Naulavuoteella kävelemistä

14.12.2022 klo 21.40, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Vuoden lopulla Helsingin yliopiston fysiikan osasto pyytää tutkijoita kirjoittamaan ymmärrettävän tiivistelmän jostakin vuoden aikana julkaistusta tuloksesta, joita se sitten nostaa sivuilleen. Viime vuonna poimin esimerkiksi työmme mustien aukkojen parissa (löytyy otsikon ”Quantum kicks have a big effect on abundance of Eros-mass black holes” alta), josta olen kirjoittanut täällä blogissakin. Tänä vuonna valitsin Sofie Marie Koksbangin ja minun artikkelin siitä, miten pimeän aineen hiukkasluonne vaikuttaa valon kulkuun.

Suurin osa päätelmistämme maailmankaikkeudesta perustuu valoon. Laskettaessa ennusteita sille, miltä maailmankaikkeus näyttää, yleensä oletetaan, että valo kulkee suorinta reittiä aika-avaruudessa. Jotta tämä pitäisi paikkansa, valon aallonpituuden pitää olla paljon pienempi kuin aika-avaruuden kaarevuuteen liittyvät etäisyydet, muuten valo poikkeaa suoralta polulta.

Aika-avaruutta voi ajatella maastona, jonka korkeus kuvaa aika-avaruuden kaarevuutta. Valon aallonpituutta voi verrata kävelijän askelpituuteen. Jos askel on paljon pienempi kuin etäisyys, millä maasto kaartuu, niin matkaaja kulkee kuin tasaisella maalla, vaikka hiljakseen menisikin ylös tai alas, ja kävely sujuu samaan tapaan kaikkialla. Jos maasto sen sijaan kaartuu askelkokoon verrattavassa tai pienemmässä mittakaavassa, sen muoto vaikuttaa siihen miten siinä liikkuu.

Valon tapauksessa asiaa voi katsoa myös energian kautta. Mitä pienempi valohiukkasen eli fotonin aallonpituus on, sitä korkeampi sen energia on. Kun fotonin energia on tarpeeksi iso, aika-avaruuden paikalliset vaihtelut eivät vaikuta siihen, vaan se pyyhältää niiden läpi muuttumatta.

Aika-avaruuden kaarevuus riippuu aineen tiheydestä. Mitä tiukemmin massa on pakkautunut, sitä isompi on kaarevuus. Tähtitieteellisten kappaleiden kuten tähtien ja galaksien aiheuttama kaarevuus on mitättömän pieni verrattuna kosmologiassa havaittavan valon energiaan.

Mutta valtaosa maailmankaikkeuden aineesta on (luultavasti) pimeää ainetta. Suurimmassa osassa pimeän aineen malleista se koostuu yksittäisistä hiukkasista. Vaikka hiukkasen massa on paljon pienempi kuin tähden, se on pakkautunut hyvin pieneen tilaan, joten tiheys ja siksi myös kaarevuus voi olla iso.

Vaikuttaako tämä kaarevuus valon kulkuun? Selvittääksemme asiaa Sofie ja minä kehitimme uudenlaisen tavan kuvata valon matkaamista, jossa kaarevuus otetaan huomioon.

Osoittautui, että kun fotoni kulkee pimeän aineen hiukkasen läpi, pimeän aineen hiukkasen aiheuttama kaarevuus antaa fotonille massan, joka on sitä isompi mitä suurempi kaarevuus on. Tämä muistuttaa sitä, miten Higgsin kenttä antaa massan hiukkasille kun ne matkaavat sen läpi. Higgsin kentän tapauksessa tosin on kyse hiukkasfysiikan vuorovaikutuksista, tässä gravitaatiosta. Toisekseen Higgsin kenttä on kaikkialla, kun taas pimeän aineen hiukkasia on harvassa.

Pimeän aineen hiukkasten tyypillinen etäisyys toisistaan on noin metri tai pidempi, hiukkasten massasta riippuen. Käsittelyssämme yhden hiukkasen massa on jakautunut alueelle, joka on hiukkasfysiikan suuruusluokkaa. Aika-avaruuden kaarevuuden maasto koostuu siis toisistaan kaukana olevista kapeista huipuista.

Jos valon energia on iso eli aallonpituus pieni, huiput eivät vaikuta sen kulkuun. Jos valon energia on pienempi kuin kaarevuuden antamaan massaan liittyvä energia, valo ei voi kulkea pimeän aineen hiukkasten läpi, koska sillä ei ole tarpeeksi energiaa jotta pääsisi pimeän aineen sisälle. Samasta syystä arkisessa ympäristössämme näkyvä valo ei pääse sisälle metalleihin. Matkatessaan niissä valo saisi massan, joka on isompi kuin fotonin energia. Jos valon energia tarpeeksi korkea, kuten röntgensäteillä, se kulkee metallienkin läpi.

Huomasimme, että tärkeää on myös se, miten nopeasti kaarevuus muuttuu. Koska hiukkaset ovat pieniä, niiden läpi mentäessä kaarevuus vaihtuu nopeasti. Saimme tulokseksi, että jos pimeän aineen hiukkasen massa on yli 10% protonin massasta, kaarevuuden nopea vaihtuminen muuttaa täysin sen, miltä kosminen mikroaaltotausta näyttää: naulojen jäljet näkyvät. Koska vaikutus riippuu fotonin energiasta, lyhemmän aallonpituuden valo ei sen sijaan juuri muutu: se kävelee ongelmitta naulatyynyllä.

Ajattelimme, että tämä saattaisi selittää kosmologian tämän hetken isoimman ristiriidan havaintojen ja teorian välillä. Kun maailmankaikkeuden laajenemisnopeuden määrittää kosmisesta mikroaaltotaustasta ja supernovista, saa eri tuloksen. Näihin kahteen erilaiseen havaintoon pohjaavassa tarkastelussa on paljon eroja, mutta me kiinnitimme huomiota siihen, että ne pohjaavat erilaiseen valoon. Supernovien valo on näkyvällä ja infrapuna-alueella, eli sen energia on isompi kuin mikroaaltotaustan fotonien.

Löytämämme vaikutus menee kuitenkin havaintojen kannalta väärään suuntaan. Vaikka pimeän aineen massa olisi sopiva, niin että se vaikuttaisi mikroaaltoihin mutta ei infrapunavaloon, tämä vain pahentaisi ristiriitaa. Niinpä käteen jää vain raja sille, miten raskasta pimeä aine voi olla, jotta sen vaikutusta ei näkyisi mikroaaltotaustassa. Raja on suhteellisen tiukka, ja sulkisi pois ison määrän pimeän aineen malleja.

Päättelymme ei kuitenkaan ole aukotonta. Otimme huomioon aika-avaruuden kaarevuuden, mutta jätimme pois muita valon kulkuun vaikuttavia tekijöitä, jotka voivat olla merkittäviä. Käsittelymme siitä, miten massa jakautuu hiukkasten sisällä oli myös hyvin yksinkertainen. Pitäisi tutkia tarkemmin, miten hiukkasten kvanttimekaaninen todennäköisyysjakauma leviää kun ne kelluvat avaruudessa vuorovaikuttaen hyvin heikosti ympäristönsä kanssa.

Voi olla, että johtopäätöksemme vielä muuttuvat, mutta minusta tämä on hauska tapa mahdollisesti saada tietoa pimeän aineen hiukkasluonteesta valon ja gravitaation kautta, ja odotan että pääsen jatkamaan sen parissa vuonna 2023.

18 kommenttia “Naulavuoteella kävelemistä”

  1. Jernau Gurgeh sanoo:

    Mukava lukea omasta tutkimuksestasi, erittäin kiinnostavan oloinen aihe.

  2. Koditon sanoo:

    Fotoni onkin omituinen olio. Lukion fysiikan kirja ei paljasta siitä juuri mitään. Sillä on aallonpituus, taajuus, nopeus jne. Koosta ei mainita mitään, joka olisi se kailkkein kiinnostavin tieto. Onko fotonin koko sama asia kuin sen aallonpituus? Sanot, että hiukkasen koko on pieni. Tarkoitatko, että fotonin koko on pieni. Laserin valoa voi himmentää suodattimilla tasolle, jossa säteen energia on pienempi kuin saman aallonpituuden omaavan fotonin energia. Onko laserin säde nyt yksittäisiä erillisiä fotoneita? Kaksoisrakokokeessahan näin tehdään.
    Mysteeriksi on jäänyt fotonin koko täällä päässä.

    1. Syksy Räsänen sanoo:

      Alkeishiukkasten koko onkin tosiaan monimutkainen kysymys. Kirjoitan merkinnässä vain pimeän aineen hiukkasten koosta.

      Tässä yhteydessä koko viittaa aaltofunktion leveyteen. Hiukkasilla ei ole määrättyä paikkaan, ainoastaan todennäköisyysjakauma paikalle. Niinpä niiden massallakin on todennäköisyysjakauma. Kuten lopussa kirjoitan, ei itse asiassa ole aivan selvää, miten pimeän aineen hiukkasten aaltofunktio kehittyy.

      Fotoneilla on aaltofunktio samalla tavalla.

      Lasersäde koostuu tosiaan suuresta määrästä yksittäisiä fotoneita. Ei kai lasersäteen energia voi laskea yksittäisen fotonin energian alle?

      1. Koditon sanoo:

        Ei taidakaan mennä niin kuin ajattelin.

  3. Lentotaidoton sanoo:

    Räsänen: Niinpä käteen jää vain raja sille, miten raskasta pimeä aine voi olla, jotta sen vaikutusta ei näkyisi mikroaaltotaustassa. Raja on suhteellisen tiukka, ja sulkisi pois ison määrän pimeän aineen malleja.

    Mielenkiintoinen yksi (uusi?) tutkimusnäkökulma. Eli mikä se raja teidän mukaanne olisi? Ja mitä malleja se siten sulkisi pois? Onko tällaisia tutkimuksia muita olemassa, vai oletteko pioneereja?

    1. Syksy Räsänen sanoo:

      Raja on tekstissä mainittu 10% protonin massasta. Pimeä aine ei siis voi olla tuota raskaampaa. Pimeän aineen malleja on satoja erilaisia, suurin osa tämän rajan huonommalla puolella. Tämä on ensimmäinen tutkimus aiheesta. Tulos ei kuitenkaan ole vielä vakaalla pohjalla, approksimaatioidemme pätevyyttä pitää tarkastella huolella.

      1. Lentotaidoton sanoo:

        Eli jos protoni on pyöreästi 1 GeV, niin tuo raja olisi suuruusluokkaa alle Myonin (105 MeV). Tämän mukaan esim WIMPit putoaisivat pois laskuista?

        1. Syksy Räsänen sanoo:

          Joo, raja kosmisesta mikroaaltotaustasta on noin 100 MeViä. Sanaa WIMP käytetään nykyään eri merkityksissä, jotkut käyttävät myös tuota kevyemmille hiukkasille.

          Massaraja kasvaa kuten aallonpituus potenssiin 2/3, eli 21 cm säteilyn (aallonpituus sata kertaa isompi kuin mikroaaltojen) havainnoilla saisi rajan jonnekin MeVin tienoille.

          Arvio massarajalle on karkea: tuolla massalla vaikutus kosmiseen mikroaaltotaustaan olisi luokkaa 100%. Mikroaaltotausta on kuitenkin hyvin tarkkaan mitattu, joten paljon pienempiäkin häiriöitä voisi nähdä, eli tarkemmalla analyysillä massarajaa saisi varmaan myös huomattavasti alas. Mutta ennen kuin sitä kannattaa tehdä, pitäisi tarkistaa laskussa käytetyt approksimaatiot.

  4. Koditon sanoo:

    Sellaisen vielä laitan, että onko fotinilla aaltofunktio joka määräisi sen koon, kuten piemeän aineen hiukkasen tapauksessa.

    1. Syksy Räsänen sanoo:

      On.

  5. Päivystävä fenomenologi sanoo:

    ”Osoittautui, että kun fotoni kulkee pimeän aineen hiukkasen läpi, pimeän aineen hiukkasen aiheuttama kaarevuus antaa fotonille massan, joka on sitä isompi mitä suurempi kaarevuus on.”

    No mutta eikö nykyajan tiedepopulistien pyhissä opinkappaleissa nimenomaan painoteta, ettei fotonilla ole mitään massaa? Toisaalta en tätä hämmennystä erityisemmin ihmettele, sillä eiväthän nämä suuria totuuksia laukovat tiedemaailman ylipapit osaa selvittää edes hiukkasten perusolemusta, vaikka aiheesta niin paavilliseen sävyyn rahvaalle saarnaavatkin. Paradoksien riivaama suhteellisuusteoria on ehkä se keskeisin ideologisuskonnollinen oppi, jota vain arvostetuin yläluokka kykenee lapsenomaisin kielikuvin selventämään, saaden kritiikittömät ihmismassat ihastelemaan luonnontieteellisen menetelmän saavutuksia.

    Mutta niin tai näin, ainoa varma pohja tieteenfilosofialle on jokin ehdottoman varma lähtökohta, eli pelkistetyimmillään inhimillinen tietoisuus. Kehoitankin siis herra kosmologia ja kumppaneita pohtimaan nöyrästi nykytietämyksen rajoja sekä saavuttamaan fenomenologisen reduktion, joka johdattaa kohden syvällisempää totuutta. Suurin arvo olisi tiedepopulisteille itselleen.

    1. Syksy Räsänen sanoo:

      Tällaisten näennäisten ristiriitaisten ilmausten taustalle on usein se, että fysiikkaa esittelevissä populaareissa esityksissä käytetään kieltä aina epätäsmällisesti, ja alan ulkopuoliselle voi olla vaikeaa suhteuttaa kahta yksinkertaistettua esitystä toisiinsa.

      Kirjoitin aiheesta hieman täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/suureellinen-fantasiaeepos/

      Kun sanotaan, että fotonilla ei ole massaa, tarkoitetaan sitä, että vapaasti matkaavalla fotonilla, joka ei vuorovaikuta minkään kanssa, ei ole massaa. Sama pätee vaikkapa elektroneihin. Elektronit saavat massan, koska ne vuorovaikuttavat Higgsin kentän kanssa – voi myös sanoa, että ne käyttäytyvät kuten niillä olisi massa sen sijaan että niillä olisi massa.

      Vastaavasti fotonit saavat massan esimerkiksi kulkiessaan plasman tai metallin läpi. Philip Anderson itse asiassa löysi tämän ilmiön, joka on lähellä Higgsin mekanismia, ennen Higgsiä, ja joidenkin mielestä hänen olisi pitänyt saada osansa vuoden 2013 Nobelin palkinnosta Englertin ja Higgsin kanssa.

      Aiheesta lisää täällä: https://web.archive.org/web/20220526101420/http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/perustuslakien_saatamisjarjestys

      Sofien ja minun löytämä ilmiö on tälle sukua.

      Suhteellisuusteoriassa ei ole paradokseja (eli sisäisiä ristiriitoja), tarkemmin ks. https://journal.fi/tt/article/view/41570

      Pyydän kirjoittamaan asiallisesti.

  6. Erkki Kolehmainen sanoo:

    ”Pyydän kirjoittamaan asiallisesti” on hieno toive, mutta voiko se toteutua, jos kirjoittajan lähtökohta on erilainen kuin Syksyn? Viittaan tällä päivystävän fenomenologin määritelmään, että ”ainoa varma pohja tieteenfilosofialle on jokin ehdottoman varma lähtökohta, eli pelkistetyimmillään inhimillinen tietoisuus.” Tässä suhteessa minulle maailman selittäjinä jumala ja pimeä aine/energia ovat samanarvoisia, sillä kummastakaan ei ole suoraa kokeellista havaintoa.

    1. Syksy Räsänen sanoo:

      Asiallisesti kirjoittaminen on erityisen tärkeää silloin kun lähtökohdat ovat erilaiset.

      Pimeä aine on sata vuotta vanha hypoteesi, joka on onnistuneesti selittänyt ja ennustanut suuren määrän erilaisia havaintoja, joita ei ole pystytty selittämään millään muulla tavalla. Se on siis erittäin onnistunut tieteellinen idea.

      Pimeä energia on teoreettisena ideana vielä vanhempi, vuodelta 1917, mutta havaintojen puolesta sitä on tarvittu vasta 90-luvulta alkaen. Se on selittänyt ja ennustanut oikein monia havaintoja (ei yhtä paljon kuin pimeä aine) yli 20 vuoden ajan. Idea voi olla oikein tai väärin, mutta se on tieteellisesti testattavissa.

  7. Martti V sanoo:

    Xenon tyyppiset kokeet taitaa rajata pimeän aineen 10 protonin massaan. Tämä tutkimus rajaa selkeästi alemmas ja jos on paikkansa pitävä, taitaa tehdä suorat hiukkashavainnot mahdottomaksi neutriinotaustakohinasta?

    1. Syksy Räsänen sanoo:

      XENONin tyyppiset kokeet, missä yritetään havaita pimeä aine suoraan, eivät rajaa pimeän aineen massaa yksin. Ne rajaavat sitä, miten raskas pimeän aineen hiukkanen voi olla, jos se vuorovaikuttaa tietyllä voimakkuudella tavallisen aineen kanssa.

      Niiden kannalta pimeän aineen massa voi olla miten iso tai pieni tahansa jos vuorovaikutus on tarpeeksi heikko – silloin hiukkasta ei kuitenkaan nähdä.

      Tämä gravitaatioon perustuva raja -jos se pitää paikkansa- ei riipu hiukkasen vuorovaikutuksen voimakkuudesta, ja pätee siis kaikkiin pimeän aineen hiukkasiin.

      Kevyiden pimeän ainen hiukkasten signaalin voi periaatteessa erottaa suoran havaitsemisen kokeissa nautriinoista suunnan perusteella. Neutriinothan tulevat enimmäkseen Auringosta, kun taas pimeä aine kulkee saman verran joka suuntaan. Ks. tämä suunniteltu koe (jonka herkkyys kyllä loppuu tuossa protonin massan kymmenesosan tienoilla): https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/suunnistuksen-lahtokynnys/

      1. Martti V sanoo:

        Tosiaan vaikka pimeäaine tuntisi heikon vuorovaikutuksen, sitä ei tulla suoraan löytämään kosmisesta neutriinotaustasta enää tuolla massan ylärajalla. lman vuorovaikutusta havaiseminen on vielä mahdottomampaa ja kyse olisi eksoottisesta hiukkasesta . Steriili neutriinokaan ei taida enää olla vahva kandidaatti?

