Kaikki tai ei mitään
Tässä viimeinen poiminta kurssilta Fysiikkaa runoilijoille. Aiemmissa osissa kirjoitin klassisen mekaniikan paljastamasta uudesta kauneuden muodosta, suppeasta suhteellisuusteoriasta ja vääristä ideoista, yleisestä suhteellisuusteoriasta ja suuresta järjettömyydestä, kvanttimekaniikasta ja ymmärryksen rajoista, kvanttikenttäteorian määräyksistä aineelle ja vuorovaikutuksille sekä selitysten ketjun päättymisestä kosmologiassa. Viimeinen aihe on kaiken teoria (luentomoniste löytyy täältä).
Nykyään on kaksi perustavanlaatuista fysiikan teoriaa: ainetta käsittelevä hiukkasfysiikan Standardimalli ja aika-avaruutta kuvaava yleinen suhteellisuusteoria. Eteenpäin voi mennä kolmella tavalla: laajentamalla Standardimallia uusilla hiukkasilla, vuorovaikutuksilla ja symmetrioilla; kehittämällä uusia gravitaatioteorioita; tai yhdistämällä hiukkasfysiikkaa ja yleistä suhteellisuusteoriaa. Standardimallin laajennuksia on kehitetty lukuisia, suosituimpina supersymmetria, suuret yhtenäisteoriat ja tekniväri. Samoin uusia gravitaatioteorioita on tukuittain. Molemmilla suunnilla kaikki kokeet ovat toistaiseksi vain varmentaneet nykyisten teorioiden ennusteet.
Meneillään oleva vuosittainen Moriondin konferenssi, jossa esitellään LHC:n kokeellisia tuloksia, on tyypillinen tapaaminen: löytöjä ei ole ja uuden fysiikan rajat siirtyvät hiljalleen ylöspäin. Ehdotettujen uusien hiukkasten mahdolliset massat kasvavat ja vuorovaikutukset heikkenevät joskus kymmenen tai parikymmentä prosenttia kauemmas, toisinaan enemmän. Samoin käy gravitaatioteorioiden kohdalla.
Yleisen suhteellisuusteorian ja kvanttifysiikan yhdistämisen suhteen tilanne on erilainen: ei ole juuri ennusteita eikä kokeita, joilla testata niitä. (Merkittävänä poikkeuksena kosminen inflaatio, jossa kvanttigravitaatio on koskettanut havaintoja.) Standardimallin ja yleisen suhteellisuusteorian laajennuksia voi rakentaa vanhojen periaatteiden päälle. Gravitaation ja kvanttifysiikan yhdistäminen kaiken kattavaksi teoriaksi ei sen sijaan onnistune ilman tyystin uudenlaisia ideoita, ja siinä yleensä aloitetaan kaukana nykyisten havaintojen rajasta.
Eniten tutkittu ehdokas kaiken teoriaksi on säieteoria. Kvanttikenttäteoriassa aine koostuu aika-avaruuden täyttävistä kentistä, joiden pieniä häiriöitä hiukkaset ovat. Säieteoria hylkää idean kentistä ja ottaa askeleita taaksepäin. Kvanttimekaniikka on teoria, jossa otetaan klassisen fysiikan pistemäiset (eli nollaulotteiset) hiukkaset ja tehdään niistä epämääräisiä – voi sanoa, että hiukkaset kvantitetaan. Säieteorian lähtökohtana voi pitää yksinkertaista kysymystä: entä jos kvantitetaan sen sijaan yksiulotteisia kappaleita, eli säikeitä?
Säieteorian kehittäminen oli monivaiheinen prosessi, ja kesti vuosia hahmottaa, että se edes käsittelee säikeitä. Säieteorian poikkeavat lähtökohdat tekivät siitä aikanaan riskialttiin tutkimuskohteen. Kertoman mukaan jotkut sen keskeisistä kehittäjistä 60- ja 70-luvulla olivatkin lähellä jäädä ilman työpaikkaa, koska touhua pidettiin turhanpäiväisenä. Lopulta läpimurto oli kuitenkin paljon isompi kuin kukaan oli odottanut.
Yksinkertaisella kysymyksellä säikeiden kvantittamisesta on kauaskantoiset seuraukset. Osoittautuu, että säikeiden värähtelyt vastaavat sekä hiukkasia että gravitaatiota. On aina lupaavaa, kun teoria antaa ilman ylimääräisiä oletuksia ulos kaikenlaista tunnettua ja kaivattua. Säieteorialla on rikas matemaattinen rakenne, ja se pitää sisällään hiukkasfysiikan, gravitaation, supersymmetrian ja suuren yhtenäisteorian – lyhyesti sanottuna kaikkea mitä kaiken teoriaan kaivata saattaa.
Lisäksi, ensimmäisenä teoriana fysiikan historiassa, säieteoria ennustaa montako ulottuvuutta on olemassa. Valitettavasti säieteorian ennuste on kymmenen, ei neljä. Lisäksi säieteoriasta helposti saatava gravitaatioteoria on erilainen kuin yleinen suhteellisuusteoria. Tämä on hyvä piirre, koska se on ennuste, jolla teorian voi varmentaa tai hylätä. Ongelma on se, havainnot ovat jo hylänneet sen: poikkeamat yleisestä suhteellisuusteoriasta ovat liian suuria. Hiukkasfysiikan kanssa on samanlainen pulma: säieteoriasta saa helposti hiukkasfysiikkaa ulos, mutta havaintojen kanssa yhteensopivan hiukkasfysiikan saaminen on vaikeaa.
Naiivista ajateltuna jo ulottuvuuksien lukumäärän perusteella voisi hylätä säieteorian. Mutta havaintojen kanssa ristiriidassa olevaa teoriaa voi hylkäämisen sijaan muokata. Useimmiten fysiikassa ensimmäiset ideat eivät ole yksityiskohdiltaan oikein, ja vasta kehittelyn myötä löydetään oikea ratkaisu. Niinpä on oletettu, että säieteorian kuusi ylimääräistä ulottuvuutta ovat niin pieniä, että emme huomaa niiden olemassaoloa. Tyypillisesti niiden koko on pienempi suhteessa protoniin kuin mitä protoni on suhteessa meihin. (Mutta tästä on paljon erilaisia vaihtoehtoja.)
Näkemämme hiukkasfysiikka ja gravitaatio riippuu siitä, miten ylimääräiset ulottuvuudet on kääritty pieniksi. Toisin sanoen käärimällä ulottuvuudet eri tavoin voidaan säätää sitä, millaisia hiukkasia on ja miltä gravitaatio näyttää, ja niitä voidaan yrittää säätää vastaamaan havaintoja. Tämä on kuitenkin onnettomuus onnessa: ei tiedetä, mikä periaate määrää oikean käärimisen, ja vaihtoehtoja on tuhottoman paljon. (Ei ole selvää, miksi ylimääräisiä ulottuvuuksia olisi juuri kuusi.) Itse asiassa ei edes tiedetä, onko tällaista periaatetta tai ainoaa oikeaa käärimistä olemassa.
Monet säieteorian kärkinimistä ovat päätelleet, että koska he eivät ole keksineet ratkaisua, sellaista ei ole olemassa. Heidän mukaansa kaikki vaihtoehdot ovat mahdollisia, ja on olemassa multiversumi, jossa kaikki mahdolliset maailmankaikkeudet ovat todellisia. (Sanan ”todellinen” merkitys on tosin tässä yhteydessä hieman hämärä.) Ajatus on saanut tukea useilta tunnetuilta kosmologeilta tukea, mutta toiset pitävät sitä epätoivon tienä, joka ei johda mihinkään.
Joka tapauksessa säieteoria ei ainakaan tällä hetkellä ennusta mitään. Säieteorian kautta on kyllä löytynyt kiehtovia matemaattisia rakenteita, ja toistaiseksi siitä onkin kenties ollut enemmän hyötyä matematiikalle kuin fysiikalle. Säieteorian piirissä on myös kehitetty laskennallisia apuvälineitä, joita on sovellettu raskaiden ionien törmäysten ja kiinteän olomuodon ilmiöiden kuvailemiseen. (Näiden alojen tutkijoilla on poikkeavia mielipiteitä siitä, kuinka hyödyllisiä nämä menetelmät ovat olleet.)
On muitakin ehdokkaita kvanttigravitaatioteoriaksi ja kaiken teoriaksi, mutta yksikään ei ole luvannut niin paljon kuin säieteoria. Ellei jokin muu idea tee läpimurtoa tai ellei löydy jotain uutta ideaa siitä, miten säieteoria pitäisi muotoilla (etenkin mitä ylimääräisiin ulottuvuuksiin tulee), ei ole selvää kuvaako säieteoria todellisuutta, onko se teoria kaikesta vai ei mistään.
20 kommenttia “Kaikki tai ei mitään”
Vastaa
Ketjun viimeinen lenkki
Poiminnoista kurssilta Fysiikkaa runoilijoille aiheista on vuorossa toiseksi viimeinen aihe, kosmologia. (Luentomoniste löytyy täältä.) Aiemmissa osissa on käsitelty klassista mekaniikkaa ja uudenlaista kauneuden muotoa, suppeaa suhteellisuusteoriaa ja vääriä ideoita, yleistä suhteellisuusteoriaa ja suurta järjettömyyttä, kvanttimekaniikkaa ja ymmärryksen rajoja, ja sitä miten kvanttikenttäteoriaa määrää aineen ja vuorovaikutukset.
Ennusteiden tekemiseen fysiikassa tarvitaan kaksi asiaa. Ensimmäinen on fysiikan lait, jotka kertovat, mistä osista tutkittava systeemi koostuu ja miten ne vuorovaikuttavat toistensa kanssa. Klassisessa mekaniikassa aine rakentuu pistemäisistä hiukkasista, jotka kohdistavat toisiinsa voimia. Suhteellisuusteoriassa ja kvanttifysiikassa osaset ja niiden vuorovaikutukset ovat monimutkaisempia, mutta periaate on sama. Fysiikan lait kertovat vain, millaiset tapahtumat ovat mahdollisia, ne eivät riitä kertomaan, mitä todella tapahtuu.
Yksikäsitteisten ennusteiden saamiseksi pitää tuntea myös systeemin alkutila. Kun tiedetään, millainen systeemi on nyt, niin lait kertovat, miten se kehittyy. Esimerkiksi Aurinkokunnan planeettojen tämänhetkisistä paikoista ja nopeuksista voi ennustaa niiden liikkeet. Kun mennään tarpeeksi kauas ajassa, pitää antaa alkuehdot sille, millaisesta kaasupilvestä planeetat tiivistyivät; sitä varten puolestaan pitää tietää, miten pöly oli muodostunut varhaisten tähtien räjähdyksissä, millä tapaa tähdet olivat syntyneet, mistä niiden siemenet olivat peräisin ja niin edelleen.
Esimerkki näyttää, miten kosmologiset kysymykset kehystävät kaiken fysiikan tutkimuksen, kun mennään tarpeeksi pitkälle. Se osoittaa myös, että kosmologiassa ei riitä fysiikan lakien tunteminen, vaan myös alkuehdot ovat tutkimuksen kohde. Asian voi ilmaista myös niin, että kosmologisten havaintojen avulla voidaan saada tietoa kaikkeuden alkutilanteesta.
Klassinen fysiikka ja suhteellisuusteoria ovat deterministisiä: kaikilla syillä on seuraus. Asiat ovat tietyllä tavalla nyt siksi, että ne olivat aiemmin tietyllä tavalla. Tällainen selitysten ketju ei koskaan pääty, aina tarvitaan aikaisempi syy.
Kvanttifysiikka on kuitenkin osoittanut, että maailmankaikkeus on epädeterministinen. (Asiassa tosin on sellainen epävarmuus, että kvanttifysiikkaa ei ymmärretä täysin.) Niinpä on seurauksia, joilla ei ole syitä. Kaiken näkemämme rakenteen siementen arvellaan syntyneen kvanttivärähtelyistä kosmisessa inflaatiossa ensimmäisen sekunnin murto-osan aikana. (Ei tosin tiedetä, mitä oli ennen inflaatiota, vai oliko mitään.) Kvanttikenttäteorian lait ennustavat vain todennäköisyysjakauman näille pienille epätasaisuuksille, ja ainoastaan yksi vaihtoehto erilaisista mahdollisuuksista toteutuu. Koska kvanttifysiikka on epädeterminististä, mikään sääntö ei määrää sitä, mikä mahdollisuuksista valikoituu: kaikki rakenne syntyy sattumasta. Selitysten ketju saavuttaa loppunsa, tai pikemminkin alkunsa.
