prosessin yksityiskohdista.
Lisäksi tärkeää ei ole vain energia, vaan myös se, kuinka usein törmäyksiä tapahtuu. Mitä useammin, sitä harvinaisempia prosesseja nähdään, ja sitä raskaampia hiukkasia voidaan nähdä. Vaikka säteen energia asettaakin ehdottoman rajan sille, miten raskaita hiukkasia voidaan tuottaa, hiukkasten epäsuora vaikutus voidaan nähdä kokeissa vaikka energia ei riittäisikään niiden tuottamiseen.
Mahtaakohan olla olemassa mitään (toistaiseksi tuntematonta) periaatetta, jolla voitaisiin ennustaa uusien alkeishiukkasten ominaisuuksia ja sitä kautta luoda analogia Mendelejevin ennustamalle atomien jaksolliselle järjestelmälle? Jos siis lyötäisiin tarpeeksi energiaa peliin, niin kvanttimenttien musikaalista aina löytyisi uusia ja ihmeellisiä alkeishiukkasia, ad infinitum. Eikö ainakin säieteorian mukaan erilaisia värähtelymoodeja voi periaatteessa olla äärettömästi ja sama voisi ilmetä realistisissakin malleissa? Vai olisivatko uudet alkeishiukkaset kuin matematiikan alkuluvut, joiden tarkkaa sijaintia ei voida ennustaa.
Erilaisissa hiukkasfysiikan malleissa on erilaisia sääntöjä sille, millaisia hiukkasia on olemassa. Yleensä säännöt kuitenkin vain rajoittavat sitä, millaisia hiukkasia on olemassa, eivät määrää sitä. Eli kaikkia mahdollisia hiukkasia ei ole olemassa, ja yleensä hiukkasia on vain äärellinen määrä. Mutta on mahdollista sekin, että niitä olisi äärettömästi.
Myös Standardimallissa on tiukat säännöt sille, millaisia hiukkasia voi olla olemassa, ja niistä vain yksinkertaisimpia hiukkasia todella on.
Voidaanko äskettäistä havaintoa siitä, että W-bosonin massa eroaa standardimallin ennustamasta, pitää mullistavana, vai onko sen merkitystä liioiteltu uutisoinnissa?
Jos se pitää paikkansa, se on mullistava. Toistaiseksi ei ole selvää, pitääkö se paikkansa.
Aiheen asiantuntija Tommaso Dorigo kommentoi: https://www.science20.com/tommaso_dorigo/is_the_cdf_w_mass_measurement_a_nail_in_the_sm_coffin-256017
Kiitos vastauksesta! Sain (vaivoin!) sen verran irti tuosta, että ymmärsin mittaukseen liittyvän moninaisia ja monimutkaisia epävarmuustekijöitä, jotka tunnetaan huonosti. Epäselväksi jäi, miten tulos nyt voitaisiin osoittaa oikeaksi tai vääräksi. Kaiketi samaa miettii nyt melkoinen joukko hiukkasfyysikoita jossain.
Avainasemassa ovat koeryhmät ATLAS ja CMS. Dorigo kirjoittaa:
”the CDF measurement is slamming a glove of challenge on ATLAS and CMS faces. Why, they are sitting on over 20 times as much data as CDF was able to analyze, and have detectors built with a technology that is 20 years more advanced than that of CDF – and their W mass measurements are either over two times less precise (!!, the case of ATLAS), or still missing in action (CMS)? I can’t tell for sure, but I bet there are heated discussions going on at the upper floors of those experiments as we speak, because this is too big a spoonful of humble pie to take on.”