        1. Syksy Räsänen sanoo:

          Steriili neutriino on suosikkikandidaattini pimeäksi aineeksi. Se sopii vielä havaintoihin, ja on joitakin havaintoja, jotka saattavat olla siitä suora merkki. (Tai sitten ne saattavat, kuten monet aiemmat havainnot, selittyä tavallisilla tähtitieteellisillä lähteillä pimeän aineen sijaan.)

          Tarkemmin, ks.

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/huippujen-laskeminen/

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/vasemmalta-oikealle/

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kauneusvirheen-korjaaminen/

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Matkakertomuksia

27.11.2022 klo 01.59, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kesällä kuulin konferenssissa Jocelyn Bell Burnerin puheen, missä hän suositteli teosta The Sky is for Everyone. Nyt luin kirjan, ja se onkin kiinnostava.

Kirja alkaa luettelomaisella esittelyllä joistakin tähtitieteessä 1800-luvulta alkaen toimineista naisista. Sen varsinainen anti on 37 seuraavaa lukua, joissa kussakin yksi naistähtitieteilijä kirjoittaa urastaan. Heidän kertomuksensa on järjestetty väittelemisajankohdan mukaan vuodesta 1963 vuoteen 2010. Mukaan on valittu vain hyvin ansioituneita tutkijoita, ja kirja näyttää läpileikkauksen tähtitieteen kehitykseen ja läpimurtoihin viimeisten 60 vuoden ajalta.

Suurin osa kirjoittajista on työskennellyt ainakin osittain Yhdysvalloissa, mutta käsiteltyä tulee myös ainakin Iso-Britannian, Brasilian, Israelin, Etelä-Afrikan, Puolan, Japanin, Liettuan, Kiinan, Meksikon ja Intian tieteellistä yhteisöä ja kulttuuria.

Olen aiemmin maininnut, että naisfyysikoiden kertomukset omista kokemuksista valaisevat sitä miten sukupuoleen kohdistuvissa asenteissa ja säännöissä on tapahtunut kehitystä ja mitä on vielä korjattavana. Kirja kehystää näkyväksi sitä, miksi naiset ovat historiallisesti ja yhä aliedustettuina niin tähtitieteessä kuin muualla fysiikassa. (Lisää aiheesta täällä, täällä, täällä, täällä, täällä, täällä, täällä ja täällä.)

Kun Bell Burner oli väitöskirjaopiskelija, hän löysi vuonna 1967 yhdessä ohjaajansa Antony Hewishiä kanssa pulsarit. Toimittajat kysyivät Hewishiltä tieteestä, Bell Burnerilta taasen vyötärön, lantion ja poven mitoista sekä poikaystävien määrästä, ja pyysivät häntä avaamaan paidan nappeja valokuvia varten.

1960-luvulla Yhdysvalloissa saattoi käydä niin, että vaikka nainen palkattiin tutkijaksi, hänen saapuessaan yliopistoon kävi ilmi, että hänelle ei anneta työhuonetta tai makseta mitään. Palkkaa pyytäessä saattoi saada vastaukseksi, että ethän tarvitse rahaa muuhun kuin turkiksiin ja hajuvesiin, koska miehesi on töissä. Jos palkkaa saikin, se oli tuntuvasti pienempi kuin miehillä.

Yhdysvalloissa ei 1960-luvulla ollut tähtitieteestä väitelleille työpaikkailmoituksia. Hakemusten arvioimisen sijaan paikat jaettiin sen mukaan, kuka alaa johtavista miehistä soitti kenellekin suositellakseen omia opiskelijoitaan. Toisaalta tilannetta helpotti se, että avoimia työpaikkoja suhteessa valmistuneiden määrään oli enemmän kuin nykyään.

Sen lisäksi, että naisia ei pidetty pätevinä, myös avoimesti sanottiin, että heitä ei kannata palkata, koska naiset joko menevät naimisiin ja siksi lopettavat, tai eivät mene naimisiin ja aiheuttavat siksi harmia mieskollegoiden keskuudessa. Uhkaukset irtisanomisesta raskauden takia eivät olleet tavattomia.

Mielenkiintoinen vivahde syrjinnässä olivat ”nepotismin vastaiset” säännöt yliopistoissa, jotka kielsivät henkilökunnan perheenjäsenten palkkaamisen. Niitä käytettiin naisten palkkaamisen estämiseen, monet naistähtitieteilijät kun olivat naimisissa kollegan kanssa.

Avoin seksuaalinen häirintä tulee kirjassa esille, mutta myös se, miten mielestään mukavatkin tutkijat ovat saattaneet olla epämiellyttäviä. Roberta A. Humphreys kertoo, miten hänen vanhemmalla yhteistyökumppanillaan Allan Sandagella oli tapana aloittaa puhelunsa sanomalla ”hei prinsessa, Allan-setäsi tässä”. Humphreys kirjoittaa, että hänelle tuli mieleen prinsessa Leia ja Darth Vader. Toisaalta monet kirjoittajat etenkin alkupuolelta mainitsevat, miten tärkeää on ollut heitä tukeneiden ja tasa-arvoisesti kohdelleiden vanhempien miestutkijoiden tuki. Akateemisessa yhteisössä onkin vaikea edetä, sukupuolesta riippumatta, ilman korkeammassa asemassa olevien tukea.

Myös aviomiesten tuki lasten hankkimisen ja tieteellisen työn yhdistämisessä sekä laajemmin tulee vahvasti esille. Kertomuksissa alalle päätymisessä korostuu populaarien tiedekirjojen, scifin, innostavien ja asiantuntevien opettajien sekä kannustavien vanhempien merkitys.

Jotkut kirjoittajat sanovat, että eivät ole havainneet sukupuolestaan olleen heille tieteessä haittaa, tai jopa että siitä on ollut etua, koska he ovat erottuneet joukosta ja jääneet paremmin mieleen. Toiset toteavat, että he ovat olleet sokeita naisten kohtaamille ongelmille, koska eivät ole halunneet keskittyä niihin, ovat kasvattaneet paksun nahan ja karistaneet epämiellyttävät asiat mielestään.

Vaikka uudemmissa kirjoituksissa tulee esille vähemmän epäasiallista kohtelua kuin vanhemmissa, se korostuu enemmän. Tämä voi johtua osittain siitä, että se on tuoreemmassa muistissa, eikä ole yhtä hyväksytty osa työyhteisöä. Nuoremmalla sukupolvella tuntuu myös olevan syrjinnän hahmottamiseen ja vastustamiseen enemmän työkaluja. Loppupuolella tähtitieteilijöiden kirjon laajeneminen tuo mukaan rodullistamisen ongelmat.

On kiinnostava lukea erilaisista taustoista tähtitieteen eri aloille päätyneiden tutkijoiden kuvauksia tieteellisestä matkastaan. Heidän henkilökohtainen tarinansa kytkeytyy laajempaan yhteiskunnalliseen taustaan, joskus kirjan sortoon liittyvää aihepiiriä tahattomasti havainnollistaen. Paljon kertoo myös se, mitä ei sanota, ja itseään edistyksellisinä pitävät tutkijat saattavat kyseenalaistamatta omaksua käsityksiä yhteiskunnasta, jossa ovat kasvaneet.

Israelilainen Neta Bahcall esittää Israelin kolonialistiset sodat sotina henkiinjäämisestä. Israelilainen Dina Prialnik julistaa ”muurien kaatamisen” tärkeyttä yhteiskunnassa, vaikuttaen sokealta sille, että elää rotuerotteluun perustuvassa yhteiskunnassa. Hän ollut vararehtorina Tel Avivin yliopistossa, joka aktiivisesti tukee apartheidia ja auttaa ylläpitämään sotilasmiehitystä. Yhdysvaltalainen France Córdova hehkuttaa Israelin miehittämiä alueita osana Israelia rauhan nimessä. On vaikea uskoa, että keneltäkään hyväksyttäisiin kirjaan vastaavaa tekstiä Venäjän miehittämistä alueista.

Kirjassa on myös toisenlaisia näkökulmia sotaan ja rotusortoon. Judith (Judy) Gamora Cohen kirjoittaa osallistumisesta Vietnamin sodan vastaisiin mielenosoituksiin. Gillian (Jill) Knapp korostaa organisoimiensa vankiloissa pidettävien yliopistokurssien konkreettista merkitystä rasisminvastaiselle työlle Yhdysvalloissa. Patricia Anna Whitelock kertoo aktivismistaan poliittisten vankien puolesta apartheidin ajan Etelä-Afrikassa.

Henkilökohtainen ote tuo hyvin esille myös intohimon tieteeseen: sivuilta loistaa tutkimuksen jännitys, kuten myös saavutuksiin vaadittava panostus. Kirjoittajat ovat hyvin valikoitu joukko, eikä heidän kokemuksensa ole tyypillinen, vaan edustaa menestynyttä kärkeä. Kirja on positiivinen ja innostunut.

Niin kilpailu rahoituksesta kuin teleskooppien nimet tulevat lukujen edetessä tutuksi, ja tarinassa näkee tähtitieteen kentän kasvun eksoplaneettoihin, kosmiseen mikroaaltotaustaan ja gravitaatioaaltoihin asti. On hauska seurata, miten mahdottomina tai tyhjänpäiväisinä pidetyistä tutkimuskohteista tulee ensin juhlittuja läpimurtoja ja sitten arkea. Kehityksestä näkyy, miten tähtitieteessä on säilynyt vahva yhteys teorian ja kokeiden välillä. Hiukkasfysiikassahan tämä suhde on viime vuosikymmeninä heikentynyt.

Kirjasta tulee hyvin esille se, että –kuten Beatriz Barbuy omassa luvussaan kirjoittaa– tieteellinen työ muodostaa ison osan tekijänsä identiteettiä. Näissä tähtitiedettä eteenpäin vieneiden naisten kuvauksissa välittyy myös tutkijoiden identiteetin vaikutus tutkimukseen. Ne kertovat –hyvässä ja pahassa– tutkijoiden vahvoista siteistä, tieteen yhteisöllisyydestä ja tiedeyhteisön suhteesta yhteiskunnan kehitykseen, paljon laajemmin kuin yhdellä tieteenalalla ja 37 ihmisen työssä.

3 kommenttia “Matkakertomuksia”

  1. Erkki Kolehmainen sanoo:

    Vertailun vuoksi tässä yhteydessä kannattaa mainita Turun yliopiston tähtitieteen prof. Liisi Oterma, joka tanskalaisen kollegan mukaan vaikeni yhdellätoista kielellä!

    https://fi.wikipedia.org/wiki/Liisi_Oterma

  2. Erkki Kolehmainen sanoo:

    Liisi Oterman ansiolistalla on mm. 54 pikkuplaneetan löytäminen. Kun tuossa Syksyn listalla ei mainittu Venäjää eikä NL:a lainkaan, niin venäläinen Tamara Smirnova on löytänyt 135 pikkuplaneettaa tietääkseni Krimillä sijaitsevalla observatoriolla!

    https://en.wikipedia.org/wiki/Tamara_Smirnova

    1. Syksy Räsänen sanoo:

      Neuvostoliitto ja Venäjä ovat tosiaan kirjassa aliedustetut. Ainoa Neuvostoliitossa työskennellut astrofyysikko kirjassa on liettualainen Gražina Tautvaišienė.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Myös me, kierros 4/We too, round 4

17.11.2022 klo 23.12, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

(The case of Christian Ott has attracted international attention, so this post is both in Finnish and English. The English version is below the Finnish text. See also these three earlier posts on the topic.)

(Tämä on jatkoa kolmelle aiemmalle merkinnälle.)

Varsinais-Suomen käräjäoikeus antoi tänään päätöksensä minua ja kollegani ja ystävääni Till Sawalaa koskevassa oikeusjutussa. Meitä syytettiin törkeästä kunnianloukkauksesta ja törkeästä yksityiselämää loukkaavasta tiedon levittämisestä.

Kyse on tapahtumista tammi-helmikuussa 2018, jolloin astrofyysikko Christian Ott palkattiin Turun yliopistoon. Minä ja Sawala, muiden muassa, toimme esille Ottin häirintätaustaa hänen edellisessä työpaikassaan Caltechin yliopistossa, vastustimme häirintää ja arvostelimme päätöstä. Turun yliopisto perui palkkauksen. Ott haastoi oikeuteen asiassa mukana olleen Tukholman yliopiston sekä Turun yliopiston. Lisäksi hän teki tutkintapyynnön minusta ja Sawalasta, mikä johti prosessiin, joka kesti yli kolme vuotta, kaksi esitutkintakierrosta ja viisi oikeusistuntoa.

Nyt oikeus hylkäsi syytteet.

Turun Sanomat, Iltalehti, Ilta-Sanomat ja Helsingin Sanomat on kirjoittanut päätöksestä. Turun Sanomat kirjoitti myös oikeudenkäynnin kulusta asiallisesti, samoin Iltalehti. Helsingin Sanomatkin käsitteli asiaa, muun muassa otsikolla ”Häirintäsyytöksiä levitellyt kosmologi Syksy Räsänen pääsi ääneen oikeudessa”.

Tiedelehdessä Science Jeffrey Mervis kirjoitti viime viikolla oikeudenkäynnistä laajemmasta näkökulmasta, ottaen esille sen mitä se merkitsee häirintätapauksista puhumiselle. Tammikuussa 2016 Mervis oli ensimmäinen toimittaja, joka kirjoitti Ottin häirintätapauksesta Caltechissa.

Tänään julkaistussa tiedotteessamme minä ja Till Sawala käymme hieman läpi tapausta. Lisää yksityiskohtia löytyy kolmesta aiemmasta blogimerkinnästäni. Kommentoin tiedotteessa seuraavasti:

”On tervetullutta, että olemme viimein, yli kolme vuotta kestäneen prosessin jälkeen, saaneet vapauttavan tuomion. Toivottavasti tämä toimii ennakkotapauksena.

Kenenkään ei pitäisi pelätä sakkoja tai vankeustuomiota vain siksi, että he puhuvat häirintää vastaan, perustuen laajalti ja luotettavasti raportoituihin tosiseikkoihin. Pelkkä sen uhka voi tukahduttaa keskustelua, ja haitata häirinnän vastaista työtä.

Meillä oli taloudelliset resurssit, ja tiedeyhteisömme henkinen tuki, joilla vastata perättömiin syytteisiin meitä vastaan. Jos joku heikommassa asemassa oleva, kuten jatko-opiskelija, joutuisi tähän tilanteeseen, heille ei ehkä kävisi yhtä hyvin.”

Kunnianloukkausoikeudenkäyntien ongelmat eivät rajoitu tiedeyhteisöön. Tutkitusti Suomessa ei ole selvää linjaa sille, miten kunnianloukkaustapausten esitutkintaa suoritetaan ja millaisiin päätöksiin päädytään. Rikosilmoituksia kunnianloukkauksista myös käytetään häiriköinnin välineenä. Hyvin tunnetussa toimittaja Johanna Vehkoon tapauksessa käsittely kesti viisi vuotta ja päätyi korkeimpaan oikeuteen.

Meidän tapauksessamme ei ole syytä epäillä, etteikö Ott olisi kokenut, että hänelle on tehty vääryyttä. Mutta ottaen huomioon, että esille tuomamme tiedot oli laajalti raportoitu luotettavissa lähteissä, prosessin olisi silti pitänyt pysähtyä aiemmin. Kun tapauksen ensimmäinen syyttäjä päätti jättää syytteet nostamatta, apulaisvaltakunnansyyttäjä kumosi päätöksen koska ”syyttäjä oli viitannut yksinomaan kansainvälisiin medialähteisiin arvioimatta niiden luotettavuutta tarkemmin”.

On kohtuutonta, että maailman arvostetuimpien tiedejulkaisujen Naturen ja Sciencen raportoimia faktoja, joita mikään taho ei ole julkisesti kiistänyt, ei saisi mainita eikä ottaa keskustelun pohjaksi. Jos rima nostetaan näin korkealle, julkinen keskustelu häirinnästä ja muista kiistanalaisista asioista muuttuu mahdottomaksi.

Tältä kannalta on tärkeää, että oikeus päätöksessään toteaa, että vaikka ”häirintään ja syrjintään liittyvää tietoa on vastaajien toimesta ainakin jossain määrin järjestelmällisesti tuotu suuren ihmismäärän tietoon”, tämä ei ole ”kiellettyä saati rikosoikeudellisesti rangaistavaa”, vaan sitä voidaan päinvastoin ”pitää sellaisena yleisen edun mukaisena asiana, josta tulee voida avoimesti keskustella”. Oikeus toteaa lisäksi, että ”Ottista uutisoineiden medioiden luotettavuus huomioon ottaen varsin lähdekriittinenkin lukija on […] voinut luottaa kyseisen uutisoinnin oikeellisuuteen”.

Oikeus myös toteaa, että ”asialla on oletettavasti ollut merkitystä koko pienelle tiedeyhteisölle ja se on ollut yhteiskunnallisesti ja myös maailmanlaajuisesti merkityksellinen ja laajaa keskustelua herättänyt asia, mikä korostaa sananvapauden suojaa”.

Tapauksen oikeuskäsittely toi esille ongelmia häirinnän käsittelyssä myös tiedeyhteisön sisällä.

Turun yliopiston entisen rehtorin todistajanlausunto oikeudessa alleviivasi sitä, että yliopiston johto ei ollut huolissaan niinkään Ottin toiminnasta kuin mainehaitasta. Kuten olen aiemmin kirjoittanut, tällainen keskittyminen maineeseen on ongelmallista, koska siinä ohitetaan sen, mitä on todellisuudessa tapahtunut. Tämä voi johtaa siihen, että niin kauan kuin tosiseikat eivät tule julki, niistä ei piitata. Asiassa on myös toinen puoli: jos henkilöön kohdistuvat väitteet olisivat perättömiä, hänen työsopimuksensa purkaminen tai muut vastaavat toimet eivät olisi oikeutettuja.