12 kommenttia “Ketjun viimeinen lenkki”
-
Taitaa olla selvää, että kvanttifysiikka osoittaa havaittavan todellisuuden olevan tilastollinen. Tuskin voimme koskaan päätellä, että se olisi epädeterministinen.
Fysiikan tekemisen kannalta hedelmällistä on olettaa, että kaikkeus on deterministinen. Esimerkki: kun hiukkasen ominaisuudet ovat levinneet ympäristöön, on mielestäni viisaampaa ajetella, että hiukkanen on tilastollisesti useassa mahdollisessa paikassa kuin että toteaisi sen olevan useassa paikassa samanaikaisesti.
Sama koskee kosmologiaa. Osa johtopäätösten valinnoista kapeuttaa helposti jatkotutkimusta, esim. pimeän energian tapauksessa globaalin aikakehityksen johtopäätös havaitsijakeskeisyyden perusteella (eri havaitsijoiden aikakehitykset voivat kompensoida) tai pimeä aine massamaisen käyttäytymisen perusteella (massailmiö voi syntyä muustakin energiasta kuin aine-energiasta).
-
Onko nykyään mitään edes etäisesti varteenotettavia muita selityksiä havainnoille kuin maailmankaikkeuden kiihtyvä laajeneminen, vai onko se järkevän epäilyn ulkopuolella?
-
Onko kosmisen inflation teoria mahdollisesti niin lujalla pohjalla että Alan Guthilla olisi lähitulevaisuudessa edessään reissu Tukholmaan ?
Ja jos näin käy, niin jakaisiko hän palkinnon jonkun kanssa ? Kenen ? -
”Kaiken näkemämme rakenteen siementen arvellaan syntyneen kvanttivärähtelyistä kosmisessa inflaatiossa ensimmäisen sekunnin murto-osan aikana.”
Hienoa nähdä kerrankin täsmällistä puhetta tällaisessa tekstissä! Joskus näkee tuonkin asian kovin maailmaa syleilevänä väitteenä, suorastaan räikeästi provosoiden, että ”KAIKKI syntyi ensimmäisen sekunnin murto-osan aikana.” Kun esim. tämä lause syntyi vasta tätä kirjoittaessa. 🙂
Mutta tämä: ”kaikki rakenne syntyy sattumasta”. No ei sentään. Esim. tämän lauseen rakenne (joka fysikaalisesti näkyy tuossa näytöllä)syntyi äsken minun oman suunnitteluni tuloksena.
-
Sattuma on tosiaan ongelmallinen käsite. Jos ajatellaan noita inflaation aikaisia tapahtumia, voidaan kai esittää niinkin radikaali väite kuin että ”kaikki on syntynyt sattumalta”. Vaikka sattuma tässä mielessä voitaisiinkin fysiikassa formuloida matemaattisesti, tämä formulointi ei mielestäni kuitenkaan voi vastata kysymykseen ”miksi kaikki on sellaista kuin on?”, vaan korkeintaan kysymykseen ”millaisella mekanismilla kaikki on syntynyt?”. Jos nyt sitten siihenkään.
Kiitos muuten mainiosta blogista. Näitä ei taida Suomessa tästä aihepiiristä muita ollakaan.
-
Tieteen ”tehtävä” ei olekaan antaa vastauksia miksi-kysymyksiin. Miksi? Siksi, että niissä intuitiivisesti oletetaan syy ja tavallisesti myös syyn antaja. Tiedämme uskonnollisen lähestymistavan hedelmättömyyden. Siis ei: miksi (why) maailma on olemassa, vaan kuinka (how) maailma on olemassa. Jälkimmäisen puitteissa on mahdollista antaa tieteellisesti perusteltuja vastauksia. Hyvä kirja: Lawrence M Krauss: a universe out of nothing.
-
Monen fysiikan ilmiön kohdalla miksi-kysymys on aivan asiallinen ja vastattavissa, vieläpä helpommin kuin kuinka-kysymykseen. Maailman olemassaolon miksi-kysymykseen voi ainakin tulevaisuuden tiede vastata antamalla maailman alkuehdot.
Jos taas tarkoitetaan perimmäistä syytä, se voisi olla tietoisuus, koska tietoisuuden ikuinen ja täydellinen olemattomuus tekee mahdottomaksi, että mitään voisi olla olemassa.
-
Subjekti-objekti -suhde on tosiaan todellisuuden ytimessä. Siksi fysiikka ei mielestäni voi koskaan kehittää todellista kaiken teoriaa, koska sen tutkimuskohteena on vain tämän suhteen toinen osapuoli.
-
Tietoisuus on emergentti monimutkaisten aivojen fysikaalinen ominaisuus. Siis puhdasta fysiikkaa. Tietoisuudella ei ole mitään tekemistä ”täydellisen olevaisuuden” tai ”ikuisuuden” kanssa.
Mitä on ”täydellinen olevaisuus”? Hölynpölyä. ”Maailman alkuehdot” on yksikertaista kirjoittaa, se mitä se tarkoittaa on lähinnä turhaa absurdista metafysiikkaa. Eli uskontoa. Tiede ei argumentoi uskonnollisesti.
-
-
-
Myös Ludwig Wittgenstein ajatteli Tractatuksessaan, että kysymys ”millainen maailma on” kuuluu tieteen piiriin, mutta kysymys ”miksi maailma on” kuuluu lähinnä mystiikan alaan. Hänkään ei kuitenkaan pitänyt viime mainittua sellaisena näennäiskysymyksenä kuin jotkut nykyiset luonnontieteilijät, joille kaikki filosofointi on vierasta. Myös filosofisiin kysymyksiin voi suhtautua avoimin mielin eikä mitään uskonnollisia ennakko-oletuksia tarvitse olla.
Vastaa
Kvanttivärähtelyjen lapset ja gravitaatioaallot
Puhun tiistaina 21.3. kello 18.00 Ursan kevätkokouksen alkupalana Tieteiden talon (Kirkkokatu 6) salissa 104 aiheesta Kvanttivärähtelyjen lapset: kosminen inflaatio ja Higgsin kenttä. Tiivistelmä on seuraava:
Kaikki maailmankaikkeuden rakenne galaksien rihmoista DNA:han (ja siitä alaspäin) on tiettävästi syntynyt kvanttivärähtelyistä kosmisessa inflaatiossa sekunnin ensimmäisen murto-osan aikana. Esitelmässä käydään läpi sitä, miten inflaatio kehitetiin, mistä siinä on kyse ja miten sen voisi varmentaa.
Torstaina 23.3. kello 18.30 entisessä Kauppakorkean rakennuksessa LIGO-gravitaatioaaltoryhmän jäsen Matthew Evans puhuu gravitaatioaalloista osana Fysiikan päiviä. Puhe on tarkoitettu suurelle yleisölle ja siihen on vapaa pääsy. LIGO:lle povataan tämän vuoden Nobelin palkintoa, ja tämä on poikkeuksellinen tilaisuus kuulla gravitaatioaalloista yhdeltä ryhmän kärkinimistä.
Päivitys (14/03/17): Evansin puheen päivämäärä korjattu. Puheesta on nyt Facebook-tapahtuma.
Vastaa
Yhdistymisen määräyksiä
Kurssin Fysiikkaa runoilijoille aiheista on tällä kertaa vuorossa kvanttikenttäteoria. Aiemmissa osissa on käsitelty klassista mekaniikkaa ja uudenlaista kauneuden muotoa, suppeaa suhteellisuusteoriaa ja vääriä ideoita, yleistä suhteellisuusteoriaa ja suurta järjettömyyttä sekä kvanttimekaniikkaa ja ymmärryksen rajoja.
Viime vuosisadan alussa kehitetyt kvanttimekaniikka ja suppea suhteellisuusteoria laajensivat klassista fysiikkaa eri suuntiin. Kvanttimekaniikka muutti käsityksen aineesta ja siitä, että todellisuus olisi määrätty, suppea suhteellisuusteoria yhdisti ajan ja avaruuden aika-avaruudeksi. Suppealla suhteellisuusteorialla ei ole aineesta juuri sanottavaa, eikä toisaalta kvanttimekaniikka koskenut klassisen mekaniikan käsitykseen absoluuttisesta ajasta ja avaruudesta.
Paul Dirac koetti jo 1920-luvulla sovittaa kvanttimekaniikkaa yhteen suppean suhteellisuusteorian kanssa ja löysi yrityksessä spinin ja antihiukkaset. Teoriat saatiin kuitenkin tyydyttävästi liitettyä vasta vuonna 1948, kun Richard Feynman, Julian Schwinger ja Sin’ichirō Tomonaga muotoilivat ”valon ja aineen ihmeellisen teorian”, kvanttielektrodynamiikan eli QED:n. QED oli ensimmäinen kvanttikenttäteoria.
Aiemmin erillisinä pidettyjen asioiden liittäminen yhtenäisteorioissa myös yleensä paljastaa uusia piirteitä. Kun James Maxwell 1860-luvulla liitti sähkön ja magnetismin sähkömagnetismiksi, hän yllättäen osoitti valon olevan sähkömagneettista aaltoliikettä ja ennusti näkymättömän valon.
Kvanttimekaniikka oli sumentanut käsitystä siitä, mitä hiukkaset ovat. QED selvensi tilannetta: hiukkaset eivät ole perustavanlaatuisia rakennuspalikoita, vaan kentät. Maxwellin sähkömagnetismi oli tuonut kentät hiukkasten rinnalle, QED:ssä niin aine kuin valo koostuu kentistä, hiukkaset ovat vain kenttien paikallisia tihentymiä.
QED:n tärkein uusi piirre oli se, että ensimmäistä kertaa teoria määräsi alusta alkaen, millaisia vuorovaikutuksia maailmassa on.
Klassisen mekaniikan ytimessä on Newtonin toinen laki. Se kertoo, miten kappale liikkuu, kun siihen kohdistuu tietty voima. Newtonin teoria ei kuitenkaan kerro, millaisia voimia kappaleiden välillä on, ne pitää erikseen keksiä tai määrittää kokeellisesti. Schrödingerin yhtälöllä on kvanttimekaniikassa sama rooli: se kertoo, miten hiukkasen aaltofunktio leviää avaruudessa, kun se on tietynlaisessa potentiaalissa. Potentiaali, kuten voima, on tapa kuvata hiukkasten vuorovaikutusta, eikä kvanttimekaniikka kerro, millaisia potentiaaleja on olemassa.
Kvanttikenttäteoriassa on toisin, sen rakenne rajoittaa tiukasti sitä, millaiset vuorovaikutukset ovat mahdollisia. QED:ssä on vain yksi mahdollinen perusvuorovaikutus. Se kertoo kaiken, mitä elektronit ja fotonit voivat tehdä keskenään, kuten valon siroaminen elektroneista, elektronien keskinäinen hylkiminen, elektronien ja positronien annihilaatio tai fotonien muuttuminen elektroni-positroni -pareiksi.
Lisäksi kvanttikenttäteoria rajoittaa sitä, millaisia hiukkasia on olemassa. QED sanelee fotonin ominaisuudet tismalleen. QED kuvasi vain fotoneita ja elektroneja (ja muita sähköisesti varattuja hiukkasia) ja sähkömagneettista vuorovaikutusta. Kun kvanttikenttäteoriaa on laajennettu kuvaamaan kaikkea ainetta ja vuorovaikutuksia (gravitaatiota lukuun ottamatta), niin se on rajoittanut myös ainehiukkasten ominaisuuksia ja olemassaoloa. Tämä helpottaa teorioiden rakentamista: mitä enemmän rajoitteita on, sitä helpompi on valita oikea suunta, ja mitä vähemmän valinnanvapautta teorian muotoilussa on, sitä ennustusvoimaisempi se on.
On mahdollista rakentaa erilaisia kvanttikenttäteorioita. Ensin valitaan symmetria, se kertoo, millaisia välittäjähiukkasia on olemassa sekä rajoittaa mahdollisia ainekenttiä ja niiden vuorovaikutuksia. Esimerkiksi hiukkasfysiikan Standardimallin rakenne vaatii, että elektronilla on parina neutriino.
Suppea suhteellisuusteoria eteni kvanttikenttäteorian lisäksi myös toiseen suuntaan yleisen suhteellisuusteorian myötä, kun aika-avaruudesta tuli aktiivinen toimija. Yleistä suhteellisuusteoriaa ja kvanttikenttäteoriaa ei ole vielä saatu kokonaan yhdistettyä siten, että myös aika-avaruutta osattaisiin kuvata kvanttifysiikan keinoin, vaikka kosmisessa inflaatiossa onkin päästy alkuun. Kvanttikenttäteoriaa ja yleistä suhteellisuusteoriaa kuitenkin käytetään yhdessä siten, että edellinen kertoo, millaista ainetta on ja jälkimmäinen sen, miten aika-avaruus reagoi aineeseen, etenkin miten maailmankaikkeus laajenee. Tämä kuuluu kosmologiaan, joka onkin Fysiikkaa runoilijoille -sarjan seuraava aihe.