Mainehaittaan keskittyminen saattaa myös motivoida peittelemään tapahtumia. Oikeudenkäynnissä tuli ainetodisteiden ja todistajanlausuntojen kautta esille se, miten osa henkilökunnasta Tuorlan observatoriossa, minne Ottia oltiin palkkaamassa, ei uskaltanut puhua asiasta. Yksi henkilökunnan jäsen kirjoitti tapahtumien aikaan kokevansa, että heitä on kielletty puhumasta medialle ja kuvaili ilmapiiriä sanomalla että ”olo on sellainen, että pitää olla valmis pakenemaan ikkunan kautta minä hetkenä hyvänsä”.

Turun yliopiston tähtitieteen emeritusprofessori Esko Valtaoja sanoi todistajanlausunnossaan oikeudessa, että hänen mielestään prosessi oli johdon kannalta täydellisesti epäonnistunut värväyspäätöksestä siihen, miten se kerrottiin henkilökunnalle, ja miten sen jälkeen toimittiin. Hän kommentoi, että menettelytapa, jossa ei oteta huomioon laitoksen henkilökuntaa ja ”vääristellään” yliopiston johdolle, miten suurin osa heistä muka odottaa innolla yhteistyötä Ottin kanssa ei ole hyväksyttävä.

Tuorlan observatorion johtaja Juri Poutanen oli yksi kahdesta henkilöstä, jotka ehdottivat Ottin palkkausta Turun yliopiston johdolle. Hän sanoi oikeudenkäynnissä, että vain yksi henkilökunnan jäsen oli henkilökuntatapaamisessa arvostellut palkkausta hänelle. Tämän jälkeen Ott oli tehnyt poliisille tutkintapyynnön kyseisestä henkilöstä, koska epäili hänen puhuneen Turun Sanomille kyseisestä tilaisuudesta ja Ottin palkkaamisesta. Poliisi kuulusteli henkilöä esitutkinnassa, mutta ei vienyt asiaa pidemmälle.

Poutanen oli palkkauksen aikoihin kirjoittanut, että hänen mielestään ei ole todisteita, että Ott olisi syyllistynyt häirintään. Hän oli syyttäjän todistajana oikeudessa. Oikeudenkäynnissä Poutaselle esitettiin Caltechin tutkimuksen tulokset, joiden mukaan Ott oli yksikäsitteisesti syyllistynyt sukupuoleen perustuvaan häirintään, ja kysyttiin pitävätkö ne hänen mielestään paikkansa. Poutanen totesi että ”minulle on aivan sama oikeastaan mitä siellä Caltechissa tapahtui”.

Astrofysiikassa on viime vuosina tullut esille korkean profiilin häirintätapauksia, joihin liittyy sukupuoleen perustuva tai seksuaalinen häirintä, viimeksi lokakuussa Leidenin yliopistossa Alankomaissa. On tyypillistä, että häirintään ei aluksi suhtauduttu vakavasti. Lausunnossaan Leidenin yliopiston johtokunta poikkeuksellisen avoimesti myönsi, että vaikka käytös oli huomattu, siihen ei puututtu tarpeeksi.

Häirintä on ongelma kaikilla aloilla ja kaikissa yhteisöissä. Se korostuu yhteisöissä, jotka ovat hyvin hierarkisia, joiden jäsenet kokevat yhteenkuuluvuutta ensisijaisesti niiden kanssa joilla on sama status, ja joissa korkeammassa asemassa olevat käyttävät merkittävää valtaa muihin. Tämä pitää paikkansa tiedeyhteisössä. Se että fysiikassa miesten osuus on isompi korkeammissa asemissa tekee alasta alttiimman sukupuoleen perustavalle ja seksuaaliselle häirinnälle, koska se on sukupuolittunutta.

Väitöskirjaohjaaja on ratkaisevassa asemassa jatko-opiskelijan tieteellisen uran kannalta. Ohjaajan ja ohjattavan suhde muistuttaa mestarin ja oppipojan suhdetta, ja on yleensä paljolti kahdenvälinen (tosin usein osana laajempaa tutkimusryhmää). Jatko-opiskelijat ovat haavoittuvassa asemassa myös siksi, että he ovat vasta aloittamassa tiedeyhteisöön nivoutumista.

Oikeusprosessin jälkeen tämä tapaus on minun ja Tillin osalta ohi. (En tosin tiedä, aikovatko syyttäjä tai Ott valittaa hovioikeuteen.) Samaa ei voi sanoa kaikista niistä, jotka ovat olleet tai ovat yhä häirinnän kohteena, tai joiden työpaikalla häirintään ja työntekijöiden hyvinvointiin suhtaudutaan välinpitämättömästi.

Päivitys (21/12/22): Syyttäjä eikä Christian Ott ei valittanut oikeuden päätöksestä, joten se on nyt lainvoimainen.

* * *

Today, the District Court of Southwest Finland delivered its judgment in the court case concerning me and my colleague and friend Till Sawala. We were accused of “aggravated defamation” and “aggravated dissemination of information that violates privacy”.

The case concerns events in January and February 2018, when astrophysicist Christian Ott was hired at the University of Turku. Me and Sawala, among others, spoke out about Ott’s harassment background and criticised the decision. The University of Turku cancelled the hire. Ott sued the University of Stockholm, which was involved in the hire, and the University of Turku. He also asked the police to investigate me and Sawala, leading to a process that took over three years, two rounds of preliminary investigation and five sessions in court.

Now the court dismissed the charges against us.

The newspapers Turun Sanomat, Iltalehti, Ilta-Sanomat and Helsingin Sanomat have written about the decision. The newspaper Turun Sanomat also wrote reasonable accounts of the trial (in Finnish), as did Iltalehti. Helsingin Sanomat also wrote about it, for example under the title “Cosmologist Syksy Räsänen who peddled harassment accusations got to speak in court”. In Science, journalist Jeffrey Mervis last week covered the case from a broader perspective, raising the issue of what it means for speaking out against harassment. In January 2016, Mervis broke the story of Ott’s harassment at Caltech.

In our press release today me and Till Sawala go over the case. More details can be found in my three previous blog entries. In the press release I comment as follows:

 “I welcome the acquittal after over three years of process. I hope this case will set a precedent.

No one should not have to fear fines or prison for simply speaking out against harassment based on widely and reliably reported facts. The threat alone can have a chilling effect that can set back work against harassment.

We had the financial resources, and support from our scientific community, to contest the baseless charges against us. If someone in a less secure position, such as a PhD student, were to be put in this situation, they might not fare so well.”

The problems of defamation trials are not limited to the scientific community. According to research, in Finland there is no clear policy on how preliminary investigations are conducted in defamation cases and what decisions are made. Criminal complaints about defamation are also used as a tool of harassment. In the well-known case of the journalist Johanna Vehkoo the proceedings took five years and went all the way to the Supreme Court.

In our case there is little reason to doubt that Ott felt himself to be wronged. But still, taking into account that the information we publicised had been widely reported in reliable sources, the process should have stopped earlier. After the first prosecutor declined to press charges, the deputy state prosecutor overturned the decision on the grounds that “the prosecutor had only referred to international media sources without evaluating their reliability in more detail”.

It is unreasonable that facts reported by the world’s premier science publications, which have not been publicly disputed by anyone, cannot be mentioned or taken as the basis of discussion. If the bar is set so high, public discussion of harassment and other controversial matters becomes impossible.

From this point of view it is important that the court notes in its decision that although “the defendants have at least to some measure systematically made known information about harassment and discrimination to large numbers of people”, this is not “forbidden nor punishable under criminal law”, but to the contrary it “can be considered a matter of public interest that people have to be able to discuss in public”.

The court also notes that “the matter has presumably been significant to the whole small scientific community and it has been socially and also a globally important and a widely discussed matter, which enhances the protection of the freedom of speech.” The court further observes that “taking into account the reliability of the media that have reported on Ott even a highly critical reader can […] have relied on the correctness of the reporting”.

The trial also exposed problems in how the scientific community deals with harassment.

The testimony of the former rector of the University of Turku highlighted that the university leadership was more concerned about damage to its reputation than what Ott had done. As I have earlier noted, such focus on reputation is problematic, because it treats what has actually happened as irrelevant. This can lead to ignoring the facts of the case as long as they do not become public. There is also another side to the matter: if allegations about a person were unfounded, terminating their contract or similar actions would be unjust.

Concentrating on damage to reputation can also motivate covering up events. Material evidence and testimony at the trial showed how some staff members at Tuorla Observatory, where Ott was to work, were too afraid to talk about the issue. One staff member wrote during the events that they felt they had been forbidden to speak to the media and described the atmosphere such that “you feel like you have to be ready to escape through the window at any moment”.

University of Turku astronomy professor emeritus Esko Valtaoja said in his testimony in court that in his view the process was a total failure on part of the leadership, from the hiring decision to how it was related to the staff, and what was done after that. He commented that not taking into account department staff and giving a distorted picture to the university leadership that most of them supposedly eagerly await working with Ott is not an acceptable way to handle matters.

Tuorla Observatory Director Juri Poutanen was one of the two people who proposed Ott’s hire to the university leadership. At the trial, he said that at a staff meeting only one member of staff had criticised Ott’s hire to him. After this Ott had made a criminal complaint about the staff member in question, suspecting him of having talked to the media about the meeting and Ott’s hire. The police questioned the person during preliminary investigation, but did not take the matter further.

During the hire Poutanen had written that in his view there is no evidence that Ott harassed anyone. At the trial Poutanen was presented with the findings of the Caltech investigation, according to which there was “unambiguous gender-based harassment of both graduate students” by Ott and asked whether he thinks they are correct. Poutanen replied that in his view ”it really makes no difference what happened at Caltech”.

Over the last few years, high-profile harassment cases that include sexual or gender-based harassment have come to light in astrophysics, the latest in October at Leiden University in the Netherlands. It is typical that harassment was not taken seriously at first. In its statement, Leiden University executive board admitted with rare candour that although the behaviour was noticed, not enough was done about it.

Harassment is a problem in all fields and communities. This is particularly so in communities that are very hierarchical, whose members feel a sense of camaraderie primarily with others of the same status, and where those in higher positions have significant power over others. This is the case in the scientific community. The fact that in physics there are more men in higher positions makes the field more prone to sexual and gender-based harassment, which is gendered.

The PhD supervisor plays a key role in a PhD student’s scientific career. The relationship between a supervisor and PhD student is reminiscent of the relationship between master and disciple, and is usually mostly a relationship between two people (although commonly in the context of a larger research group). PhD students are vulnerable also because they are just beginning to integrate into the scientific community.

After the legal process is over, this case will be over for me and Till. (Although I don’t know whether the prosecutor or Ott are going to appeal.) The same cannot be said for all those who have been or continue to be harassed, or in whose workplace harassment and employee wellbeing are given short shrift.

Update (21/12/22): Neither the prosecutor nor Christian Ott appealed, so the court’s decision is now final.

14 kommenttia “Myös me, kierros 4/We too, round 4”

  1. Human Rights Watch sanoo:

    Mitäköhän yleisen edun mukaista asiaa se ajaa, että henkilöä jahdataan ja ahdistellaan ympäri maailmaa kuin jotakin totalitaarisesta diktatuurista paennutta toisinajattelijaa? Ja millaista maolaista julkisia katumista Ottin pitäisi harjoittaa, että hän rehabilitoituisi ristiinnaulitsevan aktivistilauman silmissä? Suomalaisen oikeustajun perusteella Ottin sukupuoleen kohdistama häiritsevä käytös oli lisäksi erittäin vähäpätöistä. Eikö tällainen kampanja loukkaa jo oikeutta vapaaseen ammatinharjoittamiseen?

    1. Syksy Räsänen sanoo:

      Ottia ei ole jahdattu eikä ahdisteltu.

      Ammatilliseen väärinkäytökseen syyllistyneiden henkilöiden paluusta työyhteisöön kirjoitin aiemmin näin (https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/myos-meus-too/): ”edellytyksenä on se, että hän ymmärtää tehneensä väärin ja ottaa vastuun tekemästään vahingosta”.

      Saman merkinnän tämä teksti sopii sen arvioimiseen, mitä Ott teki ja mikä sen vaikutus oli:

      ”sitä ei voi luotettavasti tehdä kuulemalla pelkästään häiritsijäksi todettua henkilöä ja hänen valitsemiaan tahoja. Jokainen tietysti haluaa esittää asiat itselleen parhain päin, ja ihmiset mielellään puolustavat kavereitaan. Siksi on tärkeää, että häirintäsyytöksiä ja muita kiistanalaisia asioita selvittävät riippumattomat tahot -kuten Caltechin komitea-, jotka kuulevat kaikkia asianosaisia ja tutustuvat kaikkeen dokumentaatioon.”

      Caltechin selvityksen mukaan Ottin häirintä ei ollut ”erittäin vähäpätöistä”.

      Caltechin tapauksen yksityiskohdista voi lukea merkinnän https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/myos-me-kierros-3-we-too-round-3/ linkeistä, jotka löytyvät etsimällö sanat ”Caltechin tapauksen yksityiskohdista”.

      Mitä ammatinharjoittamiseen tulee, saman merkinnän kommenteissa kirjoitin: ”Kenelläkään ei ole nimenomaista oikeutta saada tutkijanpaikkaa, sen enempää kuin mitään muutakaan tiettyä työpaikkaa.”

      1. Periaatteessa ei liity aiheeseen, mutta:

        ”Jokainen tietysti haluaa esittää asiat itselleen parhain päin.” En ole samaa mieltä. Monet ihmiset pyrkivät puolueettomuuteen ja rehellisyyteen kaikissa asioissa, myös itseä koskevissa. Jokainen -sanan käytössä on hyvä olla varovainen.

        1. Syksy Räsänen sanoo:

          Saatat olla oikeassa.

    2. Pervert Rights Watch sanoo:

      Human Rights Watch, kuka mielestäsi todennäköisimmin huutaa ahdistelijoiden oikeuksien puolesta? Uhrit, sivusta katsojat vai kenties TOISET samanhenkiset, joille ahdistelu on vain rohkeaa lähestymistä, johon ristiinnaulitsijat eivät kykene?
      Jatkaisimmeko keskustelua omilla nimillämme tai lopettaisimmeko ahdistelijoiden puolustamisen?

      1. Syksy Räsänen sanoo:

        Kiitos kommentista. Pidetään kaikki keskustelu asiallisena.

  2. Erkki Tietäväinen sanoo:

    Tässä on herännyt seuraava kysymys:

    Syksy Räsänen ja Till Sawala perustivat kantansa siihen virheelliseen olettamaan, että Christian Ott oli syyllistynyt seksuaaliseen häirintään. Tätä he levittivät myös julkisuudessa eteen päin tunnetuin seurauksin. Entä jos heidän tietoonsa olisi alun perinkin tullut, että kyseessä oli ”vain” sukupuoliperusteinen häirintä? Olisiko Räsäsen ja Sawalan menettely ollut sama ja olisiko Ottin palkkaaminen Turun Yliopistoon silloinkin tullut peruutetuksi?

    1. Syksy Räsänen sanoo:

      Emme perustaneet kantaamme siihen. Meidän kannaltamme ei ole oleellista, oliko Ottin toiminta seksuaalista häirintää vai sukupuoleen perustuvaa häirintää. (Terminologia muuten ei ole vakiintunutta, ja noita termejä usein käytetään sekaisin.)

      Till Sawala ei ole julkisuudessa sanonut Ottin syyllistyneen seksuaaliseen häirintään. Minä mainitsin niin julkisesti kolmessa twiitissä. Lisäksi sanoimme niin muiden Turun yliopiston rehtorille lähetetyssä kirjeessä, jota emme ole julkistaneet. Vaihdoimme ilmaisuun sukupuoleen perustuva häirintä, koska se on kiistaton ja tässä tapauksessa tarkempi.

      Ottamatta kantaa siihen, oliko Ottin toiminta seksuaalista häirintää mainittakoon, että Ottin todettiin Caltechissa rikkoneen yliopiston seksuaalisen häirinnän vastaisia linjauksia, ja NASA:n ja Kansallisen tiedesäätiö NSF:n selvitys Caltechin menettelytavoista käsitteli hänen tapaustaan esimerkkinä seksuaalisesta häirinnästä.

      1. Cargo sanoo:

        ”Meidän kannaltamme ei ole oleellista, oliko Ottin toiminta seksuaalista häirintää vai sukupuoleen perustuvaa häirintää.”

        Ehkä sen pitäisi olla, sillä vain toinen kyseisistä häirinnän muodoista on Suomen rikoslaissa kriminalisoitu. Lienee myös ilmeistä, että julkinen kampanja sai aikaan sen, että Turun yliopisto irtisanoi Ottin. Amerikassa lähetettyjen viattomien runojen ei pidä vaikuttaa Suomessa tapahtuviin rekrytointeihin.

        Itse olen ymmärtänyt myös niin, että Caltech-kohussa osallisena ollut, silloin parikymppinen ja keskimääräistä viehättävämpi, neiti Kleiser sai potkut heikon tieteellisen suoritustason vuoksi, ei siis mistään ihmissuhdedraamasta johtuen. On myös osoittautunut, ettei neiti Kleiser pärjännyt akateemisessa maailmassa. Ehkäpä Ottin olisi pitänyt laittaa peli poikki jo paljon aikaisemmin, jolloin kostonhalulta oltaisiin vältytty. Voisin lyödä myös vetoa, että ohjaajapalavereissa tällä neiti Kleiserilla oli paidan ylin tai toinenkin nappi auki.

        1. Syksy Räsänen sanoo:

          On tavallista, että sukupuoleen perustuva ja seksuaalinen häirintä esitetään sen kohteiden syyksi. On myös tavallista, että niistä esitetään virheellisiä väitteitä.

          Tasa-arvolaissa on kielletty seksuaalinen häirintä ja sukupuoleen perustuva häirintä samassa pykälässä: https://finlex.fi/fi/laki/ajantasa/1986/19860609

          Asiasta voi lukea tarkemmin sukupuolentutkimuksen senioriprofessori Liisa Husun asiantuntijalausunnosta, joka oli yksi todiste oikeudenkäynnissä: https://www.mv.helsinki.fi/home/syrasane/Husu_lausunto.pdf

          Tämä on sinänsä toissijaista, että emme väittäneet, että Ottia olisi asetettu syytteeseen rikoksesta. Emme käsitelleet Ottin tekoja rikoksena, vaan vakavana ammatillisena väärinkäytöksenä.

          Mitä tulee Ottin toiminnan yksityiskohtiin, niissä ei ollut kyse vain ”viattomista runoista”: yksityiskohdista voi lukea merkinnän https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/myos-me-kierros-3-we-too-round-3/ linkeistä, jotka löytyvät etsimällä sanat ”Caltechin tapauksen yksityiskohdista”.

          Tässä ote Caltechin tutkimuksen johtopäätöksistä (myös osa oikeudenkäynnin todistusaineistoa): https://www.mv.helsinki.fi/home/syrasane/Ott_conclusions.png

          Kleiser teki väitöskirjansa loppuun Caltechissä, väiteltyään hän siirtyi tutkijaksi NASAn Jet Propulsion Laboratoryyn.

  3. Jari Toivanen sanoo:

    Olet, Syksy, toiminut mielestäni ihan oikein, ja kiitos sinulle siitä.

    1. Syksy Räsänen sanoo:

      Kiitos.

  4. Metoo sanoo:

    Jotenkin tulee mieleen metoo kampanjat ja syylliseksi tuomitseminen ennen oikeaa oikeutta. Näin ei pitäisi koskaan mennä että muut tuomitsevat ennen oikeaa oikeutta.

    1. Syksy Räsänen sanoo:

      Monia häirintätapauksia selvitetään muuten kuin oikeusistuimessa. Tässä tapauksessa Caltechissa tehtiin yliopiston sisäinen selvitys.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Taivaan merkit

31.10.2022 klo 13.16, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Mainitsin viime kuussa, että kosmisen mikroaaltotaustan perusteella tiedämme, että pimeä aine (jos sitä on olemassa) on tähtiä vanhempaa. Merkinnän kommenteissa pyydettiin avaamaan sitä, miten kosmisesta mikroaaltotaustasta voi päätellä tällaisia asioita. Tämä onkin hauska aihe.

Varhaisina aikoina maailmankaikkeuden aine oli hiukkaskeittoa. Kun avaruus laajenee, keiton lämpötila laskee. Kun maailmankaikkeus saavutti 380 000 vuoden iän, lämpötila laski alle 3 000 kelvinin. Tällöin keiton valohiukkasten energia ei enää riittänyt atomiytimien ja elektronien välisen sidoksen rikkomiseen, joten ne yhtyivät atomeiksi.

Tätä ennen valo, elektronit ja ytimet olivat tiukasti kytköksissä, kun valo poukkoili elektronien sähkövarauksista, ja maailmankaikkeus oli läpinäkymätön. Atomit ovat sähköisesti neutraaleja, joten niiden muodostuttua valo ei juuri vuorovaikuta aineen kanssa, ja on siitä lähtien matkannut jokseenkin esteettä halki maailmankaikkeuden.

Tämä valo tunnetaan nimellä kosminen mikroaaltotausta. Se on kirjaimellisesti valokuva maailmankaikkeudesta 380 000 vuoden iässä, ja näyttää tältä:

Kosminen mikroaaltotausta. (Lähde: ESA:n Planck-tutkimusryhmä.)

Kuvassa näkyy taivas mikroaaltoaallonpituudella, kun on poistettu Linnunradasta ja joistakin muista lähellä olevista lähteistä tuleva säteily. Punakeltaiset alueet ovat kirkkaampia ja siniset himmeämpiä; erot ovat muutaman sadastuhannesosan kokoisia. Näistä taivaan merkeistä voi lukea, millainen maailmankaikkeus oli nuorena.

Suoraviivaisin päätelmä on se, että valon ja tavallisen aineen tiheys oli 380 000 vuoden aikaan sama kaikkialla sadastuhannesosan tarkkuudella. Tarkempaa tietoa saa tutkimalla sitä, miten täplien kirkkaus riippuu niiden koosta. Vältän blogissa kuvaajien käyttämistä, mutta tätä en malta olla laittamatta:

Kosmisen mikroaaltotaustan täplien kirkkauden ja koon suhde. Pisteet ovat Planck-satelliitin mittaustuloksia, käyrä on teorian paras ennuste. (Lähde: ESA:n Planck-tutkimusryhmä.)

Kuvassa on x-akselilla täplän koko taivaalla, ja y-akselilla se, paljonko kirkkaus poikkeaa keskiarvosta. Isoimmat täplät ovat 90 asteen kokoisia; Planck pystyy erottamaan pienimmillään vajaan asteen kymmenesosan kokoisia täpliä.

Kirkkaimpia ovat noin asteen kokoiset täplät. Tästä voi päätellä sen, miten nopeasti maailmankaikkeus laajenee. Sitä varten pitää tietää, miten täplät syntyvät.

Kun keskivertoa tiheämmät alueet varhaisina aikoina gravitaation takia tiivistyivät, valon paine työnsi niitä takaisin, mikä johti vuoroittaiseen tiivistymiseen ja harventumiseen. Edestakainen liike synnytti aaltoja, kuin järven pintaa vatkaava käsi. Aallot matkasivat nopeudella joka on noin puolet valonnopeudesta. Vanhimmat aallot olivat 380 000 vuoden aikaan ehtineet matkata 400 000 valovuotta, nuoremmat vähemmän. (Kuljettu matka on isompi kuin maailmankaikkeuden ikä kertaa nopeus, koska avaruus laajenee.)

Kappaleen kulmakoko taivaalla on sen pituus jaettuna sen etäisyydellä: mitä pienemmältä kappale näyttää, sitä kauempana se on. Kun siis tiedämme aaltojen pituuden ja kulmakoon, voimme päätellä kuinka kaukaa kosminen mikroaaltotausta on nykypäivään asti matkannut. Jos valon ja aineen eron hetkeä siirtäisi kauemmas tai lähemmäs, niin kaikkien täplien koko taivaalla muuttuisi tasaisesti. Tästä voi mitata etäisyyden tarkasti.

Koska tämä etäisyys riippuu siitä, miten maailmankaikkeus on laajentunut, kosmisesta mikroaaltotaustasta voi päätellä maailmankaikkeuden laajenemisnopeuden. Kosmologian tämän hetken merkittävin ristiriita ennusteiden ja havaintojen välillä onkin se, että tällä tavalla saa eri tuloksen kuin mittaamalla laajenemisnopeuden suoraan siitä, miten nopeasti lähellä olevat galaksit meistä etääntyvät.

Entäpä se pimeä aine? Aaltojen pituus taivaalla kertoo vain etäisyyden, mutta niiden korkeudesta voi lukea monta seikkaa. Mitä vahvemmin tiheiden alueiden gravitaatio varhaisina aikoina vetää ainetta puoleensa, eli mitä enemmän massaa niissä on, sitä voimakkaampia aallot ovat. Toisaalta näkyvä aine (eli elektronit ja atomiytimet) törmäilee koko ajan valoon, mikä hidastaa sen liikkeitä kitkan tavoin, ja vaimentaa aaltoja. Pimeällä aineella ei ole tällaista ongelmaa.

Mitä enemmän on pimeää ainetta, sitä korkeampi on pisimmän aallon aallonhuippu, ja mitä enemmän on näkyvää ainetta, sitä matalampi se on. Yhdestä huipusta ei siis voi päätellä erikseen pimeän aineen ja tavallisen aineen määrää, koska niitä molempia sopivasti kasvattamalla korkeus pysyy samana.

Mutta pimeä aine ja näkyvä aine vaikuttavat eri tavalla kuvassa näkyviin eri huippuihin. Kuvassa ei ole erotettu aallonharjoja ja -pohjia: siinä näkyy vain paljonko kirkkaus poikkeaa keskiarvosta, ei onko alue keskivertoa kirkkaampi vai himmeämpi. Joka toinen huippu vastaa itse asiassa aallonharjaa ja joka toinen aallonpohjaa.

Näkyvän aineen kitka syventää aallonpohjia ja laskee aallonhuippuja, kun taas pimeän aineen gravitaatio vahvistaa molempia. Niinpä ottamalla huomioon sekä ensimmäisen että toisen huipun korkeuden voi päätellä sekä pimeän aineen että näkyvän aineen tiheyden. Huippujen korkeuksien suhteesta voi lukea, että pimeää ainetta on noin viisi kertaa niin paljon kuin näkyvää ainetta.

Pimeä aine esitettiin alun perin selittämään sitä, miksi näkyvä aine galakseissa ja galaksiryppäissä liikkuu nopeammin kuin mitä sen oma gravitaatio pystyy selittämään. Tarvittiin ainetta, jota ei voi nähdä, eli joka ei juuri vuorovaikuta valon kanssa. Vapaus valosta osoittautui sittemmin avaimeksi myös kosmisen mikroaaltotaustan täplien ymmärtämiseen. Tämä on hyvä esimerkki siitä, miten oikeansuuntaiset ideat ratkaisevat myös uusia ongelmia ilman erillistä säätämistä – eli tekevät onnistuneita ennustuksia.

Ainoa vaihtoehto pimeälle aineelle on se, että gravitaatio käyttäytyisi eri tavalla kuin mitä yleinen suhteellisuusteoria ennustaa. On kuitenkin vaikea selittää, miksi kosmisen mikroaaltotaustan muodostumisen aikaan gravitaatio olisi kuusi kertaa odotettua vahvempi, mutta Aurinkokunnassa ei ole nähty poikkeamia yleisen suhteellisuusteorian ennusteista, vaikka niitä on mitattu sadastuhannesosan tarkkuudella. Yksikään ehdokas uudeksi gravitaatioteoriaksi ei ole pystynyt edes jälkikäteen selittämään kosmisen mikroaaltotaustan kaikkien huippujen korkeuksia, saati ennustamaan niitä.

Kosmisen mikroaaltotaustan analyysi on oikeasti monimutkaisempaa kuin vain huippujen korkeuksien ja aineen tiheyksien vertaaminen. Mikroaaltotaivaan merkeistä voi lukea fotonien ja neutriinojen tiheyden, testata kosmisen inflaation ennustetta siitä, millainen aaltojen lähteinä toimivien ylitiheiden alueiden jakauma on, ja paljon muuta.

Kosminen mikroaaltotausta on ehkä antoisin yksittäinen kosmologinen havainto: se sisältää paljon tietoa, sitä voidaan mitata tarkasti, ja sen teoreettinen tarkastelu on suoraviivaista. On paljon helpompi mallintaa pieniä aaltoja kaasussa kuin vaikkapa törmääviä mustia aukkoja.

Seuraavaksi halutaan mitata tarkemmin kosmisen mikroaaltotaustan fotonien polarisaatiota, eli sitä, mihin suuntiin ne värähtelevät. Tuloksia on odotettavissa kymmenen vuoden kuluessa japanilaiselta satelliitilta LiteBIRD sekä kansainvälisiltä maanpäällisiltä teleskooppihankkeilta Simons-observatorio ja CMB-S4.

27 kommenttia “Taivaan merkit”

  1. Boris the rat sanoo:

    hyvä luento!

    kysymys; voiko maailmankaikkeuden laajentuminen , johtua (mahdoliisesti) kauempana olevien universumien vetovoimalla?

    1. Syksy Räsänen sanoo:

      Maailmankaikkeus on kaikki aika ja avaruus, mitä on olemassa. Avaruuden laajenemisesta, ks. http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu

      1. Boris the rät sanoo:

        mutta eikö näitä multiversumi hommia ole esitetty?

        1. Syksy Räsänen sanoo:

          On, mutta niissä yleensä ”muilla maailmankaikkeuksilla” on kullakin oma erillinen aika-avaruutensa, joka ei ole yhteydessä meidän aika-avaruuteemme. Joskus sanalla ”maailmankaikkeus” myös viitataan oman avaruutemme kaukana toisistaan oleviin osiin.

          Multiversumi-ideasta tarkemmin, ks.

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaikenlaisia-selityksia/

          1. Boris the Rat sanoo:

            Ja nämä eivät voi vetovoimallaan laajentaa omaa kaikkeuttamme?

          2. Syksy Räsänen sanoo:

            Avaruuden laajenemisen syynä ei ole se, että kappaleet vetävät toisiaan puoleensa.

          3. Boris the rat sanoo:

            luulin että laajentumisen syytä ei vielä tiedetty?

          4. Syksy Räsänen sanoo:

            On tiedetty sata vuotta, vuodesta 1922 asti. Siitä, miksi laajeneminen on viime aikoina kiihtynyt, ei tosin ole varmuutta.

  2. hölmö sanoo:

    voiko universumia laajentavuminen johtua toisten universumien vetovoimalla?
    vai onko mahdollista että me itse sattumalta sijaitsemme laajentuvassa kohtaa universumia?

    1. Syksy Räsänen sanoo:

      Maailmankaikkeus on kaikki aika ja avaruus, mitä on olemassa. Avaruuden laajenemisesta, ks. http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu

  3. Eusa sanoo:

    Eikö maaimankaikkeuden sijaan olisi luontevinta puhua yksinkertaisesti kaikkeudesta?

    1. Syksy Räsänen sanoo:

      Miksipä ei.

  4. Martti V sanoo:

    Taustasäteilyssä on havaittu selkeästi kylmempi alue tai ehkä useampia. On esitetty, että se voisi olla jälki kosketuksesta toiseen universumiin. Voidaanko tällaiset ajatukset tyrmätä?

    1. Syksy Räsänen sanoo:

      Kyseinen ”kylmänä täplänä” tunnettu alue ei itse asiassa ole poikkeuksellisen kylmä. Kyseessä saattaa olla pelkkä tilastollinen sattuma.

      Mainitsemasi selitys täplälle viittaa ideaan, että kosmisen inflaation aikana olisi syntynyt kuplia, joiden törmäyksestä olisi jäänyt jälki inflaatiota ajavaan kenttään, jonka kosminen mikroaaltotausta sitten perii. Onhan se mahdollista, mutta täplä ei ole tilastollisesti niin harvinainen, että se antaisi paljon tukea tällaiselle tapahtumalle.

  5. Helena Othman sanoo:

    Jotenkin kiehtovaa ajatella, että siinä hiukkassopassa alussa oli ns kaikki, siis jos ajattelee ikäänkuin nykyhetkestä taaksepäin. Ajan, liikkeen, lämmön jne lisäksi.
    Eikä siinä keitossa ilmeisesti ollut mitään mille ei löytynyt käyttöä.

    1. Syksy Räsänen sanoo:

      Hieman aineen muodonmuutoksista tässä:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/tuhoutuuko-kaikki/

  6. Boris the Rat sanoo:

    sen verran vielä pimeästä aiheesta;

    koska painovoima ajatellaan usein avaruuden kaareutumisena; onko avaruutta laajentavan pimeän aineen aiheuttama kelmu aika-avaruuteen ”negatiivinen”? pahoittelut kysymystulvasta

    1. Syksy Räsänen sanoo:

      Mitä tarkoittaa tässä ”kelmu” ja ”negatiivinen”?

      1. Boris the Rat sanoo:

        normaali massa esitetään aika-avaruuden kaareutumisena montulle ”alaspäin” – näin ollen pimiä aine kaareuttaa aika-avaruutta ”ylöspäin” satulan tapaan?

        1. Syksy Räsänen sanoo:

          Tällaista aika-avaruuden kaarevuutta havainnollistavaa kuvaa ei voi katsoa noin kirjaimellisesti. Aika-avaruuden kaarevuudella on oikeasti 20 eri suuntaa, ei vain yksi.

          Mutta tämä vastannee kysymykseesi: pimeän aineen gravitaatio on aivan samanlaista kuin tavallisen aineen. Niiden vaikutus avaruuden laajenemiseen ja kappaleiden välisene näennäiseen vetovoimaan on sama.

          1. Boris the Rat sanoo:

            anteeksi; tarkoitin pimeää energiaa

  7. miguel sanoo:

    Sellainen kysymys, että kun alku-universumi muuttui näkyväksi fotoneille, niin jos kaikkeus ei laajene valonnopeudella, vaan äärellisellä nopeudella, niin jossain vaiheessa fotonit ilmeisesti saavuttavat/ovat saavuttaneet universumin reunan. Mihin ne sen jälkeen etenevät? Neuriinot ilmeisesti saavuttaisivat laajenevan reunan jo aiemmin. Tietysti, jos universumi on rajaton tai ääretön, niin ei olisi mitään reunaa, jonka saavuttaa.

    1. Syksy Räsänen sanoo:

      Ei tiedetä onko maailmankaikkeus äärellinen vai ääretön, mutta jos se on äärellinen, se on rajaton. Fotonit kulkevat joka suuntaan.

      Avaruuden laajenemista ei mitata nopeuden yksiköissä. Mutta jos laajeneminen hidastuu, niin valo tosiaan saavuttaa ajan kuluessa mielivaltaisen etäisiä pisteitä. Jos laajeneminen kiihtyy, näin ei tapahdu.

      Tarkemmin avaruuden laajenemisesta, ks.

      https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu

      1. Jani sanoo:

        Kun kerta maailmankaikkeudella on alku ja siitä on äärellinen määrä aikaa, niin kuinka maailmankaikkeus voisi olla ääretön?

        1. Syksy Räsänen sanoo:

          Miksipä ei? Jos maailmankaikkeus on ääretön, se on ollut koko olemassaolonsa ajan ääretön.

        2. Kyllä, havaittavalla eli meille näkyvällä maailmankaikkeudella on alku josta on äärellinen määrä aikaa, ja havaittava maailmankaikkeus on äärellinen, ja tästä on yksimielisyys.

          Kosmisen horisontin takaa meillä ei ole havaintoja. Voidaan ajatella että olisi yksinkertaisinta jos maailmankaikkeus jatkuisi siellä suurena tai peräti äärettömänä, ehkä.

          Tietoamme rajoittavat vaikeus nähdä varhaisiin ajanhetkiin (inflaation aiheuttama diluutio ym.) ja kosminen horisontti. Ja jos käytetään kvanttimekaniikan monimaailmatulkintaa, niin myös siihen liittyvä ”kvanttihorisontti”, jonka takana ovat multiversumin ne haarat jotka eivät ole meille makroskooppisesti totta, eli jotka (löysästi sanoen) eivät interferoi konstruktiivisesti meistä katsoen. Eli noin kolme horisonttia.