18 kommenttia “Yhdistymisen määräyksiä”
-
https://phys.org/news/2011-11-scientists-vacuum.html
Virtuaalisia fotoneja on jo transformoitu todellisiksi fotoneiksi lisäämällä sopivinkeinoin niiden energiaa. Massallisia hiukkasia ei ole saatu vielä muodostumaan massan tarvitseman suuremman energian johdosta. Kuitenkin joka tapauksessa todellisten hiukkasten voi ajatella syntyvän vakuumin virtuaalisten hiukkasten ”merestä”.Se, mikä rupesi askarruttamaan, on tietömättömyyteni siitä, millaisten vuorovaikutusten avulla ”todellisista” hiukkasista koostuvan näkyvän maailmamme aines on saanut syntynsä virtuaalisesta, ja miten se tuntuu ryhmittyneen esim. esineiksi ja olevan varsin pysyvää laatua. Siis millaista olisi kansantajuinen kemian selittäminen kvanttikenttäteorian termein? (Englanninkielisin klikkauksin en heti löytänyt vastausta netistä).
-
En tiedä, onko ihmettelyni oikein viisasta, mutta askarruttaa vielä tämäkin. Pysyviä alkuaineita on noin sata, isotoopit eritellen monta sataa. Kaikilla niillä on omat, toisistaan usein paljon poikkeavat kemialliset ominaisuudet, jotka jotenkin johtuvat atomit koostavista erityyppisistä vakuumin eksitaatioista: protoneista, neutroneista jne., joita ei liene atomissa kovin monta erilaista. Kuitenkin niiden erilaisilla kokoelmilla, eri atomeilla, on suuret keskinäiset erot.
Tekisi mieli tietää, olisiko jo niiden perustana olevissa kentissä senkaltaisia eroja tai ominaisuuksia, että niiden eksitaatiot atomeiksi kertyneinä tuottaisivat suuret kemialliset ja materiafysikaaliset erot. -
https://arxiv.org/pdf/1507.08277.pdf
Olisiko soluautomaattirakenteella annettavaa kvanttikenttäteorioille?
-
Kiitos mielenkiintoisesta blogistasi, odotan aina innolla uusia kirjoituksiasi!
Onko gravitoni täysin hypoteettinen alkeishiukkanen vai onko sillä jokin rooli standardimallissa? Jos gravitoni olisi gravitaation välittäjähiukkanen, mikä olisi Higgsin bosonin ja gravitonin ”työnjako” gravitaatiossa?
-
Hei! Mitä tarkoittaa tuo ”pieniä muutoksia yleisessä suhteellisuusteoriassa” ? Minkälaisia muutoksia?
-
Jos virtuaalisten fotonien energiaa sopivalla tavalla (eränlaisella peilillä) kasvatetaan, saadaan reaalisia, havaittavia fotoneita; linkissä arasteleva ensiuutinen v. 2011:
http://www.nature.com/news/2011/110603/full/news.2011.346.html
Nyttemmin arvellaan, että muidenkin hiukkasten virtuaalisia muotoja (kenttien eksitaatioita) voitaisiin tehdä reaalisiksi riittävän lisäenergian avulla.
Herää kysymys, ovatko suurienergiaisten törmäytysten yhteydessä syntyvät reaalisten hiukkasten pilvet muodostuneet saman tapaisella tavalla? Eli ovatko useat eri hiukkaset ”odottaneet” virtuaalisina energialisää törmäyskohdan lähellä?
Millähän ”mekanismilla” em. hiukkaset saavat riittävästi törmäyksen energiaa muuttuakseen reaalisiksi? Lämpösäteilynä tai muiden fotonien muodossa?
Mieleen tulee myös epämääräinen kysymys, olisiko ajateltavissa, että myös gravitonit, jos sellaisia on, ja jos ne olisivat nyt virtuaalisia, saisivat reaalisemman hahmon vastaavalla energian lisäyksellä. Jos näin olisi, voisiko niiden reaalisista muodoista jotenkin arvioida eri kvanttigravitaatioteorioiden pätevyyttä?
Tämäkin lienee tyhmä kysymys: Voisivatkohan virtuaalisten hiukkasten ”meressä” jollain tavalla päteä reaalimaailman luonnonlait?
-
Paluuviite: Kosmokseen kirjoitettua | Painon välittäjästä
-
Paluuviite: Kosmokseen kirjoitettua | Alas huipulta
-
Paluuviite: Kosmokseen kirjoitettua | Maxwellin tiimalasi
Vastaa
Rajaton tiede
Joukko tähtitieteilijöitä ja kosmologeja, minä heidän joukossaan, on sitoutunut boikotoimaan tieteellisiä konferensseja Yhdysvalloissa kunnes niihin on mahdollista päästä kansalaisuudesta riippumatta. Vetoomuksella Science Undivided on nyt yli 600 allekirjoittajaa, enimmäkseen tähtitieteestä ja kosmologiasta, mutta tieteilijät kaikilta aloilta on kutsuttu mukaan.
Syynä on Yhdysvaltojen uuden hallituksen laittama täydellinen maahantulokielto seitsemän maan kansalaisille. Kiellon oli määrä koskea myös kaksoiskansalaisia, mukaan lukien 11 000 suomalaista. Tuomioistuimet ovat toistaiseksi pysäyttäneet kiellon toimeenpanon muun muassa sillä perusteella, että sen tarkoituksena on syrjiä muslimeita. Tilanteen kehitys on vielä epäselvä.
Boikotin laittoi alulle Helsingin yliopiston fysiikan laitoksen tähtitieteilijä Till Sawala, lehdistötiedotteessamme hän selittää asiaa näin:
”Toivon, että aloitteemme omalta pieneltä osaltaan auttaa saamaan kiellon kumottua. Mutta käytännön kysymyksen lisäksi minulle on kyse henkilökohtaisesta moraalisesta kysymyksestä: jos ilmoittautuisin nyt konferenssiin Yhdysvalloissa, minusta tuntuisi kuin ottaisin osaa toisten poissulkemiseen.”
Kiellon vaikutus tieteilijöihin ei ole teoreettinen, sillä oli käytännön seurauksia ensimmäisestä päivästä lähtien. Olemme keränneet sivuillemme joidenkin tutkijoiden tarinoita. Helsingin yliopistossa työskentelevä kollegani Venus Keus kertoo seuraavaa:
”Postdoc-tutkijana on hyvin tärkeää, että teen yhteistyötä tutkijoiden kanssa ympäri maailmaa. Olen työskennellyt hyvin pitkään ja hyvin ahkerasti päästäkseni siihen, missä olen nyt. Työskenteleminen University of California Santa Cruzin prof. Howard Haberin, maailmankuulun fyysikon, kanssa on ollut unelmani, ja kaikki oli valmiina matkaa varten. Unelma mureni kun sain sähköpostin Yhdysvaltojen suurlähetystöstä, jossa viisumitapaamiseni peruttiin. Niin pahalta kuin minusta tuntuukin, tiedän, että tilanne on vielä pahempi niille, joiden elämä on Yhdysvalloissa ja jotka eivät pääse palaamaan sinne.”
Helsingin Sanomat ja Kansan Uutiset ovat uutisoineet boikotista, samoin Science. Nature otti boikottimme -ja toisen paljon enemmän allekirjoituksia keränneen boikotin- niin vakavasti, että omisti pääkirjoituksen niiden arvostelemiseen. (Sivumennen sanoen, Nature väitti virheellisesti Till Sawalan sanoneen, että tavoitteenamme olisi estää uusien maiden lisääminen kieltolistaan. Tosiasiassa pyrimme pääsemään siitä kokonaan eroon. Korjauspyynnön jälkeen lehti on muuttanut muotoilua niin, että se on vain harhaanjohtava, ei enää kirjaimellisesti virheellinen.)
Naturen mukaan yhdysvaltalaisten konferenssien boikotoiminen haittaa lähinnä yhdysvaltalaisia tutkijoita eikä ”tutkimusten mukaan” boikoteista ole hyötyä. Nature viittaa yhteen tutkimukseen, jonka se väittää osoittavan seuraavaa:
”Etelä-Afrikan akateeminen boikotti 1980-luvulla, jonka tarkoituksena oli vastustaa apartheidia, ei näytä haitanneen eteläafrikkalaisia yrityksiä tai hallitusta ollenkaan. Sen sijaan se loi kuiluja eteläafrikkalaisten ja muun maailman tutkijoiden välille.”
Naturen väite on väärin mielenkiintoisilla tavoilla, jotka valaisevat akateemisten boikottien merkitystä ja suhtautumista niihin. (Olen aiemmin kirjoittanut Etelä-Afrikan ja Israelin akateemisista boikoteista tarkemmin.)
Tutkimus, johon Nature viittaa, käsittelee sijoitusten poisvetämistä Etelä-Afrikasta. Tutkimuksen mukaan sillä ei ollut suurta vaikutusta Etelä-Afrikan talouteen. Pitipä johtopäätös paikkansa tai ei, tutkimus ei käsittele akateemisia boikotteja. Sen kysymyksenasettelulla ja tuloksilla ei ole mitään tekemistä akateemisten boikottien kanssa, eikä akateemisten boikottien tavoitteena ole taloudellinen haitta.
Naturea pidetään, ainakin joillakin luonnontieteen aloilla, huippulehtenä ja siksi pääkirjoitus on kuvaava esimerkki siitä, miten erilaiset argumentoinnin standardit ovat politiikassa kuin tieteessä. Nature tuskin julkaisisi tieteellistä artikkelia, jonka keskeisiä väitteitä perustellaan tutkimuksella, jotka käsittelee aivan muuta aihetta (ja joka esittää positiivisen tuloksen negatiivisena – alla tarkemmin ”kuiluista”).
Luonnontieteilijät kehittyvät opiskellessaan ja tutkimusta tehdessään analyysin ammattilaisiksi, jotka ovat oikeutetusti ylpeitä siitä, että he osaavat keskittyä ongelmien oleellisiin piirteisiin ja muotoilla selkeitä kysymyksiä. Analyysi tarvitsee kuitenkin pohjakseen sekä tietoa että ongelmaan sopivan viitekehyksen, muuten työkaluilla ei ole mitään, mihin pureutua. Lisäksi politiikka, toisin kuin fysiikka, käsittelee asioita, joista meillä on valmiiksi ennakkokäsityksiä, minkä takia tiedostamattomien asenteiden vaikutus analyysiin on verrattomasti isompi.
Tämä ei tarkoita sitä, etteivätkö tieteilijät voisi osallistua poliittiseen keskusteluun, mutta väitteiden perusteista on syytä olla yhtä huolellinen kuin täsmällisemmillä aloilla. Politiikkaan liittyvistä kysymyksistä onkin paljon raportointia ja tutkimusta, jota voi hyödyntää.
Etelä-Afrikan akateemisen boikotin vaikutuksesta on julkaistu esimerkiksi Lorraine J. Haricomben ja F.W. Lancasterin tutkimus Out in the Cold. Siitä aiemmin siteeraamani eteläafrikkalaisen akateemikon kommentti valaisee ytimekkäästi akateemisen boikotin tavoitetta ja sen saavuttamista:
”Akateeminen boikotti on tehokkaasti muuttanut akateemikkojen asenteita yliopistoissa ja katalysoinut muutosta laajemmassa yhteiskunnassa – esimerkiksi akateemikkojen kautta, jotka istuvat johtokunnissa tai päätöksentekoprosesseissa yliopiston ulkopuolella. Se on herkistänyt akateemikkoja … ajattelemaan uudelleen toimintatapaansa monissa eri yhteyksissä.”
Akateeminen boikotti pyrki luomaan eteläafrikkalaisille eristämisen tunteen. Toisin sanoen, se ”kuilun luominen eteläafrikkalaisten ja muun maailman tutkijoiden välille”, jota Nature pitää merkkinä akateemisen boikotin epäonnistumisesta, oli osoitus sen menestyksestä. (Mainittakoon, että akateeminen boikotti on vieläkin kiistelty aihe. Sitä on esimerkiksi arvosteltu siitä, että se kohdistui kaikkiin eteläafrikkalaisiin. Israelin akateeminen boikotti kohdistuukin instituutioihin, ei yksilöihin.)