          1. Syksy Räsänen sanoo:

            Selvennykseksi lukijoille, että ”havaittava maailmankaikkeus” tässä tarkoittaa aluetta, josta meille on ehtinyt tulla signaaleja.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Lomittuneilla fotoneilla

4.10.2022 klo 21.31, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Ruotsin kuninkaallinen tiedeakatemia ilmoitti tänään, että vuoden 2022 Nobelin fysiikan palkinnon saavat Alain Aspect, John F. Clauser ja Anton Zeilinger ”lomittuneilla fotoneilla tehdyistä kokeista, jotka osoittivat Bellin epäyhtälön rikkoutumisen ja olivat kvantti-informaatiotieteen edelläkävijöitä”. Kuten tavallista, tiedeakatemia julkaisi erikseen suurelle yleisölle ja fyysikoille suunnatut taustoitukset.

Fyysikot tykkäävät arvella Nobelin palkintoja omalle alalleen, mutta olen vuosia kuullut niidenkin, jotka eivät työskentele kvanttimekaniikan perusteiden ja kvantti-informaation parissa kyselevän koska siitä myönnetään Nobelin palkinto Alain Aspectille ja muille avaintutkijoille.

Nyt palkitun tutkimuksen ytimessä on se, miten kvanttimekaniikka eroaa klassisesta mekaniikasta, ja samalla arkiajattelusta. Kvanttimekaniikan mukaan todellisuus ei ole määrätty: asioilla on todennäköisyydet olla eri tavoin, sen sijaan että ne olisivat yhdellä tavalla.

Erwin Schrödinger, yksi kvanttimekaniikan löytäjistä, päätti havainnollistaa kvanttimekaniikan tätä piirrettä ajatuskokeella missä on kissa, mikä on varmistanut sen, että idea on levinnyt laajalle. Schrödingerin kissa on sekoituksessa kuollutta ja elävää, olematta kumpaakaan. Schrödinger esitti ajatuskokeen vuonna 1935 osoittaakseen, että koska johtopäätös kissan tilasta on outo, kvanttimekaniikan pitää olla puutteellinen. Nykyään asia nähdään toisin päin: koska kvanttimekaniikka pitää niin suurella tarkkuudella paikkansa, todellisuus on outo.

Kaksoisrakokokeessa on kokeellisesti mitattu jäljet siitä, että hiukkasta kvanttimekaniikassa kuvaava todennäköisyysaalto samaan aikaan kulkee eri reittejä, sen sijaan että hiukkasella olisi määrätty rata. On kuitenkin esitetty niin kutsuttuja piilomuuttujateorioita, joiden mukaan hiukkasten tila on itse asiassa koko ajan määrätty, me vain emme tiedä mikä se on, ja ne pystyvät selittämään kaksoisrakokokeen tuloksen siinä missä kvanttimekaniikka.

John Bellin vuonna 1964 esittämällä epäyhtälöllä on ollut keskeinen rooli siinä, että kvanttimekaniikan outous on hyväksytty ja piilomuuttujateorioiden suosio on jäänyt vähäiseksi. Tämä epäyhtälö on Aspectin, Clauserin ja Zeilingerin työn pohjalla. Olen kirjoittanut Bellin epäyhtälöstä tarkemmin täällä, ja sitä valaistaan myös tiedeakatemian taustamateriaalissa. Askel askeleelta seurattavan selkeän selityksen voi lukea Tanya Bubin ja Jeffrey Bubin sarjakuvasta Totally Random.

Jos luodaan kaksi fotonia, joiden polarisaatio (eli värähtelysuunta) on vastakkainen, niin mittaamalla yhden polarisaation tietää heti toisenkin polarisaation. Tätä ominaisuutta sanotaan lomittumiseksi. (Englanniksi entanglement, kirjaimellisesti yhteenkietoutuminen.) Kvanttimekaniikan mukaan fotonin tila ei ole määrätty ennen kuin sitä mitataan. Piilomuuttujateorioissa fotonien tilat ovat koko ajan määrätyt, emme vain ennen mittaamista tiedä mitkä ne ovat.

Bell hahmotti, että nämä kaksi mahdollisuutta voi erottaa kokeellisesti mittaamalla eri fotonien polarisaatiota eri suunnissa ja tutkimalla tulosten tilastollista riippuvuutta. Missä tahansa teoriassa, jossa fotonien tila on aina määrätty, tämä riippuvuus toteuttaa Bellin epäyhtälön. Kvanttimekaniikassa epäyhtälö rikkoutuu, koska lomittuneen systeemin osat ovat kytköksissä toisiinsa rajattoman pitkien etäisyyksien yli vahvemmin kuin teoriassa, missä systeemin tila on koko ajan määrätty (eikä voida viestiä yli valonnopeudella).

Bellin epäyhtälö on kvanttimekaniikan sääntöjen suoraviivainen seuraus. Noiden yksinkertaisten sääntöjen vieraudesta arkiajattelulle kertoo paljon se, että kesti vuosikymmeniä niiden löytämisestä 1920-luvulla siihen, että Bell esitti nyt nimeään kantavan epäyhtälön.

Teknologista kekseliäisyyttä taasen kuvaa se, että jo vuonna 1972, kahdeksan vuoden kuluttua, Clauser kollegoineen osoitti kokeellisesti, että Bellin epäyhtälö rikkoutuu kvanttimekaniikan ennustamalla tavalla. Tiedeakatemia mainitsee, että yksi ongelma Clauserin tiellä oli se, että hän oli kokeellinen astrofyysikko, joka oli palkattu tekemään radiotähtitiedettä. Clauser sai kuitenkin sovittua, että saa käyttää puolet ajastaan Bellin epäyhtälön testaamiseen. Tämä muistuttaa joustavuuden merkityksestä tutkimusaiheiden muuttamisessa nykyaikoina, missä tutkijoiden oletetaan tietävän tutkimuksensa kulun viisi vuotta etukäteen.

Tiedeakatemia kirjoittaa suurelle yleisölle suunnatussa taustoituksessa, että Clauserin tulosten mukaan ”kvanttimekaniikkaa ei voi korvata millään piilomuuttujateorialla”. Tämä ei ole ihan totta. Tutkijoille suunnattu teksti on huolellisempi, ja siinä selitetään, että tällaisessa piilomuuttujateoriassa tiedon täytyisi kulkea valoa nopeammin (mikä on ristiriidassa suhteellisuusteorian kanssa). Itse asiassa vasta Aspectin ja kollegoiden kehittyneemmät kokeet osoittivat, että tiedon pitäisi kulkea valoa nopeammin, jotta piilomuuttujateoria voisi selittää tulokset.

Bellin epäyhtälöön liittyvä tutkimus on avannut oven kvanttimekaniikan perusteiden hedelmälliselle soveltamiselle teknologiaan. Tiedeakatemia korostaakin perusteluissaan kvanttitietokoneiden ja kvanttikryptografian kasvavaa merkitystä. Näillä aloilla lomittumiseen liittyvien kvanttimekaniikan piirteiden ymmärtäminen ja käyttäminen teknologisesti –missä erityisesti Zeilinger on kunnostautunut– on avainroolissa. Jos Bell ei olisi kuollut vuonna 1990, hänetkin olisi luultavasti palkittu Nobelilla.

Nobelin palkinnot keskittävät paitsi suuren yleisön myös tiedeyhteisön huomiota ja houkuttelevat tutkijoita palkitulle alalle. Gravitaatioaaltojen suora havaitseminen vuonna 2015 ja palkitseminen Nobelilla 2017 ovat tehneet niistä muodikkaan tutkimuskohteen, jota mietitään monissa muissakin yhteyksissä kuin siinä, mikä johti palkintoon. Ehkäpä tämän vuoden palkinto lisää suosiota Bellin epäyhtälön rikkoutumisen ja muiden kvantti-ilmiöiden tutkimiseen myös kosmologiassa.

Kosmisesta inflaatiosta, mikä on ensimmäisenä yhdistänyt kvanttifysiikan ja yleisen suhteellisuusteorian tavalla joka on ennustanut kokeiden tuloksia yksityiskohtaisesti oikein, ei olekaan vielä myönnetty Nobelin palkintoa, vaikka jotkut kosmologit ovat sellaista povanneet.

35 kommenttia “Lomittuneilla fotoneilla”

  1. Erkki Kolehmainen sanoo:

    Suurin molekyyli, jolla kaksoisrakokoe on tehty, sisälsi n. 2000 atomia ja sen molekyylipaino oli n. 25000. Ja tämäkö sitten menee kahden eri raon kautta ja kasautuu uudelleen yhdeksi rakojen jälkeen. Ottaen huomioon, kuinka vaikeaa uusien molekyylien valmistamien saattaa olla, niin ei kuulosta kovin loogiselta! Älkää viitsikö älyttää vanhaa kemstiä!

    1. Syksy Räsänen sanoo:

      Ei, hiukkanen ei hajaudu kahtia ja kasaannu sitten uudelleen. Ei ole olemassa mitään yhdessä paikassa olevaa hiukkasta, vain todennäköisyysjakauma.

      Tämä on todella arkijärjelle vierasta, mikä osoittaa arkiajattelumme vaillinaisuuden.

      1. Erkki Kolehmainen sanoo:

        Arkiajattelu on ollut ainoa luotettava keino selviytyä kaikkien vaarojen ja vuosimiljoonia kestäneíden haasteiden aikana. En ole valmis korvaamaan sitä saduilla tai mielikuvituksella, vaikka niilläkin jotain arvoa on.

        1. Syksy Räsänen sanoo:

          Asia on päinvastoin. Sadut ja arkinen kuvittelu pohjaa arkisen ajattelun käsitteisiin. Fysiikka sen sijaan pohjaa järjestelmällisiin havaintoihin ja matematiikkaan, joka tarjoaa käsitteitä, jotka ovat arkijärjelle vieraita mutta kuvaavat todellisuutta tarkemmin. Se, että todellisuus ei ole arkijärjen mukainen on järkevän epäilyn ulkopuolella.

  2. Markku Kaakkolammi sanoo:

    Tässä puhutaan arktodellisuudesta ja kvanttifysiikasta. Missä on se raja, jonka jälkeen arkielämän havainnot alkavat pitää paikkansa ? Eli että esim. auto on todella tuossa ja että kysymys ei ole todennäköisyysjakaumasta ?

    1. Syksy Räsänen sanoo:

      Tämä onkin tärkeä ja osin ratkaisematon kysymys.

      Kvanttimekaniikan mukaan mitään periaatteellista rajaa ei ole, ainoastaan kvantitatiivinen raja. Arkisen mittakaavan esineiden tilan todennäköisyysjakauma on siis hyvin tiukasti keskittynyt. Ei tosin täysin ymmärretä miten arkinen määrätyn näköinen todellisuus seuraa kvanttimekaniikasta – vai pitääkö kvanttimekaniikkaa muuttaa.

      Tarkemmin, ks.

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kahden-ikkunan-nakoala/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/koopenhaminan-takana/

      http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/maarattyina_yhteen

      http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/arjen_epatotuus

      1. Jyri T. sanoo:

        Kun kerran itse nostit esiin kysymyksen siitä, miten arkinen määrätyn näköinen todellisuus seuraa kvanttimekaniikasta, niin toivottavasti saanen esittää seuraavan kysymysken/ajatuskokeen:

        Yleinen suhteellisuusteoria on matemaattisesti ”epälineaarinen” kuvaus aika-avaruudesta, kun taas kvanttimekaniikka on täysin ”lineaarinen” kuvaus aaltofunktioiden maailmasta.

        Mitä jos makroskooppinen (”lokalisoitunut”) todellisuus nousee/syntyy siitä, että aaltofunktion on pakko romahtaa, kun se kohtaa riittävästi aika-avaruuden ”epälineaarisuuksia”?

        Esimerkiksi makroskooppisen hiukkasen oma gravitaatio riittäisi aiheuttamaan niin paljon epäjatkuvuutta ajan kulkuun, että sen aaltofunktio ei enää voisi pysyä koherenttina vaan olisi pysyvästi ”romahtanut” ja hiukkanen pysyisi ”lokalisoituneena” eli ”makroskooppisessa tilassa” koko ajan.

        Toisaalta, mikä aiheuttaisi tällaisen epäjatkuvuuden esim. silloin, kun alkeishiukkanen ”valitsee” osumakohdan kaksoisrakokokeessa?

        Onko tällaista ajatusta pohdittu?

        1. Syksy Räsänen sanoo:

          Onpa hyvinkin. Roger Penrose (joka sai vuonna 2020 Nobelin palkinnon sen osoittamisesta, että mustat aukot ovat yleisen suhteellisuusteorian yleinen ennustus) on tunnetuin tällaisia ideoita esittänyt tutkija. Tätä on kokeellisestikin tutkittu:

          https://www.quantamagazine.org/physics-experiments-spell-doom-for-quantum-collapse-theory-20221020/

  3. Markku Tamminen sanoo:

    Erkki Kolehmainen on mielestäni puolittain oikeassa.

    Voi olla, että kvanttifysikaalisesti kuvatun kissan ja naapurin katin välillä on jokin toistaiseksi ylittämätön käsitteellinen kuilu, mutta en ymmärrä, mitä tekemistä tällä on todellisuuden tai harhan kanssa. Eiköhän kysymys ole havaitsemisen tasoista ja kuvausten tarkoituksenmukaisuudesta. On itse asiassa melko absurdi ajatus, että arkielämämme olisi jotenkin perustavalla tavalla harhaista. Syksyn muuten ansiokkaissa esityksissä tämä ajatus on aina tuntunut minusta todella oudolta, enkä ole löytänyt sille kunnon perusteluja. Ainoa johtopäätös lienee, että kysymyksessä on äärimmilleen viety fysikalismi, siis filosofinen kannanotto, joka ei perustu fysiikkaan.

    1. Syksy Räsänen sanoo:

      Arkiajatteluumme kuuluu esimerkiksi ajatus, että asioiden tila on määrätty. Kvanttimekaniikan mukaan tämä ei pidä paikkaansa.

      Myös suhteellisuusteoriasta löytyy (vielä vankemmalla pohjalla olevia) esimerkkejä siitä, että arkikäsityksemme maailmasta on perusteiltaan virheellinen, ks. esim. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/maljat-ennen-vai-jalkeen/

    2. Erkki Kolehmainen sanoo:

      Juuri näin. Fyysikko ei tarvitse mitään ihmeaivoja. Kun Einstein kuoli, niin patologit ryntäsivät tutkimaan hänen aivojaan, mutta ei sieltä mitään ihmeellistä löytynyt – samaa harmaata ja valkoista massaa kuin muillakin. Ei edes niiden koko ollut tavallista suurempi. Syksyn asenne on tyypillistä ihmiselle, joka haluaa nähdä työnsä erityisen arvokkaana ja merkittävänä. Toki sellainen ajattelu on luvallista (ja tavallista) ellei se johda muiden vähättelyyn!

  4. On hyvä että kvantti-ilmiöt saavat julkisuutta, koska niissä on vielä paljon oppimista ja sulateltavaa. Vaikka kvanttimekaniikan tiedetään olevan totta, maailmankuvallisesti ollaan vähän juututtu jonnekin 1800-luvun alun kellokoneistouniversumiin. Vaikka asian varsinainen ymmärtäminen onkin vaikeaa, se on jo hyvä askel eteenpäin että tulee ihmetelleeksi miten maailmankaikkeuden aaltofunktiosta syntyy havaintokokemus klassista fysiikkaa noudattavasta kehosta joka on osa ympäröivää kaikkeutta. Ehkä kvanttifysiikka itsessään on selvä juttu, mutta maailma ei!

  5. Cargo sanoo:

    Jos oletetaan,että aika ja avaruus ovat jotenkin seurausta energiasta ja vuorovaikutuksesta, niin eipä tuo lomittuminen ole psykologisesti mikään mahdoton asia: jos hiukkaset ovat osa samaa kvanttimekaanista systeemiä, niin muutokset voivat tapahtua riippumatta ulkoisesta ajasta ja avaruudesta.

    Mutta voisiko Dr. Räsänen valaista meitä uteliaita maallikoita siitä, että mitä yksöis- tai kaksoisrakokokeessa oikein tapahtuu? Kun siis hiukkasta kuvaava aalto tulee raolle, mikä aiheuttaa tilan muutoksen, niin kuka/ketkä sitä hiukkasta oikein havaitsee ja minne se tieto tallentuu? Ja kun hiukkanen jatkaa aaltomaisesti matkaansa ja lopulta osuu havaintolevylle, niin mikä sen paikallistumisen aiheuttaa ja vastaako se jotenkin sitä, että hiukkasen aalto sujahtaa äärimmäisen kapeaan ’yksöisrakoon’, mikä nostattaa suuren, välähdyksenä ilmenevän liikemäärän?

    Lisäksi, tarkoittaako tuo kvanttimekaaninen aalto ylipäätään yhtään mitään, jos se ei vuorovaikuta ympäristönsä kanssa? Tuli meinaan Descartesin ”ajattelen, siis olen” lausahduksesta mieleen modernimpi versio: ”vuorovaikutan, siis olen” 🙂

    1. Syksy Räsänen sanoo:

      Lomittuminen ei liity ajan ja avaruuden luonteeseen.

      Kaksoisrakokokeesta, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kahden-ikkunan-nakoala/

    2. Jos olemassaololla viitataan mitattavaan olemassaoloon eli havaintoon, niin havainto vaatii vuorovaikutuksen, joten siinä mielessä ”vuorovaikutan, siis olen” voisi olla tämän järkevältä kuulostava yleistys. Kuitenkin muistaen että vuorovaikutuskaan ei ole absoluuttinen käsite, esimerkiksi koska on tilanteita jossa samaa ilmiötä voidaan kuvata kahdella yhtäpitävällä (kvantti)teorialla, joista toinen on vahvasti ja toinen heikosti vuorovaikuttava.

      Kvanttiteoria selittää havainnot, mutta ei havaitsijaa. Havaitsijaa on vaikea mallintaa, koska se vaikuttaisi olevan tolkuttoman monimutkainen kvanttitila. Tai ehkä se on koko maailmankaikkeus.

    3. Eusa sanoo:

      Vuorovaikutus on ontologisesti fysikaalisuuden keskiössä. Lomittumiskorrelaatiokin voidaan todentaa vasta kun tehdään vertailu vaihtamalla tietoa vuorovaikutussignaalein.

      Mittaamisen fudamentaali haaste puolestaan on se, että mittalaite on osa mitattavaa vuorovaikutusjatkumoa.

  6. miguel sanoo:

    Minusta on outoa, että kvanttifysiikan ilmiöiden todennäköisyysjakauma tiivistyy, kun tullaan arkielämän ilmiöihin. Äkkiä luulisi, että kun muuttujien määrä kasvaa, niin todennäköisyysjakauma leviää entisestä. Ihan kuin kvantti-ilmiöillä olisi ”pyrkimys determinismiin” isommassa skaalassa ja koko kvanttifysiikka olisi jotenkin skaalautuva. Sille ei varmaan ole mitään teoriaa tai perustetta?

    Sitten kysyisin vielä, että on ihan selvä, että jos fotonipari syntyy ja toinen on sininen ja toinen on punainen, niin kun tiedämme toisen värin, niin tiedämme toisen, mutta voidaanko tuo spin siis muuttaa, eli voidaan maalata punainen pallo siniseksi, jolloin toisen fotonin spin muuttuu samalla hetkellä. Jotenkin arkijärkeen sopisi joku oskillointi, jossa spinit sykronoituvat syntyhetkellä ja muutoksessa emme oikeastaan muuta mitään, vain havaitsemme tietyn spinin, joka olisi vaihtunut ilman mitään väliintuloa, ja mitään informaatiota ei liiku.

    Ymmärrän toki, että kvanttifysiikan puolesta puhuu moni muukin asia. Tämä ei ole mikään oma nojatuoliteoria, vaan kysymys.

    1. Martti V sanoo:

      Kvanttifysiikan ilmiöt ovat tilastollisia. Hiukkasten tila on epämääräinen ja makroskooppisesti havaitsemme keskiarvotilan. Kyse ei ole determinisyydestä. Pohjimmiltaan kaikki perustuu kvanttikenttiin ja hiukkaset ovat niiden satunnaisia eksitaatioita.

  7. Erkki Kolehmainen sanoo:

    ”,,,koska lomittuneen systeemin osat ovat kytköksissä toisiinsa rajattoman pitkien etäisyyksien yli vahvemmin kuin teoriassa, missä systeemin tila on koko ajan määrätty (eikä voida viestiä yli valonnopeudella).”

    Jos ”lomittumisesta” todella seuraa mahdollisuus viestiä yli valonnopeudella, niin se ei voi pitää paikkaansa eikä sellaista voi olla olemassa. Syksyn ansioksi on sanottava, että hän kirjoittaa tekstiinsä argumentin, joka tekee tyhjäksi v. 2022 fysiikan Nobel-palkinnon perusteet ja hänen aiemmat pohdiskelunsa lomittumisesta!

    1. Syksy Räsänen sanoo:

      Lomittumiseen ei liity viestimistä yli valonnopeudella.

      1. Martti V sanoo:

        Voidaanko tätä todistaa? Kahden havainnoitsijan eri paikassa pitäisi saman aikaisesti todeta tila. Toisaalta toinen havaitsija pystyy kertomaan tilasta valonnopeudella, jonka aikana myös hiukkaset pystyvät vuorovaikuttamaan. Toinen vaihtoehto on, että toisen lomittuneen hiukkasen tilan mittaus määrää myös toisen tilan. Lähtökohtaisesti tilat ovat satunnaisia. Ehkei tila ole pohjimmiltaan satunnainen vaan ennalta määrätty jotenkin, mitä ei ymmärretä.

        1. Syksy Räsänen sanoo:

          Lomittumiseen ei kvanttimekaniikassa liity viestimistä yli valonnopeudella. Kvanttimekaniikan mukainen lomittuminen selittää havainnot, ja avainasemassa on se, että systeemin tila ei ole aina määrätty.

          Jos havainnot haluaisi selittää teorialla, jossa systeemin tila on määrätty, se vaatisi sitä, että pitää olla mahdollista välittää tietoa yli valonnopeudella. (Toinen vaihtoehto on se, että kaikki maailmankaikkeuden tapahtumat kaikkialla ajassa ja avaruudessa on niin vahvasti määrätty, että mitään paikallisia luonnonlakeja ei ole.)

          Tämän vuoden Nobelin palkinnon saajat todistivat tämän kokeellisesti.

          1. Cargo sanoo:

            Miten herrat Aspect, Clauser ja Zeilinger varmistivat sen, etteivät heidän havaintokojeensa olleet jollakin salakavalalla tavalla kytköksissä toisiinsa ja siten sotkeneet mittauksia (esim. kummankin mittalaitteen käyttämät satunnaisluvut korreloisivat jotenkin)? Miten ylipäätään voidaan sulkea pois muuttujia, jos niiden luonteesta ei ole mitään havaittavaa tietoa. Einstein olisi varmasti keksinyt jonkin ajatuskokeen, joka olisi saanut nobelistitriolle jauhot suuhun 😀

            Itse vähän arvailen, että Einsteinin epäluuloisuuden taustalla oli hänen rakas suhde termodynamiikkaan, jonka avulla hän sai oman nobelinsa. Kvanttimekaniikkahan on päällisin puolin termodynaaminen teoria, joka antaa keskimäärin oikeita tuloksia, mutta kuten klassisessa termodynamiikassa, pinnan alta tulisi löytyä liikeratojen kaltaista realismia.

          2. Syksy Räsänen sanoo:

            Tällaisten mahdollisuuksien poissulkeminen on ollut merkittävä osa työtä.

            Kokeen yhdessä versiossa kokeen asetukset määritellään eri päissä käyttäen fotoneita, jotka ovat tulleet miljardien valovuosien takaa, ja niin nopeasti, että valo ei ehdi kulkea päiden välillä. Kytköksen pitäisi siis ulottua miljardien valovuosien päähän paikassa ja miljardien vuosien päähän ajassa. Tällaista mahdollisuutta ei voine periaatteessakaan sulkea pois, mutta tuntuu erittäin vaikealta rakentaa teoriaa, jossa kaikki maailmankaikkeuden tapahtumat ovat tällä tavalla yhteydessä, ja joka olisi silti sopusoinnussa havaintojen kanssa.

          3. Einsteinin ”Jumala ei heitä noppaa” kuulostaa kritiikiltä Kööpenhaminan tulkintaa kohtaan, joka siinä vaiheessa olikin ainoa tulkinta. Monimaailmatulkinta tuli vasta pari vuotta Einsteinin kuoleman jälkeen. Ehkä hän olisi tykännyt siitä enemmän, kun siinä ei esiinny satunnaislukuja.

  8. Lomittumiseen ei liity kommunikaatiota yli valonnopeudella. Kuitenkin sitä käyttämällä joissakin peleissä voidaan pelata niin vahvasti, että kvanttimekaniikasta tietämätön tarkkailija luulee että pelaajat huijaavat kommunikoimalla keskenään. Eli ulkoisen tarkkailijan mielestä yliluonnollista kommunikaatiota tapahtuu, vaikka toimijoiden itsensä näkökulmasta ei. Näille ajatuskokeille on annettu nimi pseudotelepatia. Niiden viimeaikaisista käänteistä olisi mukava kuulla joskus lisää. Lähde: wikipedia:Quantum_pseudo-telepathy. Niitä pelejä oli tuolla sivulla aiemmin vain yksi, mutta nyt siellä on toinenkin (GHZ).

  9. Kas sanoo:

    Katoaako fotonin polarisaatio fotonin joutuessa mustaan aukkoon, ts onko mustalla aukolla jonkinlainen fotonin aiheuttama ”polarisaatio-informaatio” tai onko musta aukko täysi polarisaatiosta vapaa?

    Kysymys liittyy ajatusleikkiin, jossa kaksi fotonia on lomittunut ja toinen fotoni joutuu mustaan aukkoon.

    Jos fotonin mustaan aukkoon joutumisen jälkeen mitataan mustan aukon ulkopuolella olevan fotonin polarisaatio, niin tiedetäänkö myös tässä tilanteessa mustaan aukion joutuneen polarisaatio (ja pitäisikö sen jotenkin ”näkyä” mustan aukon toiminnassa)?

    Ja jos oletetaan mustan aukon ajan myötä haihtuvan Hawkingin säteilyn myötä, niin tuleeko polarisaatio-informaatio sen myötä ”ulos” mustasta aukosta?

    1. Syksy Räsänen sanoo:

      Mustalla aukolla on pyörimismäärä, luulisin että polarisaatio vaikuttaa siihen. Ei tiedetä, mitä tapahtuu mustaan aukkoon joutuneelle informaatiolle, etenkin kun lomittuminen otetaan huomioon, koska ei täysin osata yhdistää mustia aukkoja kuvaavaa yleistä suhteellisuusteoriaa ja lomittumista kuvaavaa kvanttifysiikkaa. Asiaa on tutkittu paljon, mutta varmuutta ei ole.

  10. Helena Othman sanoo:

    Vääntäisitkö rautalangasta, jos informaatio ei (edelleenkään) siirry valoa nopeammin, ”mikä” jos mikään siirtyy kun toista hiukkasta tarkkaillaan ja sen pari myöskin ilmaisee positionsa (tarkkailusta johtuen)?
    Onko lomittuminen pikemminkin jakaantuneen tai jakaantuneiden hiukkasten ominaisuus kuin ”informaationsiirto”?

    1. Syksy Räsänen sanoo:

      ”Onko lomittuminen pikemminkin jakaantuneen tai jakaantuneiden hiukkasten ominaisuus kuin ”informaationsiirto”?” Asia on juuri näin. Lomittunut hiukkaspari muodostaa erottamattoman kokonaisuuden. Kun yhden tila määräytyy, myös toisen tila määräytyy (eli yksi sen mahdollisista vaihtoehdoista valikoituu). Koska on sattumanvaraista, mikä vaihtoehdoista valikoituu, tämä määräytyminen ei välitä informaatiota.

      1. Lentotaidoton sanoo:

        Mielestäni monilla ihmisillä on (jokin pakonomainen) käsitys että lomittumisessa olisi kyse kahdesta eri systeemistä (jotka olisivat ”kietoutuneet”). Lomittunut tilahan on yksi kokonaisuus, mikä sitten dekoherenssissä randomisti romahtaa yhdellä kertaa. Silloin on selvää ettei informaationsiirtoa hiukkaselta toiselle tarvita, ei lokaalia eikä ei-lokaalia (vaikka etäisyys hiukkasten välillä olisi suurikin).

        1. Eusa sanoo:

          Toki ihmistä kiinnostaisi tietää tarkemmin mikä syvällinen mekanismi säilyttää korrelaation. Onko se jokin avaruusajan rytmi, joka säilyttää kvanttitilojen vastakkaisuuden vai mikä? Silmukkakvanttigravitaation haastava kysymys on kuinka edes liikemäärä säilyy. Fundamentaalissa fysiikassa on vielä loppumattomasti tekemistä.

          1. Syksy Räsänen sanoo:

            Kvanttimekaniikassa lomittumisella ei ole aika-avaruuden rakenteen kanssa mitään tekemistä.

            Siitä, mikä on perustavanlaatuisempi teoria kvanttifysiikan takana ei tiedetä.

            Liikemäärän säilyminen ei liity tähän, se riippuu siitä millainen aika-avaruus on, se tunnetaan yleisen suhteellisuusteorian puolelta hyvin. Yleistä suhteellisuusteoriaa ei tosin osata kokonaisuudessaan yhdistää kvanttiteoriaan, silmukkakvanttigravitaatio on yksi yritys tehdä niin.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Logiikasta ruuveihin

30.9.2022 klo 15.21, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Yläasteella tai lukiossa opiskelevat kysyvät minulta joskus miten tullaan fyysikoksi. Tähän on helppo vastata: suorittamalla koulun fysiikan ja matematiikan kurssit (koodaamisesta on myös apua) huolella ja hakemalla yliopistoon opiskelemaan fysiikkaa. Yliopistossa saa selville, mistä fysiikassa oikeastaan on kyse ja onko se oma ala.

Jatkokysymys miten tullaan hyväksi fyysikoksi on sitten vaikeampi. Yliopisto-opintojen osalta ehkä tärkein asia mihin voi itse vaikuttaa on se, että on innostunut, omistaa opinnoille niille tarvittavan ajan, ja valitsee gradu- ja väitöskirjaohjaajansa huolella. Fysiikan teorioiden sisällön omaksumisen (mihin yliopiston kurssit lähinnä keskittyvät) lisäksi tutkijan työssä tarvitaan erilaisia taitoja, joista monet oppii vain tekemällä kuten käsityössä.

Hiukkasfysiikassa ja kosmologiassa (saati fysiikassa laajemmin) on erilaisia aloja, joissa tarvitaan eri taitoja ja ajattelutapoja.

On matemaattisen fysiikan nimellä kulkevaa tutkimusta, joka on matemaattisesti huolellista ja kehittynyttä, mutta usein kaukana havainnoista. Yhdestä suunnasta se sulautuu matematiikkaan. Jotkut matemaattiset fyysikot ovatkin matematiikan laitoksilla töissä, ja yhteisössä lähempänä matemaatikkoja kuin muita fyysikoita.

Toisessa suunnassa matemaattinen fysiikka muuttuu vähemmän täsmälliseksi teoreettiseksi fysiikaksi, jonka pääpaino on teorioiden ja mallien kehittämisessä määrättyjen ilmiöiden kuvaamiseen. Lähemmäs havaintoja mentäessä teoreettinen fysiikka puolestaan lomittuu fenomenologiaksi kutsuttuun fysiikan haaraan. Fenomenologiassa keskitytään siihen, millaisia havaintoja mallit tarkalleen ennustavat ja selittävät, ja verrataan niitä kokeiden tuloksiin. Siinä on tärkeämpää hallita teoreettisia menetelmiä sekä tuntea kokeita ja osata verrata niitä teoriaan kuin ymmärtää hienostuneen matematiikan yksityiskohtia.

Fenomenologia on silta teoriasta kokeelliseen fysiikkaan. Kokeellisessa fysiikassa pitää tuntea teorioiden lisäksi laitteiden rakentamista, toimintaa ja käytäntöä. Jos matemaattisen fysiikan rajalla on matematiikka, missä pitää hahmottaa loogisia yhteyksiä vailla kosketusta todellisuuteen, niin kokeellisen fysiikan rajalla on insinööritaito, missä pitää tietää miten ruuvit pannaan paikalleen.

Sen lisäksi, että eri aloilla tarvitaan erilaisia taitoja, niiden sisällä voi tehdä tutkimusta eri tyyleillä. Osassa teoreettista fysiikkaa kehitetään parempia menetelmiä ja teorioita, vaikkapa esitetään uudenlaisia pimeän aineen hiukkasia tai tapoja kuvata kosmisen inflaation kvanttivärähtelyjä. On myös tutkimusta, joka on hyvin spekulatiivista eikä pohjaa vankasti sen enempää havaintoihin kuin teoriaankaan. Siinä heitellään kaikenlaisia ideoita, ja alkuun ne voivat olla puolivillaisia ja käsittely epätäsmällistä; tärkeintä on uusien yhteyksien ja näkökulmien kehittäminen.

Koska tutkimusta ja taitoja on niin erilaisia, on vaikea arvioida tutkijoita yksiulotteisella hyvä-huono-akselilla. Tutkijoiden välillä on kyllä merkittäviä tasoeroja, ja on syytä myös hyväksyä se, että osa eroista on luontaisia, kuten urheilussa ja musiikissa. Olipa syynä perintötekijät tai lapsuuden kehitys, minusta ei voisi tulla yhtä taitavaa fyysikkoa kuin vaikkapa säieteoreetikko Edward Wittenistä, vaikka olisin kuinka omistautunut.

Kaikessa fysiikan tutkimuksessa on hyödyksi peräänantamattomuus yhdistettynä kykyyn arvioida omia ideoita kriittisesti ja luopua niistä. Teoreettisessa kosmologiassa onkin vahva kyseenalaistamisen ja väärässä olemisen kulttuuri. Yksi tärkeä taito on se, että osaa muodostaa selkeän käsityksen siitä, mitä tietää ja miksi, mitä ei tiedä, ja pystyy esittämään kantansa selkeästi. Ja sanottakoon että oman työn markkinoiminen rahoitushakemuksissa on nykyään yhä tärkeämpi taito.

Uutta tutkimusta julkaistaan joka päivä, ja on tärkeää pysyä ajan tasalla. Tieteellisiä artikkeleita pitää osata lukea sekä pintapuolisesti että syvään pureutuen. Kaikkeen edes oman alan tutkimukseen ei ole aikaa perehtyä, joten pitää pystyä saamaan käsitys siitä, mistä on kysymys, vaikka ei ymmärrä artikkelia tarkkaan. Toisaalta omaan tutkimukseen läheisesti liittyvien asioiden kohdalla on tärkeää osata käydä asiat läpi yksityiskohtaisesti.

Tärkeitä taitoja voisi listata enemmänkin. Niitä oppii tekemällä, eikä kukaan tiedä tai osaa kaikkea. Siksi on tärkeää osata tehdä yhteistyötä ja paikata omia heikkouksia muiden vahvuuksilla. Itse en esimerkiksi osaa koodata (on kauan siitä, kun olen edes oikolukenut toisten koodia) enkä hallitse data-analyysin yksityiskohtia. Muiden kanssa työskennellessä olen oppinut arvostamaan sitä mitä he osaavat, ja samalla näkemään sekä yhteistyökumppanien että itseni rajoitukset.

2 kommenttia “Logiikasta ruuveihin”

  1. Erkki Kolehmainen sanoo:

    Fysiikka on inhimillistä toimintaa ja tulla hyväksi fyysikoksi on ainakin osittain samaa kuin tulla hyväksi ihmiseksi. Siihen liittyy tiettyjä moraali- ja eettisiä kriteerejä, jotka eivät poikkea mitenkään muista asioista kiinnostuneiden ihmisten vaatimuksista. Fysiikan tutkimuksen kannalta ongelmallista on rahoituksen hankkiminen hakumenettelyn kautta. Rahoituspäätöksiä nimittäin tekevät esim. vallitsevan hiukkasfysiikan ns. standardimallin kannattajat. Eli ei kannata mennä heille kertomaan, ettei pimeää ainetta ole olemassa. Se on varmin tapa tehdä turhaa työtä! Mikä tahansa idea, millainen pimeän aineen hiukkanen voisi olla, on parempi. Skaalan laajentamien WIMPien aksonien ulkopuolelle sallitaan, mutta ei kieltämistä. Tilanne on verrattavissa urheiluun. Jos sanot, että Putin on rikollinen, niin saat ehkä kilpailla (tosin ilman kansallistunnuksia) muuten et saa. Tällaista on ”mielipiteen vapaus”, jonka väitetään kuuluvan demokratiaan!