Naturen väärinkäsitys akateemisesta boikotista liittyy puutteelliseen kuvaan siitä, miten politiikka toimii. Apartheid Etelä-Afrikassa (ja Israelissa nykyään) ei ollut vain hallituksen projekti, vaan sillä oli laaja kannatus sen väestönosan keskuudessa, jonka etuoikeuksia se ylläpiti. Akateeminen boikotti, kuten urheiluboikotti, pyrki horjuttamaan tuota tukea osoittamalla, että apartheidia ei hyväksytä.
Naturen argumentoinnissa on myös sellainen iso ongelma, että yhdysvaltalaisten konferenssien boikotti on hyvin erilainen kuin Etelä-Afrikan tai Israelin akateemiset boikotit. Jälkimmäisten tapauksessa maan akateeminen yhteisö tuki politiikkaa, jota boikotit vastustivat, ja se oli sen takia boikottien kohteena. Yhdysvalloissa akateeminen yhteisö ei tue maahantulokieltoa: yliopistot, tieteelliset järjestöt ja kymmenet tuhannet yksittäiset tieteilijät ovat julistaneet vastustavansa sitä.
Yhdysvaltalaisten konferenssien boikotin kohteen ei olekaan tiedeyhteisö: sen tarkoituksena on auttaa tiedeyhteisöä ja journalisteja tekemään suurelle yleisölle ja päättäjille selväksi, että maahantulokielto vahingoittaa myös Yhdysvaltoja. Kiellolla on nimittäin laaja kannatus: mielipidemittausten mukaan noin puolet kansalaisista kannattaa sitä. Toisin kuin vähemmän ehdottomat kansalaisuuteen perustuvat rajoitukset, kuten erilaiset viisumisäädökset, se ei kuitenkaan ole vakiintunutta politiikkaa, joten mielipide saattaa muuttua nopeasti, jos kiellosta osoittautuu olevan haittaa ja sitä vastustetaan.
Toisin kuin Naturen pääkirjoitus antaa ymmärtää, politiikkaa ei tehdä vain presidentin kansliassa, vaan kaikkialla yhteiskunnassa. Boikottia tukevan yhdysvaltalaisen kollegani Rocky Kolbin sanoin: ”Meidän on oltava tieteilijöitä ilman rajoja.”
2 kommenttia “Rajaton tiede”
-
Politiikkaa ei tulisi sotkea mukaan tieteen tekoon.
– Mutta sitähän nämä boikotoijat itsekin tekevät.
Vastaa
Raja-aitojen pystyttämistä
Palaan kurssin Fysiikkaa runoilijoille aiheisiin. Olen aiemmin käynyt läpi klassisen taivaanmekaniikan paljastamaa uudenlaista kauneuden muotoa, suppean suhteellisuusteorian syrjäyttämää eetteriä esimerkkinä järkevästä mutta väärästä ideasta sekä sitä, miten yleinen suhteellisuusteoria lopetti Newtonin tuomitseman suuren järjettömyyden. Nyt on vuorossa kvanttimekaniikka ja ymmärryksen rajat.
Fysiikka on kasvattanut ymmärrystämme maailmasta verrattomasti. Sen lisäksi, että se on vastannut moniin ihmisiä pitkään askarruttaneisiin kysymyksiin, fysiikka on avannut ovia uusiin ilmiöihin, joita ei aiemmin tultu edes ajatelleeksi. Usein ei ole lainkaan selvää, mitä tietty fysiikan teoria pystyy selittämään. Esimerkiksi Isaac Newtonin gravitaatioteorian mukainen Aurinkokunta ei ole stabiili, vaan planeetat voivat ajautua radoiltaan toistensa häiritseminä. Newton piti tätä ongelmana, koska oli vaikea käsittää miten planeetat voisivat säilyttää ratansa pitkiä aikoja, ja hän sysäsi ratkaisun Jumalan harteille. Nykyään tiedämme, että Aurinkokunta on käynyt läpi monia muodonmuutoksia, ja planeettojen siirtyminen välillä lähemmäs ja sitten kauemmas Auringosta on keskeinen osa Aurinkokunnan kehitystä. Niinpä ratojen epävakaus on osoitus Newtonin teorian menestyksestä, ei sen puutteista.
Fysiikan kehitys ei ole ainoastaan laajentanut ymmärrystämme, se on myös rajannut joitakin alueita ymmärryksen ulottumattomiin osoittamalla, että jotkut kysymykset eivät ole mielekkäitä.
Klassisessa mekaniikassa aine koostuu hiukkasista, jotka ovat pieniä jyväsiä, joilla on tietty paikka ja nopeus. Tästä lähtökohdasta aineen ymmärtämisessä on kyse vain siitä, että tiedetään paremmin, millaisia voimia hiukkaset kohdistavat toisiinsa ja mitä siitä seuraa. Klassinen sähkömagnetismi järkytti tätä kuvaa jo 1800-luvulla tuomalla mukaan sähkömagneettiset kentät, joita ei voi kuvata hiukkasten avulla. Kvanttimekaniikka meni vielä pidemmälle: se ei vain lisännyt uutta, vaan kajosi myös hiukkasten luonteeseen, joka luultiin jo tunnetuksi.
Kvanttimekaniikan mukaan hiukkasilla ei ole määrättyä paikkaa eikä nopeutta, ainoastaan tietty todennäköisyys olla jossain paikassa ja liikkua jollain nopeudella. Mitä tarkemmin paikan todennäköisyys on keskittynyt johonkin alueeseen (eli mitä luultavammin hiukkanen löytyy sieltä), sitä laajemmalle nopeuden todennäköisyys on levinnyt. Tämä pitää paikkansa myös päinvastoin: mitä tarkemmin määrätty kappaleen nopeus on, sitä epämääräisempi sen paikka on. Tämä todellisuuden piirre tunnetaan nimellä Heisenbergin epämääräisyysperiaate. Joskus kuulee käytettävän ilmaisua Heisenbergin epätarkkuusperiaate, mutta kyse ei ole siitä, että hiukkasen ominaisuuksia ei tiedettäisi tarkasti, vaan se, että niistä ei ole enempää tiedettävää. Kysymykset ”missä hiukkanen todella on” ja ”mitä rataa hiukkanen todella liikkui” (esimerkiksi kaksoisrakokokeessa) eivät merkitse mitään.
Kvanttimekaniikka sumentaa käsityksen hiukkasesta. Jos hiukkanen ei ole pieni jyvänen, jolla on tietty paikka, niin mikä se sitten on? Mitä on se, mitä havaitaan tietyllä todennäköisyydellä? Yksi syy asian hahmottamisen vaikeuteen on se, että kvanttimekaniikassa hiukkasta kuvaava aaltofunktio on hyvin erilainen malli aineesta kuin jyvänen tai aalto, ja tuntuu siksi vieraalta. Mutta kvanttimekaniikan pystyttämät raja-aidat ymmärrykselle ovat perustavanlaatuisempia. Vieläkään ei ymmärretä, miten tuntemuksemme siitä, että todellisuus on määrätty seuraa kvanttimekaniikasta. Havaitseminen ja oleminen ovat klassisessa fysiikassa niin ilmeisiä asioita, että niistä ei ole paljon sanottavaa, mutta kvanttimekaniikassa ne ovat osoittautuneet kaikkein hankalimmaksi kysymykseksi. Ongelman vaikeutta kuvaa se, että joskus kvanttimekaniikka muotoillaan pelkästään havaintojen kautta, sivuuttaen kysymykset niiden taustalla olevasta todellisuudesta.
Kvanttiteorian seuraava porras, kvanttikenttäteoria, selventää hiukkasten luonnetta kenttien tihentyminä, mutta epämääräisyyden selitys jää silti uupumaan. On epäselvää, tarvitaanko siihen uutta teoriaa, vai selittyykö se kvanttifysiikan monimutkaisten seurauksien hahmottamisen kautta kuten planeettojen ratojen kehitys klassisessa mekaniikassa. Vain tutkimus voi kertoa sen, mikä on ymmärrettävissä.
9 kommenttia “Raja-aitojen pystyttämistä”
-
Kiitos vastauksesta edellisessä merkinnässä esittämääni kysymykseen, jota tosin et julkaissut.
Tosiaan mennään niillä rajoilla, että joistain deterministisyyksistä ei välttämättä koskaan voida saada varmaa käsitystä kuinka on ja onko kysymys edes mielekäs. Kaikkeus ei ole kokonaisuus kenellekään havaitsijalle ja keskinäiset havaintoaineistotkin voivat muodostaa vain rajallisia yhteisiä leikkauksia.
-
Maallikkona herää kysymys onko käsitteelle hiukkanen enää oikeasti tarvetta? Voidaanko kaikki selittää pelkästään kentillä ja aaltofunktioilla?
-
Kvanttimekaniikasta tulee mieleen internetissä pelattavat moninpelit ja niiden ”lag”.
Kaukaa katsottuna toinen pelihahmo näyttää olevan oikein vakaa ja kulkea selkeästi.
Läheltä katsottuna se toinen pelihahmo saattaakin hyppelehtiä edestakaisin (”rubberbanding”), eikä sen sijaintia oikein voi varmaksi sanoa.
Ongelma on siinä, että pelaajien ja palvelimien välillä on viivettä. Joten pelaaja A saattaa nähdä, että pelaaja B juoksee vasemmalle, mutta oikeasti pelaaja B onkin jo kääntynyt päinvastaiseen suuntaan. Jos pelissä on tarkoitus paukutella pyssyllä toisia pelaajia kohti, niin tämä aiheuttaa ilmeisiä ongelmia pelaamisen suhteen.
-
Mielenkiintoista pohdintaa. Tarvitaanko uutta teoriaa, sen kaiketi tutkimus sitten aikanaan näyttää. Kvanttikenttäteoria ja arjen ymmärrys aistimastamme todellisuudesta tai ”todellisuudesta” tarvinnee yhdistäväksi tekijäksi myös filosofisia pohdintoja?
-
Paluuviite: Kosmokseen kirjoitettua | Kaikki tai ei mitään
Vastaa
Miksi kaiken teorialla on merkitystä?
Laskennallisen materiaalifysiikan professori Kai Nordlund pyysi minut Tieteen päiville puolustamaan sitä, että kaiken teorian löytämisellä olisi väliä. Puhuin aiheesta tänään. Esitys meni jokseenkin näin.
Fysiikassa on kahdenlaisia lakeja: perustavanlaatuisia ja emergenttejä.
Emergentit lait voidaan, ainakin periaatteessa, johtaa muista tunnetuista laeista. Esimerkiksi molekyylit rakentuvat atomeista, joten niiden lait palautuvat atomifysiikkaan. Vastaavasti solujen toiminta palautuu molekyyleihin ja eläinten käytös soluihin. Usein emergentit lait ovat hyvin erilaisia kuin niiden pohjalla olevat lait. Esimerkiksi vettä ja muiden nesteitä kuvaava hydrodynamiikka poikkeaa muodoltaan ja luonteeltaan täysin atomeja kuvaavista laeista. Yleensä emergenttejä lakeja ei pystytä edes yksinkertaisissa tapauksissa käytännössä johtamaan, vaikka se olisi periaatteessa mahdollista. Esimerkiksi kvarkit ja niiden vuorovaikutukset ovat hyvin yksinkertaisia, mutta niistä koostuvien protonien, neutronien ja muiden hiukkasten ominaisuuksia ja vuorovaikutuksia –eli ydinfysiikkaa– ei vieläkään pystytä täysin päättelemään kvarkeista lähtien. Vasta 2000-luvulla aiheesta on saatu luotettavia tuloksia supertietokoneiden avulla, mutta vieläkin vain pieni osa ydinfysiikasta osataan palauttaa kvarkkien ominaisuuksiin.
Perustavanlaatuisia lakeja ei voida, ainakaan toistaiseksi, johtaa mistään. Tällä hetkellä meillä on kaksi perustavanlaatuista fysiikan teoriaa. Kvanttikenttäteoria kuvaa ainetta ja aineen osien välisiä vuorovaikutuksia, ja yleinen suhteellisuusteoria kuvaa aika-avaruutta ja sen vuorovaikutusta itsensä ja aineen kanssa. Tiedämme kuitenkin, että nämä kaksi tukipilaria eivät ole viimeinen sana. Ne ovat vain approksimaatioita jostain vielä perustavanlaatuisemmasta teoriasta, jota ei vielä tunneta: kvanttigravitaatioteoriasta.
Kvanttiteoria ja gravitaatio on onnistuneesti yhdistetty kosmisessa inflaatiossa, joka kuvaa sitä, miten kaikki maailmankaikkeuden rakenteen siemenet ovat syntyneet aineen ja aika-avaruuden kvanttivärähtelyistä maailmankaikkeuden ensimmäisen sekunnin perukoilla. Inflaatio on ainoa fysiikan osa-alue, missä kvanttigravitaatiota on pystytty kokeellisesti luotaamaan, ja havainnot ovat varmentaneet teorian ennusteita. Inflaatiossa kvanttiteoria ja gravitaatio yhdistetään kuitenkin vain hyvin yksinkertaisella tavalla, eikä tiedetä, miten ne kokonaisuudessaan nivoutuvat yhteen.
Monet tutkijat odottavat, että kvanttigravitaatioteoria olisi aidosti perustavanlaatuinen siinä mielessä, että sitä ei edes periaatteessa voisi johtaa mistään: lopullinen sana todellisuudesta. On kuitenkin mahdollista, että kvanttigravitaation takana on vielä uutta fysiikkaa ja kaiken teoria on luultua kauempana. Periaatteessa teorioiden ketju saattaa myös jatkua loputtomiin, niin että mitään kaiken teoriaa ei ole, ainoastaan yhä tarkempia ja tarkempia kuvauksia.
Kaiken teoria luultavasti poikkeaisi ennusteiltaan kvanttikenttäteoriasta (tai ainakin sen tämänhetkisestä perustavanlaatuisesta toteutuksesta, Standardimallista) ja yleisestä suhteellisuusteoriasta vain hyvin pienissä mittakaavoissa, isoilla energioilla ja vahvoissa gravitaatiokentissä. Kvanttigravitaatioon liittyvien ilmiöiden odotetaan tyypillisesti olevan merkittäviä vain pituusskaaloilla, jotka ovat pienempiä suhteessa protoniin kuin mitä protoni on suhteessa meihin. On kuitenkin kaksi syytä, miksi kaiken teorian löytäminen ei ole vain akateeminen kysymys. (Huvittavaa ja huolestuttavaa muuten, että yleisessä kielenkäytössä sana ”akateeminen” tarkoittaa samaa kuin ”merkityksetön”.)
Ensinnäkin kaiken teorialla voi olla yllättäviä teknologisia sovelluksia. 1800-luvun lopulla klassinen fysiikka, eli Newtonin mekaniikka ja Maxwellin sähkömagnetismi, kuvasivat hyvin kaikkia arkiskaalan ilmiöitä, ja kuvaavat vieläkin. Mutta vaikka atomit ovat yhtä pieniä suhteessa meihin kuin me olemme suhteessa Aurinkoon, niiden lakien löytäminen on mullistanut arkielämän. Vetyatomia tutkittaessa löydettiin kvanttimekaniikka, mihin pohjautuu kaikki elektroniikka ja nykykemia, sekä DNA:n ja muiden biologisten rakennuspalikoiden ymmärtäminen. Arkemme on kvanttimekaniikan sovellusten läpitunkema. Olisi ollut 1800-luvulla täysin mahdotonta ennustaa, millaisia sovelluksia atomifysiikalla tulee olemaan, saati sitten aavistaa siihen pohjaavan teknologian ajamia yhteiskunnallisia muutoksia. Yhtä lailla on mahdotonta sanoa, millaisia sovelluksia kaiken teorialla voi olla.
Toisekseen, kvanttiteoria ja yleinen suhteellisuusteoria muuttivat perin pohjin kuvamme todellisuudesta. Kvanttimekaniikka paljasti, että arkikäsityksemme aineesta, tapahtumisesta ja olemisesta ovat tyystin virheellisiä. Yleinen suhteellisuusteoria mullisti kuvamme ajasta ja avaruudesta, ja avasi oven maailmankaikkeuden historiaan. Emme vieläkään täysin sulattaneet näitä muutoksia, emme esimerkiksi hahmota, miten arkimaailma seuraa kvanttimekaniikasta. Kaiken teoria oletettavasti muuttaisi käsityksemme yhtä perinpohjaisesti, tavoilla, joita on mahdotonta vielä kuvitella.
Fysiikan sovellusten merkitystä on vaikea yliarvioida. Jos Maapallolla koskaan päästään tilanteeseen, missä ihmiset voivat kaikki elää ihmisarvoista elämää ja osallistua yhtäläisesti ihmisyhteisön asioihin, niin se on mahdollista ainoastaan fysiikan sovellusten, kuten modernin tiedonvälityksen, avulla. Yhtä tärkeää on kuitenkin se, miten fysiikka auttaa meitä ymmärtämään maailmaa: se selittää sateenkaaren värit, kertoo tähtien olevan kaukaisia aurinkoja, paljastaa maailmankaikkeuden historian olevan meidän historiaamme. Lyhyesti sanottuna, fysiikka kehystää inhimillisen kokemuksen.
33 kommenttia “Miksi kaiken teorialla on merkitystä?”
-
Haluaisitko hiukan avata sitä, mitä tarkoittaa, jos ”Periaatteessa teorioiden ketju saattaa myös jatkua loputtomiin, niin että mitään kaiken teoriaa ei ole, ainoastaan yhä tarkempia ja tarkempia kuvauksia.”?
-
Ja jollei Maassa päästäisikään, niin avaruussiirtokunnat voisivat olla toinen mahdollisuus, mikä sekin olisi sitten toki fysiikan ansiota.
-
“Kvanttimekaniikka paljasti, että arkikäsityksemme aineesta, tapahtumisesta ja olemisesta ovat tyystin virheellisiä.”
Tarkoitatko, että teemme arkikokemustemme perusteella virheellisiä hypoteeseja? Itse kokemuksethan ovat evoluution myötä muodostuneet tarkoituksenmukaisiksi ja toimiviksi, ja ovat tässä mielessä enimmäkseen “oikeita”. Näin ollen se kuva maailmasta, joka arkikokemusten kautta muodostuu, on mielestäni pikemminkin puutteellinen kuin virheellinen.
-
Kiitos esitelmästäsi tieteen päivillä, se oli ihan paikallaan tuossa sessiossa. Kommentoisin huomautustasi kuinka modernit teknologiat ovat fysiikan sovelluksia. No ainakin fysiikka selittää teknologiaa pätevästi ja auttaa kehittämään sitä. Monet teknologiat on kutenkin syntyneet itsenäisesti ja ennen selittävää fysiikkaa. Lämpövoimakoneet on tuttu esimerkki. Transistorista oli patentteja 1920-luvulla, ja kun toimiva laite syntyi noin 1956, sitä ei ensin osattu selittää (Bellin ryhmä ja Matare & Welker). Led keksittiin 1920-luvulla ja sitten uudestaan 1960- luvulla. Elektroniputki keksittiin kun leikittiin hehkulampuilla, ja siitä (oikeastaan kaasunpurkausputkista) tuli tärkeä fyysikkojen työkalu joka demonstroi mm että kvantit on reaalisia (Planck ei kai ensin uskonut siihen). Olen leikkinyt ajatuksella millaista olisi teknologia ilman fysiikkaa. Mahdoton eksperimentti koska fysiikka on aina ollut niin lähellä. Mutta voihan kuvitella. Varmaan teknologia olisi vähemmän tehokasta, mutta olisi kiva tietää, miten erilaista se olisi. Jokinlainen steampunk- maailma kai.
-
Räsänen: ”Tilan romahtamisen osalta tätä tosin ei ymmärretä kokonaan”.
Tämähän on niitä ns Köpistulkinnan suurimpia ongelmakohtia. Romahtaminen ja ”mittaajan” ongelma. Ja sen ”selitämiseksi” tai kokonaan eliminoimiseksi on kehitetty erilaisia ajatelmia (yhtä ongelmallisia ajatelmia kuin Köpistulkinnan dekoherenssin kautta tapahtuva ”romahtaminen” ).
Räsänen: ”Kvanttiteoriaa ei ole kehitetty arki-ilmiöiden selittämiseksi, vaan atomien”.
Kommenteissa nämä kaksi asiaa näyttävät sekoittuvan. Sen takiahan Syksy sanoi: ” Emergentit lait voidaan, ainakin PERIAATTEESSA,johtaa muista tunnetuista laeista”. Jokaiselle on tietysti selvää, että käytännössä tämä on toistaiseksi totaalisen mahdotonta . Kuluu paljon tupakkia ja vuosia emergenssin ja reduktion johtamiseen Schrödingerin yhtälöstä, voi olla että sata/tuhat vuotta tai ei koskaan.
Käsittääkseni vain yksinkertainen vetyatomin reduktio onnistutaan toistaiseksi ”selittämään” kvanttifysiikalla (yksinkertainen kahden kappaleen ongelma).
-
Syksy kirjoitti: ”..emme esimerkiksi hahmota, miten arkimaailma seuraa kvanttimekaniikasta.”
Ainakin joissakin tapauksissa kyseessä voi mielestäni olla karkeistus.
Niin makroskooppiset kuin mikroskooppisetkin aistimuksiin perustuvat tietoisuuden sisällöt ovat mahdollisesti karkeistuksia, jolloin kvanttifysiikkaa syvempi, toistaiseksi paljastumaton olevaisen taso voi olla olemassa.
Karkeistuksesta olen nähnyt sanottavan, että se on informaation hukkaamista. Esimerkkejä silmäillessä on tuntunut, että hukattu informaatio on voittopuolisesti epäoleellista ja karkeistumisprosessiin kuuluu paljon monimutkaista informaatiota, jotka siis lisätään systeemiin karkeistaessa. Tällainen tunne tulee esimerkiksi katsellessa Kari Enqvistin esitystä ”luonnonlain” johtamiseksi
http://www.helsinki.fi/~enqvist/opus.dir/coarsegrain.pdf
Tässä siis systeemiin lisätään runsaasti matemaattista informaatiota integraalin, eksponenttifunktion jne. muodossa.
Voin tietenkin olla, ja luultavasti olenkin väärässä. Informaatiolla olen tarkoittanut P.C.V.Daviesin uumoilemaa materiaakin perimmäisenpää ”stuffia”
http://www.space.com/29477-did-information-create-the-cosmos.html
-
Paluuviite: Kosmokseen kirjoitettua | Suoraviivaista
-
Paluuviite: Kosmokseen kirjoitettua | Maxwellin tiimalasi
Vastaa
Totalitaristinen periaate ja vanhan ajan romantiikka
Olin viime viikolla Kiotossa konferenssissa Hidden Sector Physics and Cosmophysics, joka käsitteli aksioneja. Aksionit ovat spekulatiivisia erittäin kevyitä ja erittäin heikosti vuorovaikuttavia hiukkasia, ja ne ovat eräs ehdokas pimeäksi aineeksi. Olen aiemmin kirjoittanut siitä, miten kolmen steriilin neutriinon lisääminen on luonteva tapa laajentaa Standardimallia. Aksionit ovat toinen suoraviivainen Standardimallin täydennys.
Aksionien taustalla on Murray Gell-Manin totalitaristinen periaate: ”kaikki mikä ei ole kiellettyä, on pakollista”. Tämä tarkoittaa sitä, että hiukkasfysiikan teorioita muotoillaan siten, että ensin päätetään, millaisia hiukkasia ja symmetrioita niissä on, ja sitten otetaan mukaan kaikki symmetrioiden sallimat vuorovaikutukset hiukkasten välillä. Kvanttikenttäteorian rakenne on hyvin rajoittava (eli hyvin ennustusvoimainen), eikä mahdollisia vuorovaikutuksia yleensä ole kuin kourallinen.
Standardimalli melkein toteuttaa totalitaristisen periaatteen, poikkeuksena on vain yksi värivoimaa välittävien gluonien vuorovaikutus. Teorian symmetriat sallivat tämän vuorovaikutuksen, mutta havaintojen mukaan sitä ei ole, tai ainakin se on erittäin pieni. Aksioni on esitetty vuonna 1977 selittämään, miksi näin on. Idea on samankaltainen kuin Higgsin mekanismissa, missä Higgsin kenttä vuorovaikuttaa hiukkasten kanssa siten, että ne käyttäytyvät kuin niillä olisi massa. Aksionien tapauksessa aksionikenttä vuorovaikuttaa gluonien kanssa siten, että ne käyttäytyvät kuin niillä ei olisikaan tuota yhtä vuorovaikutusta. Kun Standardimalliin lisää aksionin, se toteuttaa totalitaristisen periaatteen.
Sittemmin on kehitetty myös muita ideoita samantapaisista hiukkasista, esimerkiksi säieteoriassa on useita kenttiä, jotka käyttäytyvät aksionin tavoin. Kutsun tässä näitä kaikkia samaan ideaperheeseen kuuluvia hiukkasia nimellä aksioni – tarkempaa olisi sanoa Standardimallin ongelman ratkaisevaa hiukkasta aksioniksi ja muita aksioninkaltaisiksi hiukkasiksi.
Kuten supersymmetria, tekniväri ja jokseenkin kaikki muutkin merkittävät ideat Standardimallin laajentamisesta, aksioni on 70-luvun lapsi, ensi vuonna se täyttää neljäkymmentä. Mitään havaintoja aksioneista ei vielä ole, mutta mielenkiinto niihin on viime aikoina kasvanut, koska sen enempää korkeita energioita luotaava LHC kuin raskasta pimeää ainetta suoraan etsivät kokeet eivät ole löytäneet uusia hiukkasia. Tämän takia huomio kääntyy enemmän siihen mahdollisuuteen, että Standardimallin tuonpuoleinen fysiikka ei ole piilossa siksi, että uudet hiukkaset olisivat raskaita, vaan siksi, että ne vuorovaikuttavat heikosti.
Steriilit neutriinot ovat yksi esimerkki, niistä kevyimmän massa saattaisi olla noin sadasosa elektronin massasta. Aksionit ovat äärimmäisempiä: sellaisen massa saattaa olla vain 10^(-28) elektronin massa. Tämä on suunnilleen sama kuin hiekanjyvän ja Maapallon massojen suhde. Aksionit voivat olla myös vähemmän kevyitä, 10^(-12) kertaa elektronin massaisia. Se, että aksionien mahdollinen massa (ja niiden vuorovaikutusten voimakkuus) kattaa niin ison alueen, tekee niistä vaikeasti löydettäviä, mutta siihen on keksitty erilaisia konsteja, joissa mainitsen tästä jokusen.
Magneettikentissä aksionit sekoittuvat fotonien kanssa. Niinpä aksioneja etsitään katsomalla, hohtaako valo seinän läpi. Kokeessa osoitetaan laserilla seinää magneettikentän ollessa päällä ja katsotaan näkyykö toisella puolella valoa. Jos aksioneja on olemassa, jotkut fotonit muuttuvat magneettikentässä aksioneiksi, matkaavat seinän läpi ja muuttuvat siellä takaisin fotoneiksi. Muuttumisen todennäköisyys riippuu herkästi aksionin massasta, joten kokeissa täytyy käydä erilaisia massavaihtoehtoja läpi yksi kerrallaan, mikä on hidasta puuhaa, ja eri massoille tarvitaan erilaisia koelaitteita.
Jos aksionit ovat pimeää ainetta, niitä on kaikkialla valtavia määriä. Pimeän aineen massatiheys Aurinkokunnassa tiedetään, joten mitä kevyempi aksioni on, sitä enemmän niitä on. Pienimmän mahdollisen massan tapauksessa meidän jokaisen kehon sisällä on noin 10^(38) aksionia. Niinpä vaikka yksittäisen aksionin vuorovaikutus on heikko, sitä paikkaa valtava lukumäärä.
Eräs lempipuheistani Kioton konferenssissa oli Yoshizumi Inouen esitys hänen ja kolmen kollegan etsinnöistä, joissa he käyttivät vanhaa antennia ja muita uusiokäytettyjä (osin roskalavalta löydettyjä) komponentteja pimeän aineen etsimiseen. Idea on se, että jos pimeä aine sekoittuu fotonien kanssa vähän, niin tavallinen antenni tai peili heijastaa pimeää ainetta vähän, joten sitä voi suunnata antennin avulla valon tai muun sähkömagneettisen säteilyn havaitsemiseen tarkoitettuun halpaan laitteeseen. Laitteisto kokonaisuudessaan maksoi kuulemma parituhatta euroa, mutta sulki silti pois tietynmassaiset ja tietyllä voimakkuudella vaikuttavat aksionit, mihin mikään muu koe ei ollut aiemmin pystynyt. Minulle tuli mieleen romanttiset ajat, jolloin hiukkasfysiikan kokeita saattoi tehdä muutama ihminen parissa kuukaudessa. Olisi jotenkin runollista, jos Inouen ja kumppanien nyrkkipajakoe olisi löytänyt pimeän aineen hiukkasen miljoonia tai miljardeja maksaneiden, tuhansien tutkijoiden huolella koordinoitujen hankkeiden sijaan.
Pieni massa johtaa myös kiinnostaviin kosmologian ja astrofysiikan ilmiöihin. Mitä pienempi hiukkasen massa on (kunhan se ei ole nolla), sitä isompi on siihen liittyvä aallonpituus. Aksionien massa voi olla niin pieni, että aallonpituus on tähtitieteen mittaluokkaa. Aksionit eivät voi muodostaa aallonpituuttaan pienempiä klimppejä, koska niiden paikka ei kvanttimekaniikan mukaan voi olla aallonpituutta tarkemmin määrätty. Jossain mielessä voi sanoa, että hyvin kevyet aksionit eivät ole pieniä hiukkasia, vaan tuhansien valovuosien kokoisia. Tämän on ehdotettu selittävän sitä, että galakseissa näkyy odotettua vähemmän pienen mittakaavan rakennetta, kuten pieniä satelliitteja Linnunradan ympärillä. (Näyttää tosin siltä, että asia selittyy ilmankin aksioneja.)
Vielä eksoottisempi mahdollisuus on se, että mustien aukkojen ympärillä olisi aksioneista muodostunut kehä. Aksionikehä saattaisi imeä aukosta energiaa ja loistaa kirkkaana. Voisi jopa olla mahdollista, että jotkut mustiksi aukoiksi tulkitut havainnot voisi selittää kokonaan tällaisten aksionitähtien avulla, ilman mustia aukkoja. Yksi tapa testata näitä ideoita on laskea millaisia ovat mustien aukkojen, tai aksionitähtien, törmäyksistä syntyvät gravitaatioaallot ja verrata niistä tehtäviin havaintoihin, joita on tulossa paljon lisää.
Kekseliäiden koejärjestelyjen avulla vaikeasti tavoitettavat aksionit lähitulevaisuudessa joko löytyvät tai ne osoitetaan olemattomiksi: viimeistään 15 vuoden kuluttua asiasta pitäisi olla varmuus. On myös hauskaa, miten vanhaan ideaan on saatu tuoreita näkökulmia mustien aukkojen kautta, kun yleisen suhteellisuusteorian yhtälöiden ratkaisemisessa tietokoneilla on edistytty ja gravitaatioaaltojen yksityiskohtiin on päästy käsiksi.
12 kommenttia “Totalitaristinen periaate ja vanhan ajan romantiikka”
-
Mitäpä sanoisit neutriinojen aallonpituuksista, aaltomuodosta ja sen myötä koosta? Mitä tiedetään, mitä perustellusti arvaillaan?
”Pienimmän mahdollisen massan tapauksessa meidän jokaisen kehon sisällä on noin 10^(38) aksionia.”
Voiko ajatella olevan jokin määrä keskimäärin paikallaan pysyviä aksioneja? Pitäisikö puhua läpäisytiheydestä?
-
Mielenkiintoinen artikkeli – ja odotuksiakin luova. Oliko näin, että suhteellisuusteoria loi näkymiä kosmisesta ”demokratiasta” ja Standardimalli täydennyksineen ”totalitarismista”?
-
Syksy: ”poikkeuksena on vain yksi värivoimaa välittävien gluonien vuorovaikutus”…. ”mutta havaintojen mukaan sitä ei ole, tai ainakin se on erittäin pieni”… ”että ne käyttäytyvät kuin niillä ei olisikaan tuota yhtä vuorovaikutusta”.
Puhut vähän arvoituksellisen epäselvästi. Onko kysymys ns. Strong CP-problemista? Jos on, olisit sen voinut mainita heti kättelyssä.
-
18.12. oli Aurinko taas samalla vuotuisella akselilla galaksimme keskustaan nähden. Allaolevalla CERNin Axion Solar Telescopilla yrittävät tutkijat saada näkyviin gravitaatiolinssillä sekä axioneja että Chameleon-hiukkasia (ehdotuksia pimeäksi energiaksi) galaksimme mustasta aukosta. Vielä ei kuitenkaan tärpännyt.
https://home.cern/about/updates/2016/12/black-hole-aligns-sun-and-cern-telescope
https://en.wikipedia.org/wiki/Chameleon_particle
-
Paluuviite: Tähtitieteellinen yhdistys Ursa: Tuoreimmat
Vastaa
Eroon suuresta järjettömyydestä
Jatkan poimintoja kurssin Fysiikkaa runoilijoille aiheista. Kirjoitin aiemmin klassisen taivaanmekaniikan paljastamasta uudesta kauneudesta sekä suppean suhteellisuusteorian syrjäyttämästä eetteristä esimerkkinä järkevistä mutta vääristä suunnista. Nyt on vuorossa yllättävät vastaukset yleiseen suhteellisuusteoriaan johtaneisiin yllättäviin kysymyksiin.
Kun käy fysiikan historiaa läpi järjestyksessä, on silmiinpistävää, kuinka monasti järkevät ja perustellut ideat, kuten eetteri, ovat olleet täysin väärin. Usein havainnot ovat vieneet oikeille jäljille, ja teorioita on kehitetty tiiviissä vuorovaikutuksessa kokeiden kanssa. Yleinen suhteellisuusteoria on tässä suhteessa poikkeuksellinen, koetuloksilla ei ollut sen rakentamisessa ratkaisevaa merkitystä. Sen sijaan se on hyvä esimerkki siitä, miten oikeaan vastaukseen vievät vihjeet ovat joskus yhtä aikaa sekä kaikkien nähtävissä että vaikeasti ymmärrettävissä.
Isaac Newtonin vuonna 1687 esittämän klassisen gravitaatioteorian mukaan kappaleet vetävät toisiaan puoleensa voimalla, joka on kääntäen verrannollinen niiden etäisyyden neliöön. Tämä yksinkertainen laki on tarkemmin mietittynä hieman kummallinen: mistä kappale tietää, missä muut kappaleet ovat? Kun planeetta miljardien valovuosien päässä siirtyy radallaan, niin Newtonin gravitaatiolain mukaan sen aiheuttama voima muuttuisi täällä välittömästi.
On kaksi vaihtoehtoa: joko kappaleiden välillä on jonkinlainen niiden luonteelle ominainen kaukovaikutus, jolle ei ole sen kummempaa selitystä, tai sitten jokin välittää tietoa kappaleelta toiselle. Newton itse kirjoitti, että ajatus siitä, että gravitaatio olisi aineen sisäinen ominaisuus
”on niin suuri järjettömyys, että en usko kenenkään filosofisissa asioissa pätevän ajattelijan voivan siihen ikinä langeta. Gravitaatiolla täytyy olla välittäjä, joka toimii jatkuvasti tiettyjen lakien mukaan; mutta sen, onko tämä välittäjä aineellinen vai aineeton, olen jättänyt lukijoideni harkittavaksi.”
Lukijoiden harkintakyky ei vastannut Newtonin toiveita, ja hänen tuomitsemastaan kannasta tuli fysiikan valtavirtaa yli kahdensadan vuoden ajaksi. Viimeistään vuonna löydetty 1905 suppea suhteellisuusteoria kuitenkin vaati muutosta asiaan. Suhteellisuusteorian mukaan tieto kulkee korkeintaan valonnopeudella, joten kappaleet eivät voi tietää toistensa paikkojen muutoksesta heti, ainoastaan viiveellä.
Newtonin gravitaatiolaki muistuttaa sähköopista tuttua Coulombin lakia, jonka mukaan sähkövarausten välinen voima on kääntäen verrannollinen niiden etäisyyden neliöön. Maxwellin sähkömagnetismi selitti, että sähkövaraus ei suoraan vedä toisia puoleensa. Sen sijaan varaus synnyttää sähkökentän, joka vaikuttaa muiden varausten liikkeeseen. Kun varaus liikkuu, sen synnyttämä sähkökenttä muuttuu, ja kentän muutos etenee valonnopeudella. Kun varaukset ovat lähellä ja liikkuvat hitaasti, niiden välinen voima on suunnilleen Coulombin lain mukainen, mutta se ei päde yleisesti.
Tätä voi pitää vihjeenä gravitaation luonteesta: entä jos gravitaatioon liittyy jokin kenttä, jonka muutokset etenevät valonnopeudella? Tätä polkua seurasi suomalainen fyysikko Gunnar Nordström, joka esitti vuonna 1913 ensimmäisen suppean suhteellisuusteorian kanssa sopusoinnussa olevan gravitaatioteorian. Siinä massat saavat aikaan kentän, jonka muutokset välittävät gravitaatiota, hieman sähkömagnetismin tapaan. Nordströmin teoria oli yksinkertainen, elegantti ja väärä.
Albert Einstein kulki eri reittiä. Hän oli ottanut vaarin siitä, että kaikki kappaleet liikkuvat samalla tavalla gravitaatiokentässä, toisin kuin sähkökentässä. Tämä oli hyvin tunnettu havainto, jolle ei ollut kunnollista selitystä, mutta joka toisaalta ei ollut ristiriidassa minkään muun asian kanssa, joten ei ollut ilmeistä, pitäisikö siitä olla huolissaan. Einstein kuitenkin päätteli siitä, että gravitaatio on aika-avaruuden ominaisuus, ei mikään siinä oleva kenttä. Tämä idea vaati perusteellisempaa uudelleenajattelua kuin Nordströmin ehdotus, ja sen täsmällinen ilmaiseminen yleisen suhteellisuusteorian muodossa kesti kahdeksan vuotta, päättyen vuonna 1915.
Yleisen suhteellisuusteorian ja Nordströmin teorian välisen kilvan ratkaisi vuoden 1919 auringonpimennyksen aikana mitattu valon taipuminen. Nordströmin teorian mukaan gravitaatio ei vaikuta valoon, mutta yleisessä suhteellisuusteoriassa gravitaatio vaikuttaa kaikkeen mitä aika-avaruudessa on. Havaintojen mukaan valo taipui, ja yleisen suhteellisuusteorian riemuvoitto raportoitiin lehtien etusivuilla.
Vastaus Newtonin avoimeksi jättämään kysymykseen siitä, onko välittäjä ”aineellinen vai aineeton” oli täysin odottamaton: gravitaatiota välittää aika-avaruus itse. Yleinen suhteellisuusteoria samalla ennusti, että kuten sähkömagneettisessa kentässä voi olla aaltoja, niin aika-avaruudessa itsessään voi olla aaltoja, gravitaatioaaltoja. Ne ovat osoitus gravitaation välittäjästä, siitä, että Newtonin ”suuresta järjettömyydestä” on päästy eroon. Gravitaatioaaltojen näkemisessä kesti kauan, ensimmäinen suora havainto ilmoitettiin vasta viime helmikuussa. Newtonin kysymykseen vastaaminen myös osoitti, että kappaleiden välinen näennäinen vetovoima ja gravitaatioaallotkin ovat vain pieni osa gravitaation rikkaasta ilmiömaailmasta, ja avasi oven kosmologialle, eli maailmankaikkeuden historian ymmärtämiselle.
11 kommenttia “Eroon suuresta järjettömyydestä”
-
Miten erilaiset gravitoneja sisältävät teoriat sopivat yhteen sen kanssa, että ”gravitaatiota välittää aika-avaruus itse”?
-
Olisiko samanlainen ”hahmottamisen tapa” kuin esim. Feynmannin diagrammit?
-
Magneettikenttä näyttää myös taivuttavan fotonien reittiä. Mielenkiinnolla odotan sähkömagnetismin kenties tuntemattomia vaikutusmekanismeja kvanttimekaniikassa.
Emme ehkä tiedä vielä…. -
Syksy, mitä sanot ns. solmukvanttiteorian mallista kuvaamaan aika-avaruuden gravitaatio-ominaisuutta?
-
Syksy:
”Yleinen suhteellisuusteoria on tässä suhteessa poikkeuksellinen, koetuloksilla ei ollut sen rakentamisessa ratkaisevaa merkitystä.”Olisin tuosta hieman eri mieltä. Einsteinin periaatteellinen ajatus valon nopeuden putoamisesta gravitaation vaikutuksesta voi hyvinkin olla yhteenveto Roemerin ja muiden Jupiter-Io -mittausten sekä Michelson-Morley -kokeiden pohjalta. Kyllähän havaintotuloksia oli laajasti. Lisäksi havaintojen/koetulosten kanssa yhteensopivat uudet löydöt Maxwellilta ja muilta: aineen rakenne, sähkömagneettinen vuorovaikutus ja valo sellaisena antoivat varmasti polttoainetta pohdintoihin…
Totta on, että sitkeyttä kauniista logiikasta kiinni pitämisessä Einsteinilla kyllä oli. Siinä varmasti auttoi aikalaistutkijoiden, kuten suomalaisen Nordströmin, sparraus kilpailevine ideoineen.
Ei vertailu tähän päivään ole aivan kelvoton. Paradigmafysiikka on edennyt detalji detaljilta, mutta ilman uutta kaunista logiikkaa jonkinlainen seinä näyttäisi nousevan eteen…
Vastaa
Valon vihjeitä
Syksyllä luennoimassani kurssissa Fysiikkaa runoilijoille oli seitsemän osaa: klassinen mekaniikka, sen tuolle puolen kasvaneet suppea ja yleinen suhteellisuusteoria sekä vastaavasti kvanttimekaniikka ja kvanttikenttäteoria, ynnä nämä yhteen tuova kosmologia ja yritykset kohti kaiken teoriaa. Poimin tänne, muiden aiheiden lomassa, yhden asian kustakin kurssin osasta. Aloitin kirjoittamalla siitä, miten klassisen taivaanmekaniikan myötä ihmiskunta löysi uudenlaisen kauneuden, nyt on vuorossa eetteri ja teorioiden hylkääminen.
Newtonin 1600-luvulla muotoilemassa klassisessa mekaniikassa aine koostuu pistemäisistä hiukkasista. Ne kohdistavat toisiinsa voimia, jotka voivat sitoa niitä isommiksi kokonaisuuksiksi: kaiken aineen käytös palautuu periaatteessa hiukkasiin. Sähkö- ja magneettikenttien löytäminen 1800-luvulla ravisteli tätä käsitystä.
Vuosina 1861-1862 James Maxwell esitti sähkökenttien ja magneettikenttien käytöstä kuvaavat yhtälöt, jotka nykyään kantavat hänen nimeään. Maxwellin yhtälöt kertovat, miten sähkövaraukset synnyttävät sähkökentän ja sähkökenttä ja magneettikenttä vaikuttavat toisiinsa. Maxwellin yhtälöt osoittivat sähkön ja magnetismin olevan erottamaton osa samaa kokonaisuutta, sähkömagnetismia.
Ne yllättäen myös kertoivat valon olevan sähkömagneettista aaltoliikettä. Sähkökentän muutos synnyttää pyörteisen magneettikentän, minkä muutos puolestaan synnyttää pyörteisen sähkökentän: tämä kenttien jatkuva vaihtuminen toisikseen on valoa. On tavallista, että yhtenäisteoriat vanhojen asioiden selittämisen lisäksi ennustavat uusia ilmiöitä, ja Maxwellin yhtälöt paljastivatkin, että on olemassa myös näkymätöntä valoa: mikroaaltoja, röntgensäteitä, radioaaltoja ja muita sähkömagneettisen säteilyn muotoja, joiden aallonpituus on liian pieni tai liian iso, jotta silmämme niitä rekisteröisivät. Tämä oli yksi ensimmäisiä osoituksia siitä, että näkyvä maailma on vain pieni osa havaittavaa todellisuutta.
Eräs askarruttava kysymys oli se, mistä sähkö- ja magneettikentät koostuvat. Selvästikään ne eivät rakennu samanlaisista hiukkasista kuin tavallinen, kiinteä aine. Laineet ovat veden aaltoilua, ääni on ilman aaltoilua, ja molemmat palautuvat molekyylien törmäilyyn. Mikä valossa aaltoilee?
Ratkaisuksi ehdotettiin eetteriä, ainetta, jonka aaltoilua valo olisi. Koska eetteriä ei oltu sen enempää nähty, kosketeltu käsin kuin havaittu gravitaatiovuorovaikutuksen kautta, sen pitäisi olla ominaisuuksiltaan aivan uudenlainen: valo olisi vihje erikoisesta aineen muodosta. Tässä ei sinänsä ole mitään epäilyttävää. 1900-luvulla ehdotetut pimeä aine ja pimeä energia ovat molemmat aineen muotoja, joita ei voi nähdä eikä tuntea, eikä jälkimmäisen tapauksessa Aurinkokunnan mittakaavassa käytännössä havaita edes gravitaation kautta. Eetterissä oli niihin verrattuna kuitenkin merkittävä ongelma: sen oli määrä kantaa valoa, joka vuorovaikuttaa voimakkaasti tavallisen aineen kanssa, mitä oli vaikea sovittaa yhteen sen kanssa, että eetteri on kytketty tavalliseen aineeseen hyvin heikosti.
Yksi merkittävä vihje eetterin olemuksesta oli se, että Maxwellin yhtälöiden mukaan valoaaltojen nopeus (kun ne liikkuvat alueessa, missä ei ole sähkövarauksia) on 299 792 458 m/s. Ajateltiin, että aivan kuten äänen nopeus ilmassa on 300 m/s suhteessa ilmaan, valon nopeus olisi 299 792 458 m/s suhteessa eetteriin. Tällöin valon nopeuden pitäisi olla pienempi tai isompi, kun liikkuu eetterin suhteen, aivan kuten ääniaallot saavat havaitsijan kiinni nopeammin tai hitaammin tämän liikkuessa ilman suhteen.
Koska Maa kulkee Aurinkokunnassa, se liikkuu oletettavasti myös eetterin suhteen, joten valon nopeuden pitäisi olla erilainen eri suunnissa. Vuonna 1887 Albert Michelson ja Edward Morley mittasivat tätä ja totesivat että nopeus on sama suunnasta riippumatta. On tietysti mahdollista, että sattumoisin Maa olisi ollut kokeen aikaan levossa eetterin suhteen, joten koe toistettiin eri vuodenaikana, jolloin Maan nopeuden suunta on erilainen, mutta eroa ei taaskaan ollut.
Nykyään tämä nähdään (aivan oikein) osoituksena siitä, että valon nopeus ei riipu havaitsijan liikkeestä eikä eetteriä ole olemassa. Tämä piirre, että valon nopeus on sama kaikille on vastoin klassista mekaniikkaa, jonka mukaan kaikki nopeudet ovat suhteellisia. Tämä ongelman ratkaisu on se, että klassinen mekaniikka ei ole täysin oikein (eli sen pätevyysalue on rajallinen), kuten Albert Einsteinin vuonna 1905 esittämä suppea suhteellisuusteoria selvitti.
Eetterin tutkiminen ei kuitenkaan loppunut Michelsonin ja Morleyn kokeeseen. He kirjoittivat (aivan oikein), että tulos vain sulkee pois sen, että eetteri ei olisi levossa Maan suhteen. Tähän voi vastata kehittämällä mallin, jossa eetteri on levossa Maan suhteen, esimerkiksi kytkemällä sen Maan gravitaatiokenttään, niin että Maa kiinnittää ympärilleen eetterivaipan, kuten pallo nesteessä. Keksin tämän itse, en tiedä käytettiinkö tällaista selitystä oikeasti, mutta jos haluaa aiheeseen perehtyä, niin Ari Tervashonka on tehnyt mielenkiintoiselta vaikuttavan gradun Fysiikan referenssiraamin muutos: Maxwellilaisen eetterihypoteesin teoriaperinne vuosina 1879–1916. En ole ehtinyt käydä sitä läpi, voi olla että palaan aiheeseen sen luettuani.
Eetterillä, kuten episyklillä, on nykyään huono kaiku. Aikanaan se oli kuitenkin järkevä hypoteesi, eikä ole yllättävää, että siitä ei luovuttu Michelsonin ja Morleyn kokeen takia. Kuten olen maininnut edesmenneestä Pioneer-anomaliasta kirjoittaessani:
”teoria on tieteessä välttämätön käyttöliittymä todellisuuteen. Jos pitäisi hylätä teoria siksi, että se on ristiriidassa havaintojen kanssa, ilman että on uutta tilalle, niin tiede loppuisi siihen pisteeseen. On totta, että teoria ei voi olla tieteellinen ellei sitä voi falsifioida, mutta toiminta ei ole tiedettä, jos siinä ei ole teoreettista ohjenuoraa.”
Ei ole selvää, mihin teoreettisen idean seuraaminen pitäisi lopettaa. CERNin LEP-kiihdytin ei nähnyt merkkejä matalan energian supersymmetriasta, ei myöskään sen seuraaja LEP2 eikä Fermilabin Tevatron, eikä, ainakaan toistaiseksi, LEPin tunneliin rakennettu LHC. Tähän voi vastata kehittämällä mallin, jossa supersymmetristen hiukkasten massat ovat niin korkeita, että niitä ei kiihdyttimissä nähdä. Tämä tosin romuttaa alkuperäisen idean siitä, että niiden ja tunnettujen hiukkasten massojen ero olisi samaa suuruusluokkaa kuin Higgsin massa, mutta ehkä supersymmetrian tarina on monimutkaisempi? Ei ole mitään tieteellistä metodia, joka antaisi yksiselitteisen vastauksen tällaisiin kysymyksiin.
Yleensä teoriasta luovutaan vasta sitten, kun kehitetään parempi teoria, tai hahmotetaan oikeat kysymykset sen löytämiseksi. Jos lähtee ratkaisemaan sitä ongelmaa, että Maan pinnalla oleva eetteri ei voi liikkua Maan suhteen, niin seuraava askel menee harhaan, kun pitäisi ottaa pakkia ja pohtia lähtökohtia uudelleen.
Suppean suhteellisuusteorian löytämisen lisäksi sähkömagnetismiin liittyi toinenkin mullistus: osoittautui, että sähkö- ja magneettikentät eivät koostu hiukkasista, vaan ovat itsessään perustavanlaatuisia rakennuspalikoita. Tämä oli ensimmäinen lisä klassisen mekaniikan käsitykseen aineesta: sähkömagnetismin myötä maailmassa oli kahdenlaisia olioita, hiukkasia ja kenttiä. Ajatus kentistä itsenäisinä toimijoina oli keskeinen suppean suhteellisuusteorian laajentamisessa yleiseksi suhteellisuusteoriaksi sekä kvanttimekaniikan laajentamisessa kvanttikenttäteoriaksi. Nykyään tilanne on kääntynyt päälaelleen Maxwellin ajoista: kaikki rakentuu kentistä, hiukkaset eivät ole perustavanlaatuisia. Tämä klassisen hiukkaskuvan rapautuminen on ollut keskeisessä roolissa modernin fysiikan kehityksessä, ja palaan siihen seuraavissa poiminnoissa.
20 kommenttia “Valon vihjeitä”
-
Voiko ajatella, että ainekenttä on yksi avaruusaikakenttä? Eikös massan ja varauksen lähde ole yhteinen ja varaukseltaan neutraalit hiukkaset voidaan katsoa sisältävän molemmat varaukset? Onko neutraalien hiukkasten positiomuutoksilla merkitystä muuten muuttumattomalle sm-/heikkovoima-kentälle? Mikä on ydinvuorovaikutuksen ja sähköheikon kentän teorioiden yhdistämisen tilanne?
-
Ajattelitko, että joku muu ottaisi vastatakseen, kun kysymyksen kuitenkin julkaisit? Vai vastaatko myöhemmässä merkinnässä kenttäteoriasta?
-
Syksy: Tähän voi vastata kehittämällä mallin, jossa supersymmetristen hiukkasten massat ovat niin korkeita, että niitä ei kiihdyttimissä nähdä.
Motivaatiota 100 TeV törmäyttimille? Taivaat näyttävät esimerkkiä:
http://www.forbes.com/sites/startswithabang/2016/11/29/cosmic-rays-may-reveal-new-physics-just-out-of-lhcs-reach/#68686a224da0“Chiral symmetry restoration almost certainly plays a role in the cosmic ray collisions, and a more important role than it does at the LHC. So, quite possibly, this is the culprit here. But it might be something more exotic, such as new short-lived particles that become important at high energies and which make interaction probabilities deviate from the standard model extrapolation. Or maybe, with less than 3 sigma significance, it’s just a measurement fluke that will go away with more data. If the signal remains, however, that’s a strong motivation to build the next generation of larger, more energetic particle collider, and reach for the 100 TeV threshold. If we cross that milestone, our accelerators would then be as good as the heavens themselves.”
LHC tutkii samaa asiaa: https://home.cern/about/updates/2016/11/smallest-lhc-experiment-has-cosmic-outing
-
Näin vanhana sähkömiehenä minusta tuntuu mukavalta, kun joku vaivautuu kirjoittamaan asioista selkeästi ja ymmärrettävästi.
Jatkaneet saamaan malliin? -
kolmanneksi viimeisestä kappaleesta: jossa supersymmetristen hiukkasten massat ovat niin korkeita,
hmmmm… montako millimetriä, kilometriä…
tarkoitit kai suuria?
Hupaista huomata, että nämä graafeista lähtevät mielikuvat hämäävät fyysikkoakin, ainahan saamme lukea kuinka vuorikiipeilyn suosio on matalalla ja luolasukelluksen harrastus korkealla!
terveisin Pekkanen -
Diletantin vastaus Pekka Voipiolle: fysiikassa (pieniä) massoja merkitään eV:issä eli energiassa, joka on paljon käsitettävämpää kuin muut arkiset mitat. Energia on joko korkea tai matala.
-
Oletko perehtynyt ΛCDM- ja ΛSIDM-mallien eroihin? Näyttäisi, että keskuudessaan vuorovaikuttava pimeän aineen malli olisi vahvistamassa asemaansa…
-
Paluuviite: Kosmokseen kirjoitettua | Oudompia suuntia
-
Paluuviite: Kosmokseen kirjoitettua | Ylös pohjalta
-
Paluuviite: Kosmokseen kirjoitettua | Maxwellin tiimalasi
-
Paluuviite: Kosmokseen kirjoitettua | Monta roolia avoinna
-
Paluuviite: Kosmokseen kirjoitettua | Kun kuplat kohtaavat
Fermioneista saa bosoneja (esim. Cooperin parit) mutta käänteinen on vaikeampaa. Joskus mietin olisiko mahdollista olla puhtaasti fermionista säieteoriaa joka ei olisi supersymmetrinen. Supersymmetriaahan ei ole luonnosta havaittu, ja supersymmetriaa ja säikeisyyttä on toisaalta motivoitu samantapaisen ongelman ratkaisemisella eli UV-äärellisyyden. Silloin tulee mieleen että toinen piirteistä on ehkä tarpeeton.
Supersäieteorian supersymmetria koskee säikeiden värähtelyjä. Tämän ei kuitenkaan tarvitse tarkoittaa sitä, että havaitsemamme hiukkasfysiikan teoria olisi upersymmetrinen. Yleensä ylimääräisten ulottuvuuksien kääriminen valitaan siten, että hiukkasteoria on supersymmetrinen, mutta toisinkin voisi tehdä.
En tiedä, onko hiukkasfysiikan supersymmetrian motivaatioissa UV-äärellisyys suuressa osassa. Nykyään monet ajattelevat, että se ei ole kovin oleellinen piirre, koska ajatellaan, että ongelma ratkeaa vasta kvanttigravitaatiossa. Standardimallihan on renormalisoituva ja siltä osin UV-äärellinen ilman supersymmetriaa. (Vaikka Higgsin takia Standardimalli ei olekaan ristiriidaton mielivaltaisen korkeille energioille.)
Voiko aikaa ajatella renkaaksi kaartuneena ulottuvuutena? Voisivatko säieteorioiden lisäulottuvuudet olla vastaavia käpertyneitä (spiraalisia) vapausasteita?
Olisiko jokaiselle ulottuvuudelle hyvä löytyä fysikaalinen funktio kuten optiset 3 metristä ulottuvuutta ja massaan sidottu (syklinen) aika? Onko tutkittu mitä säieteorioiden käpertyneet ulottuvuudet voisivat edustaa?
Tiettävästi aikaulottuvuus ei ole äärellinen ja syklinen, ts. sellainen, että maailmankaikkeuden lopusta mentäisiin takaisin alkuun.
Säieteorioiden ylimääräiset ulottuvuudet ovat useimmissa malleissa äärellisiä, mutta niiden muodot ovat monimutkaisia. (Spiraaleilla ei ole asian kanssa mitään tekemistä.)
En ymmärrä viimeisiä kysymyksiä.
Tarkoitan viimeisellä kysymyksellä sitä, että kun avaruusajan ulottuvuudet edustavat liikkeen mitallisuutta, mittarina rajanopeus c, mikä merkitys säikeille on päästä värähtelemään vielä useammassa ulottuvuudessa? Voisiko olla ulottuvuuksia esim. lomittumista tai varausta, kvanttiominaisuuksia, varten?
Luulisi, että oikeita ennusteita antavan säieteorian valikoimisessa olisi tuollaisia pohdittu. Itse en ole säieteorioihin perehtynyt alkuunkaan.
Kuten blogimerkinnässä lukee, säieteoria ei toistaiseksi varsinaisesti ennusta mitään.
Kuvauksesi ulottuvuuksista ei ole paikkansapitävä. Tämä riittäköön tästä.
Vuonna 2004 Aspenissa (USA) pidettiin NY Timesin mukaan säieteorian 20-vuotis synttäriseminaari. Sinä kuitenkin mainitset säieteorian kehittäjien olleen liikkeellä jo 60-luvulla.
Ulottuuko säieteorian aikaisin historia 60-luvulle ? Keitä nuo pioneerit olivat ?
Kirjoitat noiden pioneerien vaarantaneen uransa satsaamalla säieteorian ideoiden kehittelyyn. Nyt myöhempinä vuosina kuuleman mukaan on joskus valitettu että liian moni kallisarvoisista fysiikan teorian oppituoleista miehitetään säieteoreetikoilla …
Säieteoriaa tosiaan tutkittiin jo 60-luvulla, ja vuonna 1974 ymmärrettiin, että se sisältää gravitaation. Tuo 20-vuotisjuhla on mitattu vuodesta 1984, jolloin hahmotettiin, että (tietyllä tavalla muotoiltu) säieteoria on matemaattisesti konsistentti.
Tämä Wikipedian historiaosuus näyttää olevan jokseenkin OK:
https://en.wikipedia.org/wiki/String_theory#History
1980-luvulta alkaen säieteoriasta tosiaan tuli hyvin suosittu. Ymmärtääkseni pysyvien paikkojen antaminen huomattavissa määrin säieteoreetikoille (olipa se hyvä tai huono asia) ei ole enää nykyään samanlainen trendi kuin aiemmin.
voiko yleisen suhteellisuusteorian ja kvanttifysiikan yhdistelmän toimivuuden testaamisena tietyllä tapaa pitää Event Horizon Telescope -kuvausta, jos se onnistuu?
Mustan aukon toimintaan on sovitettu monia kvanttimekaniikan lainalaisuuksia ja muodostettu erilaisia malleja. Eikö noiden osalta voisi joitain poissulkemisia mahdollisesti tässä yhteydessä tapahtua?
Joidenkin ideoiden mukaan poikkeamia yleisestä suhteellisuusteoriasta pitäisi (kvanttifysiikan takia) näkyä tapahtumahorisontin läheisyydessä. Event Horizon Telescope voisi luodata tätä.
Gravitaatioaallot mustien aukkojen törmäyksistä ovat jo osaltaan luodanneet sitä, mitä tapahtumahorisontin luona tapahtuu. Jotkut ovat väittäneetkin havaintojen vihjaavan kvanttifysiikan ilmiöihin, mutta mitään tilastollisesti merkittävää ei vielä ole nähty.
Räsänen: Kuten blogimerkinnässä lukee, säieteoria ei toistaiseksi varsinaisesti ennusta mitään.
Miten tämä erään tietyn värähtelymuodon tulkitseminen gravitoniksi?
Kuten yllä kirjoitan: ”Lisäksi säieteoriasta helposti saatava gravitaatioteoria on erilainen kuin yleinen suhteellisuusteoria. Tämä on hyvä piirre, koska se on ennuste, jolla teorian voi varmentaa tai hylätä. Ongelma on se, havainnot ovat jo hylänneet sen: poikkeamat yleisestä suhteellisuusteoriasta ovat liian suuria.”
”Näkemämme hiukkasfysiikka ja gravitaatio riippuu siitä, miten ylimääräiset ulottuvuudet on kääritty pieniksi. Toisin sanoen käärimällä ulottuvuudet eri tavoin voidaan säätää sitä, millaisia hiukkasia on ja miltä gravitaatio näyttää, ja niitä voidaan yrittää säätää vastaamaan havaintoja. Tämä on kuitenkin onnettomuus onnessa: ei tiedetä, mikä periaate määrää oikean käärimisen, ja vaihtoehtoja on tuhottoman paljon.”
”ja vaihtoehtoja on tuhottoman paljon.”
Eli nuo kuuluisat 10^500?
Tämä on tunnettu luku, mutta se on vain tietynlaisten käärimisten arvioitu määrä. Kyseessä on lähinnä symbolinen luku.