    1. Syksy Räsänen sanoo:

      En viitannut tässä yhteydessä sanalla ”hyvä” tieteen tekemisen etiikkaan, vaikka sekin on tärkeä asia. Se, että joku tekee hyvätasoista tutkimusta ei valitettavasti tarkoita (tai edellytä) sitä, että hän olisi erityisen moraalisesti hyvä ihminen.

      Vaihtoehtoa pimeälle aineelle (muokattu gravitaatio) tutkitaan yhä, mutta se on ollut paljon selitys- ja ennustusvoimaisempi idea kuin kilpailijansa. Siksi sitä tutkitaan enemmän.

      Ks. esim. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/luodin-jaljet/

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Vinouman korjaamista

27.9.2022 klo 23.14, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Kirjoitin Helsingin opettajien ammattiyhdistyksen HOAY lehteen Rihveli 2/2022 siitä, miksi fysiikassa on niin vähän naisia. Artikkeli Vinouman korjaamista on luettavissa tässä. Ote jutusta:

”Yhdysvalloissa vuonna 2012 tehty tutkimus havainnollistaa asiaa. Siinä 127 yhdysvaltalaiselle matemaattis-luonnontieteellisen tiedekunnan jäsenelle eri yliopistoissa lähetettiin samanlainen hakemus, johon oli laitettu joko miehen tai naisen nimi. Arvioijat pitivät hakijaa pätevämpänä ja tarjosivat tälle korkeampaa palkkaa kun paperissa oli miehen nimi. Sillä ei ollut eroa, oliko arvioija mies vai nainen.”

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Rajoituksia monesta suunnasta

26.9.2022 klo 00.11, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Luultavasti noin 80% maailmankaikkeuden aineesta on pimeää ainetta, joka on havaittu vain gravitaation kautta. Yksi vanhimpia ehdotuksia pimeäksi aineeksi on mustat aukot. Koska pimeä aine on vanhempaa kuin tähdet, nämä mustat aukot eivät ole voineet syntyä tähtien romahduksessa, vaan niiden täytyy olla peräisin muinaisesta maailmankaikkeudesta. Tämän takia ne voivat olla paljon tähtiä kevyempiä tai raskaampia.

Vaikka mustat aukot eivät säteile valoa, niitä voi havaita monella tapaa. Havaintokanavista juhlituin on kahden mustan aukon toisiaan kiertäessään ja toisiinsa sulautuessaan synnyttämät gravitaatioaallot, joista myönnettiin vuonna 2017 Nobelin palkinto. Gravitaatioaaltoja on havaittu nyt 90 kappaletta. Suurimmassa osassa ei ole mitään viitteitä siitä, että lähteenä olisi muuta kuin tähtien romahduksessa syntyneitä mustia aukkoja ja neutronitähtiä. Jokusessa havainnossa on näkynyt kappaleita, joiden alkuperä oudoksuttaa, mutta ei ole selviä todisteita siitä, että ne olisivat muinaisilta ajoilta.

Mutta sekin, että mitään ei ole löydetty on hyödyllistä tietoa. Jos kaikki pimeä aine olisi sen massaisia mustia aukkoja, että niiden lähettämät gravitaatioaallot osuvat gravitaatioaaltokokeiden LIGO ja Virgo havaintoalueelle, niin nämä kokeet olisivat ne nähneet. Tästä voi päätellä, että mustien aukkojen massan pitää olla pienempi kuin sadasosa Auringon massaa tai isompi kuin tuhat Auringon massaa.

Gravitaatioaaltojen lisäksi (oletettavasti) tähtien romahduksessa syntyneitä mustia aukkoja on havaittu niitä kiertävän aineen lähettämän kirkkaan säteilyn kautta. Koeryhmä Event Horizon Telescope julkaisi vuonna 2019 kuvan galaksin M87 keskustan jättimäisestä mustasta aukosta, jonka massa on kuusi miljardia Auringon massaa. Tämän vuoden toukokuussa oli vuorossa kuva sen lajitoverista Linnunradan keskustassa, jonka massa on neljä miljoonaa Auringon massaa.

Myös kevyempien mustien aukkojen ympärille kertyy säteilevää ainetta. Jos kaikki pimeä aine olisi mustia aukkoja, kertymäkiekkojen säteilyä tulisi niin paljon joka puolelta että se olisi havaittu, jos aukkojen massa on yhden ja tuhannen Auringon massan välillä. Jos massa on pienempi, kiekot ovat liian pieniä havaittavaksi. Jos massa on isompi, mustia aukkoja on liian harvassa.

Yksi todistusaineiston palanen pimeän aineen olemassaolon puolesta on se, että galaksit ja galaksiryppäät taivuttavat valoa enemmän kuin mitä näkyvä aine selittää. Myös pienemmät kohteet taivuttavat valoa. Jos meidän ja tähden välistä kulkee pienikokoinen mutta raskas kappale, se keskittää tähden valoa polttolasin lailla, joten tähden kirkkaus hetkeksi kasvaa. Se, että tällaista ylimääräistä tuiketta ei ole nähty, asettaa isoja rajoituksia sille, että kaikki aine koostuisi mustista aukoista. Näiden havaintojen puute sulkee pois massat Auringon massan miljardisosan tuhannesosasta tuhanteen Auringon massaan.

Mustat aukot häiritsevät tähtien ratoja paljon enemmän kuin sellainen pimeä aine, joka koostuu harvasta hiukkaskaasusta. Kun musta aukko kulkee tähden läheltä, se linkoaa tähden korkeampaan nopeuteen, siirtäen sille omaa liike-energiaansa. Tämän takia erityisesti kääpiögalaksit venyvät, kun niiden tähdet pääsevät liikkumaan yhä kauemmaksi keskustasta. Mustan aukon ohikulku voi myös hajottaa kaksoistähtijärjestelmän, kun yksi tähti mustan aukon vetämänä irtoaa toisen otteesta. Koska tällaista ei ole havaittu, mustat aukot eivät voi olla pimeää ainetta, jos niiden massa on Auringon massan ja kymmenen tuhannen Auringon massan välissä.

Mitä isompi on mustien aukkojen massa, sitä vähemmän ja sitä harvemmassa niitä on – ja sitä tehokkaammin tavallinen aine klimppiytyy mustien aukkojen ympärille. Siitä, että tällaista kasautumista ei nähdä, voidaan päätellä, että mustien aukkojen massan pitää olla pienempi kuin sata Auringon massaa, yhä olettaen, että kaikki pimeä aine koostuu niistä.

Jos mustien aukkojen massa on tarpeeksi pieni (alle 10-12 eli tuhannesmiljardisosa Auringon massasta), niitä ei olisi vielä havaittu. Mutta Stephen Hawkingin esittämän ennusteen mukaan mustat aukot säteilevät kvanttimekaanisesti sitä voimakkaammin mitä pienempiä ne ovat.

Jos muinoin syntynyt musta aukko olisi kevyempi kuin 10-16 (eli kymmenesmiljoonasmiljardisosa) Auringon massasta, niin se olisi ehtinyt säteillä kaiken energiansa pois. On tosin mahdollista, että kun aukon massa laskee alle mikrogramman, niin Hawkingin säteily lakkaa ja jäljelle jää pysyvä nokare. Mitkään havainnot eivät poissulje sitä, että pimeä aine koostuu tällaisista nokareista, ja minäkin olen sitä mahdollisuutta tutkinut.

Joka tapauksessa 10-16 ja 10-12 Auringon massan välissä on ikkuna, jossa kaikki pimeä aine voisi olla mustia aukkoja. Tämä vastaa asteroidien massaa, ja tällaiset mustat aukot olisivat suunnilleen atomin kokoisia.

Monet mainituista rajoista mustien aukkojen massoille menevät päällekkäin. Tämä on eduksi, koska kullakin havainnolla on omat epävarmuutensa.

Esimerkiksi mustien aukkojen tähtien ratoihin aiheuttaman häiriön suuruuteen vaikuttaa se, miten mustat aukot klimppiytyvät. Jos ne kerääntyvät keskenään kimpuiksi, kimppuja on harvemmassa kuin yksittäisiä mustia aukkoja, joten niiden aiheuttamat häiriöt ovat harvinaisempia. Lisäksi yllä on oletettu, että kaikilla pimeän aineen mustilla aukoilla on sama massa. Mustien aukkojen alkuperän selittävien mallien mukaan kuitenkin samalla syntyy monia erimassaisia mustia aukkoja.

Yksityiskohdista kiistellään, mutta vaikuttaa siltä, että ainoat mahdollisuudet ovat tosiaan asteroidien massaiset mustat aukot tai Hawkingin säteilystä jäljelle jääneet nokareet. Edelliset voisi havaita etsimällä röntgensädelähteiden tuiketta tähtien sijaan. Havaintoa tuskin tehdään –tai kaikkia asteroidimassoja saadaan poissuljettua– ennen kuin aikaisintaan 2030-luvulla. Vaikka sopivia havaintolaitteita on jo, kuten intialainen AstroSat-röntgensatelliitti, tällaisia mahdollisia mustia aukkoja ei taideta pitää niin tärkeänä kohteena, että niihin pian pantaisiin tarpeeksi havaintoaikaa.

Mustien aukkojen jahti osoittaa miten aivan erilaisia havaintoja voi käyttää saman asian luotaamiseen, eikä kannata keskittyä vain yhteen suuntaan. Se myös muistuttaa siitä, että löytöjen puute on itsessään arvokasta tietoa, joka ohjaa teoreettista tutkimusta kertomalla miten asiat eivät ainakaan ole.

30 kommenttia “Rajoituksia monesta suunnasta”

  1. Eusa sanoo:

    Tätä korjausviestiä ei tule julkaista.

    3. viimeisessä kappaleessa ei liene tarkoitus mainita ”mustien tähtien ratoihin aiheuttaman…” vaan ”mustien aukkojen tähtien ratoihin aiheuttaman…” Samassa kappaleessa ”pimeä aineen” –> ”pimeän aineen”.

    Voimia popularisointiin!

    1. Syksy Räsänen sanoo:

      Kiitos kiitos, korjattu.

  2. Seniorikosmologi sanoo:

    Pimeän energian (ja aineen) uskotaan selittävän maailmankaikkeuden laajenemisen kiihtymisen. Tämän kiihtymisen on sanottu alkaneen noin 5 miljardia vuotta sitten. Voisiko ajatella, että siihen mennessä kuluneen vajaan 9 miljardin vuoden aikana mustia aukkoja (eli pimeää energiaa ja ainetta) oli syntynyt riittävän paljon kiihtyvän laajenemisen synnyttämiseksi?

    Eikö olisi loogista, että näkyvän aineen, käytännössä tähtien, määrä vähenee ja mustien aukkojen määrä kasvaa ajan myötä, jolloin pimeän aneen määrä ja maailmankaikkeuden kiihtyminen lisääntyvät?

    1. Syksy Räsänen sanoo:

      Pimeä aine ei ole vastuussa laajenemisen kiihtymisestä, eikä mustilla aukoilla ole kiihtyvän laajenemisen kanssa tiettävästi mitään tekemistä.

  3. Seniorikosmologi sanoo:

    Aine ja energia ovat mustissa aukoissa erottamattomia. Eli mustat aukot ovat sekä pimeää ainetta että pimeää (painovoima)energiaa, eikö?

    1. Syksy Räsänen sanoo:

      Pimeällä aineella ja pimeällä energialla ei ole tiettävästi mitään tekemistä keskenään. Pimeä energia ei siis ole pimeään aineeseen liittyvää energiaa.

      Ei tiedetä, koostuuko pimeä aine mustista aukoista vaiko hiukkasista.

  4. Erkki Kolehmainen sanoo:

    ”Se myös muistuttaa siitä, että löytöjen puute on itsessään arvokasta tietoa, joka ohjaa teoreettista tutkimusta kertomalla miten asiat eivät ainakaan ole.”

    Löytöjen puute saattaa olla arvokasta, mutta eihän se tietoa ole? Jos mahdollisia tapoja, miten asiat voidaan tehdä, on hyvin paljon, niin ei se paljoa auta, jos olemme toteuttaneet yhden toimimattoman idean! Kansallismuseossa on hankasalmelaisen kylähullun tekemä ikiliikkuja, joka olisi toiminut, jos siinä olisi ollut ”kylymä ilima laahutin” eli lämmitin. Vaikka kaikki maailman kylähullut väsäisivät oman ikiliikkujansa, niin ei asia muutu, koska heiltä puuttuu tieto, miksi ikiliikkuja ei voi toimia.

    1. Syksy Räsänen sanoo:

      Kommentti ei koskenut ”kylähulluja”, vaan tieteen tekemistä.

      Esimerkiksi se, että eetterituulta (tai muita eetterin ennustamia ilmiöitä) ei 1800-luvun lopulla havaittu oli tärkeä havainto, koska se viittasi siihen, että oikea ratkaisu löytyy muualta, siinä tapauksessa suppeasta suhteellisuusteoriasta.

  5. Martti V sanoo:

    Jos mikrogramman auko osuu maapalloon, mitä käy?

    1. Syksy Räsänen sanoo:

      Se matkaa Maan läpi sitä juuri häiritsemättä. Tuollaiset mustat aukot ovat niin pieniä ja kevyitä, että niiden havaitseminen on vaikeaa.

      1. Martti V sanoo:

        Detektointissa taitaa olla mahdollisuutena vain gravitaation vuorovaikutus. Onko törmäys niin epätodennäköinen ettei aukkoon tipu juuri mitään eikä se näin kasva?

        1. Syksy Räsänen sanoo:

          Joo. Mikrogramman massainen kappale ei paljoa gravitoi, ja koska tällaisen mustan aukon koko on 10^(-35) m luokkaa, suora törmäys mihinkään on äärimmäisen epätodennäköinen.

          On esitetty, että tällaisia mustia aukkoja voisi havaita tiheällä verkolla tarkkoja pieniä gravitaatiomittareita. Tarkemmin täällä: https://arxiv.org/abs/2203.07242

      2. Martti V sanoo:

        Puoltaako teoriat esim. Hawking säteily sitä, että mustat aukot eivät hörysty kokonaan vaan jää nökäre jäljelle?

        1. Syksy Räsänen sanoo:

          Tämänhetkinen tietomme ei sano mitään asiasta suuntaan tai toiseen.

  6. Seniorikosmologi sanoo:

    Miten musta aukkko voi olla keveä? Siinähän aine on kasaantunut lähes äärettömän tiiviiksi ja samalla siis painavaksi. Jostain olen lukenut, että atomiytimen kokoinen musta aukko painaa 1000 000 000 000 kg.

    1. Syksy Räsänen sanoo:

      Ensinnäkin tiheys on eri asia kuin massa. Jos kappale on pieni, se voi olla kevyt vaikka on tiheä.

      Toisekseen musta aukko muodostuu, kun tarpeeksi massaa tietyn säteen (ei siis tilavuuden) sisällä. Koska massa/säde on kiinnitetty, tiheys eli massa/tilavuus on sitä pienempi, mitä isompi musta aukko on.

      Kyllä, protonin kokoinen musta aukko (jos niitä on olemassa) painaa tosiaan noin 10^12 kg eli 10^(-19) Auringon massaa.

  7. Jari Toivanen sanoo:

    Mustista aukoista kysyisin, että onko niihin teoriassa liitetyt madonreiät kaksisuuntaisia? Olisiko mahdollista havaita mustista aukoista meillepäin virtaavaa liikennettä?

    1. Syksy Räsänen sanoo:

      Ei. Lisäksi olemassa oleviin mustiin aukkoihin ei luultavasti liity madonreikiä. Ne ovat ikuisten pyörivien mustien aukkojen yksinkertaistetun kuvauksen piirre, joka luultavasti ei päde todellisille mustilla aukoille.

  8. Tietämätön sanoo:

    Mihin perustuu väittämä ”Koska pimeä aine on vanhempaa kuin tähdet,”?

    1. Syksy Räsänen sanoo:

      Yksi parhaita todistusaineiston palasia pimeästä aineesta on sen vaikutus kosmiseen mikroaaltotaustaan kun maailmankaikkeus oli 380 000 vuoden ikäinen.

      Tähdet ovat syntyneet vasta 100-200 miljoonan vuoden iässä.

      1. Tietämätön sanoo:

        Hyvä ja ytimekäs perustelu.
        380000 vuotta vanhan maailmankaikkeuden ainejakaumasta voidaan siis päätellä myös pimeän aineen gravitaation vaikutus? Ja jakaumaa ei voida perustella pelkästään näkyvän aineen massalla?

        1. Syksy Räsänen sanoo:

          Kyllä. Ilman pimeää ainetta kosmisen mikroaaltotaustan läiskät näyttäisivät aivan erilaisilta. Kosmisesta mikroaaltotaustasta näkyy, että fotonit ovat velloneet paljon syvemmissä gravitaatiopotentiaalikuopissa kuin mitä näkyvä aine pystyy selittämään.

          1. Tietämätön sanoo:

            Kiitos vastauksesta. Voisiko tuota mikroaaltotaustan analysointia avata maallikolle tarkemmin jossain tulevaisuuden kirjoituksessa? Lähinnä kosmologin näkökulmasta, eli ei tarvitse mennä mittausmenetelmiin syvemmin.

          2. Syksy Räsänen sanoo:

            Tuopa onkin hyvä blogikirjoituksen aihe. Kirjoitan siitä myöhemminä tänä vuonna.

  9. Cargo sanoo:

    Pimeä aine lienee jollakin tavalla lokalisoitunutta energiaa johon voidaan liittää omanlaisensa kvanttikenttä? Mutta voisiko tämä massaenergiatiheytenä havaittu pimeä aine olla vain ilmentymä Standardimallin kvanttikenttien sisältämästä energiasta, kun siis oletetaan ettei kaikki sellainen aaltomainen energia ole kasaantunut ja muuttunut näkyviksi hiukkasiksi? Tällöin ei olisi myöskään mitään pimeitä hiukkaisia, jotka voisivat vuorovaikuttaa toistensa kanssa jollakin pimeällä tavalla.

    1. Syksy Räsänen sanoo:

      Ellei pimeä aine koostu mustista aukoista, se oletettavasti koostuu hiukkasista, kuten kaikki muukin aine. Kyseisillä hiukkasille ei vain ole sähkövarausta, siksi niitä ei nähdä valon avulla eikä voi koskea. Kaikki hiukkaset ovat kvanttikenttien tihentymiä.

      Pimeä aine ei voi koostua mistään Standardimallin hiukkasista. Ainoat Standardimallin stabiilit hiukkaset, joilla ei ole sähkövarausta ovat neutriinot, ja niitä on liian vähän.

      1. Cargo sanoo:

        Pahoittelen, että kysyn asiaa uudestaan. Mutta jos siis oletetaan tyhjä avaruus, jossa ei ole näkyvän aiheen hiukkasia, niin sellainen alue sisältää kuitenkin Standardimallin erilaisten kvanttikenttien nollapistefluktuaatioita, joihin on latautunut nollapiste-energiaa. Voisiko olla mahdollista, että galaksin gravitaatio vaikuttaa tuohon tyhjiön energiatiheyteen suurilla etäisyyksillä ja vetää olemassaolevaa energiaa puoleensa? Siitähän luulisi seuraavan sen, että tyhjiön energiatiheys on suurempi galaksien ympärillä kuin galaksien välisessä avaruudessa – ja se tulkittaisiin pimeäksi aineeksi.

        1. Syksy Räsänen sanoo:

          Ei.

  10. Mikko sanoo:

    Voisiko muinaisten mustien aukkojen massajakauma olla tasainen esim. 10^-16 – 10^10 auringon massan alueella ja näin kattaa koko puuttuvan pimeän aineen massan? Tällöin niitä olisi vaikea testeillä, jotka keskittyvät yhteen kapeaan massa-alueeseen kerrallaan, kun siinä alueella olisi vain murto osa muinaisten mustien aukkojen kokonaismassasta.

    1. Syksy Räsänen sanoo:

      Hyvä kysymys. Yleensä tosiaan oletetaan, että kaikilla mustilla aukoilla on jokseenkin sama massa. Teoreettisten mallien mukaan kuitenkin kevyimpien ja raskaimpien mustien aukkojen massat tyypillisesti eroavat ainakin tekijällä sata, joskus enemmänkin.

      Jos kaikilla on sama massa, niin välillä 10^(-16)…10(-12) Auringon massaa mikä tahansa massa kelpaa. Siitä ylöspäin raja nousee aika jyrkästi, 10^(-10) Auringon massan kohdalla mustat aukot voivat olla noin sadasosa pimeästä aineesta.

      Jos mustilla aukoilla on hyvin erilaisia massoja, rajat massoille pitää selvittää havainnoista erikseen, ei voi vain käyttää yksimassaisen tapauksen rajoja ja soveltaa niitä samaan aikaan usealle eri massalle.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Viisareina tähdet

27.8.2022 klo 22.29, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kirjoitin kesäkuussa maailmankaikkeuden iän määrittämisestä. Mainitsin, että jos ”tiedetään miten jotkut kappaleet –vaikkapa tähdet tai galaksit– kehittyvät, niin sellaisen iän voi arvioida ulkonäön perusteella”. Palaan nyt tähän iän arviointiin.

Maailmankaikkeudessa on galakseja, joiden kehityksen avulla mitataan aikaa. Kosmologeille on tullut tavaksi kutsua niitä kosmisiksi ”kronometreiksi” eli aikamittareiksi. Tälle on kyllä arkisempikin sana: kello.

Viisarikello kertoo, montako kertaa viisari on liikkunut sovitun nollakohdan jälkeen (eli viimeisimmän keskiyön tai keskipäivän). Kun tiedetään, kauanko yksi viisarin liike kestää, tämä lukumäärä kertoo paljonko aikaa on kulunut.

Kun aikaa mitataan galakseista, viisareina ovat tähdet. Tähtien elämänkaari tunnetaan hyvin: tähti muodostuu kaasupilvien romahtaessa ja kehittyy eri vaiheiden läpi valkoiseksi kääpiöksi, neutronitähdeksi tai mustaksi aukoksi, riippuen siitä kuinka massiivinen se on.

Niinpä galaksin iän voi määrittää katsomalla missä kehitysvaiheessa olevia tähtiä siinä on. Erityisesti vanhimmat tähdet ovat tärkeitä, koska ne antavat alarajan galaksin iälle. Galaksien valo sisältää valtavan otoksen erilaisten tähtien valosta – esimerkiksi Linnunradassa noin 100 miljardia tähteä.

Tässä on se hyvä puoli, että ei ole niin väliä mitä joillekin yksittäisille tähdille on tapahtunut – poikkeamat hukkuvat isoon otokseen. Varjopuoli on se, että tähtien kehityksen lisäksi pitää tietää, miten tähtien jakauma kehittyy galaksissa.

Tämän takia yritetään keskittyä galakseihin, jotka eivät ole yhtyneet toisiin galakseihin. Galaksien sulautuminen sekoittaa niiden tähdet keskenään, minkä takia on vaikeampi selvittää millainen tähtien jakauma oli alun perin ja miten se on kehittynyt. Lisäksi pyritään valitsemaan galakseja, joissa ei enää juuri muodostu uusia tähtiä, tähtiväestö vain vanhenee tasaisesti.

Sen lisäksi, että yhdessä galaksissa on paljon tähtiä, vaihtelua suitsitaan käyttämällä kellona yhden galaksin sijaan tuhansia galakseja eri puolilla taivasta. Tällöin mahdollisesti poikkeuksellisten yksittäisten galaksien vaikutus on vähäinen, ja satunnaisten vaihtelujen merkitys pienenee otoksen koon kasvaessa.

Galaksin valosta on helppo mitata punasiirtymä, joka kertoo paljonko avaruus on laajentunut sen jälkeen kun valo lähti matkaan. Kun verrataan sitä, miten eri galaksien punasiirtymä riippuu niiden iästä, saadaan selville, miten maailmankaikkeus laajenee ajan kuluessa. Tämä on yksi suorimpia tapoja mitata avaruuden laajenemisnopeutta ja sen muutosta.

Usein laajenemisnopeus sen sijaan päätellään mittaamalla galaksien punasiirtymiä ja etäisyyksiä. Etäisyyden ja punasiirtymän suhdetta verrataan jonkin kosmologisen mallin ennusteeseen, ja mallista sitten lasketaan miten avaruus on laajennut. Tällainen päätelmä laajenemisnopeudesta on epäsuora ja riippuu käytetystä kosmologisesta mallista. Isoin epävarmuus liittyy siihen, millaista olettaa pimeän energian olevan.

Laajenemisnopeuden määrittäminen kosmisten kellojen avulla ei riipu siitä millaista pimeä energia on, mutta se on herkkä sille, miten tähtisisällön kehitystä mallinnetaan. Galaksit ovat monimutkaisempia kappaleita kuin tähdet, ja niiden tähtiväestön synnystä ja kehityksestä on kilpailevia malleja. Mallit johtavat erilaisiin tuloksiin galaksien iästä ja siten maailmankaikkeuden laajenemisnopeudesta.

Jotkut suositut kehitysmallit ennustavat maailmankaikkeuden iän aivan pieleen. Voi sanoa, että laajenemisnopeuden kannalta tällä ei ole väliä, koska se riippuu vain siitä, miten ikä muuttuu punasiirtymän myötä, ei iän nollakohdasta. Kello voi mitata ajan kulumista tarkasti, vaikka se olisi väärässä ajassa. Mutta se, että malli ennustaa yhden asian väärin herättää epäilyksen siitä, osuuko oikeaan muissa asioissa.

Yksi kosmologian pohdituimpia kysymyksiä tällä hetkellä on se, että kosmisesta mikroaaltotaustasta päätelty avaruuden laajenemisnopeus on pienempi kuin lähellä olevien supernovien avulla mitattu. Kosmiset kellot sopivat paremmin yhteen supernovien tulosten kanssa kuin kosmisen mikroaaltotaustan, mikä viittaa siihen, että ristiriitaa ei voi ratkaista peukaloimalla mikroaaltotaustaa. Tilastolliset virherajat sekä tähtiväestön kehitysmallien epävarmuus ovat tosin vielä liian isoja, jotta tästä voisi tehdä varmoja päätelmiä.

Eteenpäin pääsemiseksi ei riitä että mitataan lisää galakseja, tarvitaan parempi ymmärrys niiden tähtiväestön kehityksestä. Tämä on esimerkki kosmologian ja tähtitieteen (hienommin sanottuna astrofysiikan) erosta. Tähtitieteilijät tutkivat galakseja niiden itsensä takia, kosmologit käyttävät niitä kelloina.

18 kommenttia “Viisareina tähdet”

  1. Pallomaiset tähtijoukot saattaisivat olla yksinkertaisempia kohteita mallintaa kuin galaksit. Olisikohan niiden havaitseminen mahdollista tulevaisuudessa jopa kosmologisilta etäisyyksiltä? Jollei suoraan, niin ehkä käyttäen painovoimalinssejä apuna(?)

    1. Syksy Räsänen sanoo:

      En osaa sanoa – nehän ovat merkittävästi himmeämpiä kuin galaksit (koska niissä on vähemmän töhtiä).

      Painovoimalinsseistä ei ole sikäli apua, että tällaisiin havaintoihin tarvitaan suuri määrä kohteita. On harvinaista, että meidän ja kohteen väliin sattuu tarpeeksi iso linssi tarpeeksi keskelle, että kirkkaus kasvaa merkittävästi.

      1. Lasse Reunanen sanoo:

        Olen nähnyt tulkintoja, että Linnunradan pallomaisissa tähtijoukoissa tähdet olisivat vanhimpia tunnettuja tähtiä – siis useita miljardeja valovuosia sitten muodostuneina.
        Jotenkin niin, että niissä olisi sitä alkuperäistä vetyä runsaasti ja siksi eivät olisi räjähdelleet niin usein supernovina.
        Mietin, että jos silloin alkuaikoina muodostuneena olisi pienehköt mustat aukot kerryttäneet pallomaisia muotoja keskimäärin tiheämmästä tähtimäärästä ja siten niitä pallomuodostelmia kehittynyt paljon – jääden sitten kiertämään myöhemmin isompien galaksimuodostelmien kehille – niiden painovoimien nopeudet riittäneet pysyttäytymiseen etäällä.
        Vaikka vielä ei tarkoin tiedettänekään mitä niiden palomuodostelmien keskuksiin kehittynyt – lienevät kuitenkin samankaltaisiksi lähtöasetelminaan kehittyneet, pitkäikäisiksi kertymiksi.

        1. Syksy Räsänen sanoo:

          Kyllä, pallomaisissa tähtijoukoissa on vanhoja tähtiä. Mustia aukkoja ei tarvita pallomaisten tähtijoukkojen synnyn selittämiseen.

  2. Martti V sanoo:

    Onko mahdollista, että mikroaaltotaustan syntyaikana laajeneminen oli hitaampaa kuin myöhemmin galaksien syntymisen jälkeen?

    1. Syksy Räsänen sanoo:

      Ei. Maailmankaikkeuden laajeneminen hidastuu siihen asti, kunnes pimeä energia (tai mikä sitten onkaan vastuussa kiihtyvästä laajenemisesta) ottaa vallan vajaan 10 miljardin vuoden iässä. (Lukuun ottamatta kosmista inflaatiota ensimmäisen sekunnin perukoilla.)

      Maailmankaikkeuden laajenemisnopeus kosmisen mikroaaltotaustan syntyessä oli paljon isompi kuin nyt.

      1. Jani sanoo:

        Siitäkö johtuu, että kosminen taustasäteily on mikroaalto säteilyä, mutta Jjames Webb teleskoopin näkemät vanhimmat galaksit, jotka ovat lähes yhtä vanhoja mitä taustasäteily näkyvät infrapuna alueella?

        1. Syksy Räsänen sanoo:

          Aallonpituuden määräytyy siitä, kuinka paljon maailmankaikkeus on kaikkiaan venynyt, ei siitä hidastuuko laajenemisnopeus.

      2. Martti V sanoo:

        Havainnot mikroaaltotaustasta näyttää siltä, että laajeneminen oli hitaampaa. Uskotaanko edelleen, että kyse on systemaattisesta mittausvirheestä?

        1. Syksy Räsänen sanoo:

          Ei oikein tiedetä mitä ajatella. Monia mahdollisia virheitä on tutkittu, eikä mitään ole löytynyt. Toisaalta myöskään vakuuttavaa teoreettista selitystä, joka sopisi kaikkiin havaintoihin, ei ole löytynyt.

  3. robert ekman sanoo:

    ei varsinaisesti liity aiheeseen, nöyrät pahoittelut;

    voivatko eräissä teorioissa mainitut lisäulottuvuudet olla aikaulottuvuuksia, tilaulottuvuuksien sijaan? Esim 10-ulottuvuutta muodostuisi 3 tila- & 7 aikaulottuvuudesta? Matemaattisesti tällä ei liene eroa; mutta käytännön erona se, ettei lisää tilaulottuvuuksia tarvitse ”etsiä”
    Entä voiko olla muun tyyppisiä ulottuvuuksia kuin aika- tai tilaulottuvuudet?

    kiitos

    1. Syksy Räsänen sanoo:

      Teorioita, joissa on useampi kuin yksi aikaulottuvuus on tutkittu. Käsittääkseni tosin säieteorian ulottuvuuksien luku 10 on oikeasti 1+9, eli mukana on oletus siitä, että on tasan yksi aikaulottuvuus.

      On iso matemaattinen ero siinä onko kyseessä aika- vai paikkaulottuvuus (tai ainakin sillä on isot matemaattiset seuraukset). Erosta suppeassa suhteellisuusteoriassa: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/yhden-merkin-varassa/

      Aika- ja paikkasuuntien lisäksi on olemassa valonkaltaisia suuntia, mutta valonkaltaisia ulottuvuuksia ei kaiketi ole olemassa. (Valonkaltainen suunta tarkoittaa karkeasti sitä, että liikutaan yhtä paljon aika- ja paikkasuunnassa yhtä aikaa. Valonkaltaiset suunnat voi siis ymmärtää yhdistelmänä paikka- ja aikasuuntia.)

      Kun ei liity merkinnän aiheeseen, niin ei tästä sen enempää.

  4. Cargo sanoo:

    Jos oletetaan, että kiihtyvä laajeneminen johtuu kosmisen rakenneverkon tiivistymisestä, niin saisiko eritavalla mitattujen laajenemisnopeuksien ero jonkin luonnollisen selityksen, vai olisiko asia edelleen mysteeri?

    1. Syksy Räsänen sanoo:

      Pitää olla kädessä tarkka lasku, ennen kuin voi verrata sen ennusteita havaintoihin.

  5. Seppo Kolehmainen sanoo:

    Utamin kysymyksiä: Muuttuuko asia lisäämällä ulottuvuuksia olettamalla aika yhdeksi niistä? Miten ns. suunnat poikkeavat ulottuvuuksista? Miten paljon on yhtä paljon aika- ja paikkasuunnassa? Liikutaanko aika- ja paikkasuunnassa yhtä aikaa, siis mitä yhtä aikaa? Einsteinin aika-avarusjatkumo lienee koordinaatisto, missä hiljaista on kuin huopatossutehtaassa.

    1. Syksy Räsänen sanoo:

      Kun kysymykset eivät liity merkinnän aiheeseen, niin ei niistä sen enempää.

  6. Mikko JUssila sanoo:

    Voiko universumin muoto olla epähomogeeninen, jolloin ΛCDM malli antaisi eri vastauksen Hubblen vakiolle mikroaaltotaustasta ja supernovista mitattuna. Eli jos mikroaaltotaustasta mitattu avaruuden muoto on lievästi postiviinen, voi se olla hieman erilainen supernova mittausten alueessa.

    1. Syksy Räsänen sanoo:

      Avaruuden epähomogeenisuuden vaikutusta on tutkittu, mutta siitä ei ole löytynyt tyydyttävää selitystä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Fysiikkaa runoilijoille ja kosmologiaa

17.8.2022 klo 13.47, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Luennoin taas tänä syksynä kurssin Fysiikkaa runoilijoille Helsingin yliopistolla. Sen voi suorittaa myös Avoimessa yliopistossa. Ilmoittautuminen kurssille on auki.

Luennot ovat paikan päällä maanantaisin kello 14-16 ja tiistaisin kello 12-14, alkaen tiistaina 6. syyskuuta. Luennoille ovat tervetulleita myös yliopiston ulkopuoliset. Luentoja ei nauhoiteta eikä striimata.

Kurssilla kuvataan fysiikan teorioiden kehitystä ja sisältöä fyysikon näkökulmasta, ja avataan niiden käsitteitä ja maailmankuvallista merkitystä. Aiheina ovat Newtonin klassinen mekaniikka, suhteellisuusteoria, kvanttifysiikka, kosmologia, ja lopussa muutama lyhyesti yritykset kohti kaiken teoriaa. Kurssi ei edellytä esitietoja fysiikasta eikä sisällä laskemista.

Kurssin sivuilla on palautetta edellisten vuosien opiskelijoilta sekä neuvoja kurssin käymiseen, tässä poiminta:

”Kurssi oli todella antoisa, kiitos! Tällaisia tieteenalojen välisiä kädenojennuksia kaivattaisiin enemmän. Tuntuu, että noin yleisesti ottaen fysiikasta kiinnostunut humanisti voi joko tyytyä populaarikirjallisuuteen tarjoamaan pintaraapaisuun tai vaihtoehtoisesti aloittaa fysiikan opiskelun aivan a:sta; välimuotoa on vaikea löytää. Tämä kurssi täytti tämän puutteen erinomaisesti.

Luennoin syksyllä myös Ursalle kosmologiasta kurssin kerran paikan päällä Tieteiden talolla ja kerran etänä. Edellisinä vuosina liput on myyty loppuun nopeasti, eli jos haluaa mukaan, niin kannattanee ostaa pian. Kurssien sisältö on sama, Ursan sivujen kuvauksen mukaan kumpikin kurssi

”tarjoaa napakan katsauksen moderniin kosmologiaan, sen oleellisimpiin teorioihin sekä hieman myös kosmologian historiaan. Kurssilla käsitellään mm. maailmankaikkeuden historia, ison mittakaavan rakenteet, kosmisen mikroaaltotausta, pimeä aine, pimeä energia ja kosminen inflaatio.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *