Laivamatka pimeälle puolelle

16.10.2024 klo 16.50, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Viime viikolla Andrei Golutvin Iso-Britannian Imperial Collegesta ja CERNistä puhui Fysiikan tutkimuslaitoksen seminaarisarjassa CERNin uudesta kokeesta nimeltä SHiP eli Search for Hidden Particles, suomeksi siis piilotettujen hiukkasten etsintä. Golutvin on kokeen puhehenkilö.

Yksi fysiikan isoimpia kysymyksiä on se, mitä pimeä aine on. Jos pimeä aine ei ole mustia aukkoja, niin se koostuu toistaiseksi tuntemattomista hiukkasista. On satoja ehdotuksia siitä, millaisia nämä hiukkaset ovat (esimerkkejä täällä, täällä, täällä, täällä ja täällä).

Viime aikoina on yhä enemmän tutkittu sitä mahdollisuutta, että näkyvän aineen lisäksi ei ole vain yksi pimeän aineen hiukkanen, vaan kokonainen hiukkasfysiikan pimeä puoli, jossa on paljon hiukkasia ja vuorovaikutuksia, jotka ovat vain heikosti kytköksissä tunnettuihin hiukkasiin. Pimeä puoli saattaa liittyä siihen, miksi maailmankaikkeudessa on enemmän ainetta kuin antiainetta.

Toistaiseksi pimeä aine on havaittu vain gravitaation kautta, ja sen luonteen selvittämiseksi pitäisi löytää joko pimeän aineen hiukkanen tai jokin muu pimeän puolen hiukkasista. SHiP lähtee tähän jahtiin.

CERN hyväksyi SHiPin maaliskuussa, ja kokeen on tarkoitus aloittaa datan kerääminen vuonna 2031 tai 2032. Koe käyttää valmista SPS-kiihdytintä, jolla vuonna 1983 löydettiin W– ja Z– bosonit. Se on siksi hiukkasfysiikan hintaluokassa edullinen, 115 miljoonaa euroa.

Uusia hiukkasia etsitään iskemällä hiukkasia yhteen ja katsomalla mitä törmäyksissä syntyy. Tässä on kaksi oleellista tekijää: törmäysten energia ja määrä.

Mitä korkeampi energia, sitä raskaampia hiukkasia pystytään tuottamaan. CERN tunnetaan kenties parhaiten korkeisiin energioihin yltävästä LHC-kiihdyttimestä ja sen koeasemista ATLAS ja CMS, jotka löysivät Higgsin hiukkasen, hiukkasfysiikan Standardimallin viimeisen palan. (Tässäkin tapauksessa energian lisäksi törmäysten määrä oli tärkeä.)

Mutta jos hiukkaset vuorovaikuttavat hyvin heikosti tavallisen aineen kanssa, niiden syntyminen on epätodennäköistä ja havaitseminen vaikeaa, ja silloin törmäysten lukumäärä on energiaa tärkeämpää. Pimeän puolen hiukkaset ovat tällaisia.

SHiP hyödyntää SPS-kiihdyttimen yli jääviä protoneita. Protonit ohjataan kohteeseen, joka pysäyttää ne. Sen takana on 50 metriä pitkä kammio, jossa etsitään tiheästä kohteesta läpi päässeiden hiukkasten hajoamisia tai törmäyksiä.

Pimeän aineen hiukkanen on stabiili (muuten niitä ei olisi enää maailmankaikkeudessa), joten se ei hajoa, mutta muut pimeän puolen hiukkaset saattavat joskus hajota näkyviksi hiukkasiksi. Itseäni kiinnostaa eniten nuMSMmalli, jossa on kolme steriiliä neutriinoa. Niistä kevyin on pimeää ainetta, ja SHiPillä on hyvä mahdollisuus nähdä niistä kaksi raskaampaa.

Uusien hiukkasten lisäksi SHiP tutkii myös tunnettuja hiukkasia, joista taatusti saadaan tuloksia. Golutvin kutsui tätä kokeen rommia-ja-keksejä-osuudeksi (mukaillen englannin ilmaisua bread  and butter, suomeksi kenties perus-). Neutriinot ovat Standardimallin huonoiten ymmärretty osa. Erityisesti tau-neutriinoja on nähty koko hiukkasfysiikan historian aikana vain 15 kappaletta, eikä sen antihiukkasia ole havaittu ainuttakaan.

SPS syöttää SHiPille tuhat miljardia protonia joka sekunti. Tau-neutriinoja ja niiden antihiukkasia syntyy niin vähän ja ne vuorovaikuttavat niin heikosti, että niitä jää SHiPin siivilään vain 3 500 vuodessa. Ei voi etukäteen sanoa, löytyykö tuntemattomia hiukkasia, mutta vähintään SHiP tekee rajoista niille tuhat kertaa nykyistä tiukempia.

SPS käynnistyi vuonna 1976, ja sen on määrä syytää protoneita SHiPpiin ainakin 15 vuotta, eli ainakin 2046 asti. Olisi huvittavaa, jos tämä tuolloin 70 vuotta täyttävä kiihdytinveteraani saisi haaviin uusia kevyitä hiukkasia, mutta raskaita hiukkasia tehokkaasti mylläävä LHC ei löytäisi mitään uutta perustavanlaatuista fysiikkaa.

20 kommenttia “Laivamatka pimeälle puolelle”

  1. Cargo sanoo:

    Millaisia rajoituksia hiukkasfysiikan pimeälle puolelle voidaa asettaa? Pimeä vetykaasu ja sitä virittävä pimeä valo vissiin voidaan olettaa, mutta mitään galaktisia rakenteita tuskin muodostuu? P.S. bread and butter kääntynee peruskauraksi.

    1. Syksy Räsänen sanoo:

      Peruskaura tosiaan.

      Pimeä aine ei muodosta atomeita eikä jäähdy kuten tavallisen aineen kaasu. Tämä tiedetään siitä, että pimeä aine ei pysty klimppiytymään yhtä tehokkaasti kuin näkyvä aine, joka pusertuu kasaan muodostamalla molekyylejä, jotka säteilevät energiaa pois, joten kaasu jäähtyy.

      Jos pimeää valoa on olemassa, sitä on paljon vähemmän kuin tavallista valoa, muuten sen vaikutus maailmankaikkeuden laajenemiseen olisi havaittu.

      Sen sijaan galakseissa ja sitä isommassa mittakaavassa pimeä aine muodostaa samankaltaisia rakenteita kuin näkyvä aine: klimppejä, rihmoja, seinämiä, onkaloita.

      1. Mika sanoo:

        Mitä tuo ’pimeä valo’ käytännössä olisi? Jos siis näkyvä valo on sähkömagneettista säteilyä l. fotoneita?

        1. Syksy Räsänen sanoo:

          Fotonienkaltaisia hiukkasia, jotka eivät vuorovaikuta Standardimallin hiukkasten sähkövarausten kanssa, vaan joidenkin pimeän sektorin varausten kanssa. Termillä viitataan myös pimeän sektorin hiukkasiin, jotka ovat samanlaisia kuin fotonit, mutta joilla on pieni massa.

          1. Eusa sanoo:

            Tuollaiset spekulaatiot ovat täyttä pseudofysiikkaa. Missä mitattavat ennusteet?

          2. Syksy Räsänen sanoo:

            Kymmenissä tieteellisissä artikkeleissa. SHiP testaa niissä esitettyjä ennusteita.

  2. Eusa sanoo:

    Mitä voisi ajatella siitä, että uudessa tutkimuksessa ei saatu pimeän aineen mallia sopimaan kääpiögalaksien dynamiikkaan muuten kuin antamalla pimeän aineen hiukkasille muutakin vuorovaikutusta kuin gravitaatiota näkyvän aineen kanssa, jotta voisivat kiihdyttää ja laimentaa tavan aineen klimppiytymistä, jonka puute tutkimuksessa havaittiin?

    Toinen kyssärini koskee neutriinomakujen massatiloja. Onko hyvät perustelu yhden massatilan nollamassaisuudelle se, että siten neutriinot pitävät vauhtinsa lähellä c, kun vuorollaan kukin oskilloi siihen vauhtiin, eikä koskaan yksikään pääse hidastumaan tiettyä määräänsä enempää, vaikka pari muuta massatilaa antaisivatkin alle c:n vauhdit?

    1. Syksy Räsänen sanoo:

      Mistä tutkimuksesta on kyse?

      Vastaus neutriinokysymykseen on ei. Ei siitä sen enempää.

        1. Syksy Räsänen sanoo:

          En osaa sanoa, mutta kysyin kollegaltani Till Sawalalta, joka on aiheen asiantuntija.

          1. Eusa sanoo:

            Liitätkö referaatin vastauksesta sitten tänne?

          2. Syksy Räsänen sanoo:

            Toki.

          3. Syksy Räsänen sanoo:

            Till totesi, että artikkeli on kiinnostava, mutta ongelmana on se, että pimeän aineen tiheyttä ei ole päätelty aineen kiertonopeudesta, eikä ole selvää miten luotettava käytetty menetelmä on. Saatan palata tähän oman merkinnän muodossa.

  3. Martti V sanoo:

    Pimeää ainetta ei välttämättä tarvita jos aika-avaruus on alkuperäiseltä luonteeltaan täynnä satunnaisia rihmaisia valuvikoja, jotka eivät perustu mihinkään massalähteeseen tai mond teoriaan.

    1. Syksy Räsänen sanoo:

      Yleisessä suhteellisuusteoriassa sopivia mahdollisia valuvikoja ei juuri ole, paitsi mustia aukkoja. Sen laajennuksissa on enemmän mahdollisuuksia tällaiseen. Mutta ongelmana on se, että kosminen inflaatio pyyhkii tällaiset kauneusvirheet pois, ja niitä pitäisi sitten tuottaa sen jälkeen.

      1. Joksa sanoo:

        Miellän aika-avaruuden matemaattiseksi malliksi maailmankaikkeuden suuren mittakaavan ilmiöiden kuvailemiseksi. Maailmankaikkeus sisältää ilmiötä joita aika-avaruus -malli ei kata, kun sitä kaiken teoriaa ei ole vielä saatu aikaan. Martti V:n satunnaiset valuviat voisivat siis olla sellaisia maailmankaikkeuden ilmiöitä joita aika-avaruus -malli ei sisällä, kuten ei sisältänyt inflaatiota tai lomittumista. Se että a-a malli ei jotain ilmiötä sisällä ei täysin aukottomasti todista että sellaista ei maiilmankaikkeudessa voi olla.

        Ihmettelen kommenttia että inflaatio pyyhkisi maailmankaikkeuden alun kauneusvirheet pois kun se räjäyttää alun tyhjiöporeilunkin vaikutukset kosmisiin mittoihin. Eikös alkumaailmankaikkeus inflaatioineen ole myös aika-avaruuden valuvika?

        1. Syksy Räsänen sanoo:

          Kuten kirjoitin yllä, yleisen suhteellisuusteorian laajennuksissa on enemmän mahdollisuuksia tällaiseen.

          ”Eikös alkumaailmankaikkeus inflaatioineen ole myös aika-avaruuden valuvika?”

          Ei nykyisen tietomme mukaan. Inflaatiosta tarkemmin:

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/vastavuoroinen-suhde/

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/muistinmenetykset-ennustusten-takana/

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/seitseman-ennustusta-menneisyydesta/

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/eilispaivan-rohkeutta/

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/jokin-sanoo-poks/

      2. Martti V sanoo:

        Kiitos vastauksesta. Ajattelin skenaariota , jossa inflaation aikana kvanttiheilahdukset jättivät avaruuteen itsessään epätasaisuuksia galaksien siemeniksi sen sijaan että tarvitaan massaa, jota selitetään pimeällä aineella. Pimeä energia aiheuttaa myös gravitaatiota ilman massaa. Riittää hypoteettinen negatiivinen paine.

        1. Syksy Räsänen sanoo:

          Inflaation aikaiset kvanttivärähtelyt ovat aineen ja avaruuden yhteisiä (mitä tulee rakenteen siemenniin) tai (gravitaatioaaltojen tapauksessa) yksin avaruuden. Tällä ei sinällään ole mitään tekemistä pimeän aineen tai pimeän energian kanssa.

          Ei tästä sen enempää.

          1. Martti V sanoo:

            Pahoittelut että meni hieman ohi aiheesta mutta tämä blogi oli kuitenkin lähellä aihetta. Mielenkiinnolla odotellaan jos uusia hiukkasia löytyy. Axionit ovat suosikkeja ja mahdollisesti kenttä hajosi inflaation päätteeksi hiukkasiksi.tai romahti mustiksi aukoksi.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Minne olemme menossa?

25.9.2024 klo 23.13, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Maa vetää Kuuta puoleensa, Aurinko Maa-Kuu-paria, Linnunradan keskusta Aurinkokuntaa. (Oikeasti on kyse siitä, että aine kaareuttaa aika-avaruutta, mutta tässä yhteydessä on helpompi puhua vetovoimasta.) Linnunrata on osa noin kymmenen miljoonan valovuoden kokoista paikallista ryhmää, jossa galaksit ja kääpiögalaksit kiertävät toisiaan. Mutta paikallinen ryhmä myös liikkuu kokonaisuutena – jokin kaukainen massakeskittymä vetää sitä puoleensa.

1980-luvulla havaittiin, että paikallisen ryhmän lisäksi muutkin galaksit liikkuvat samaan suuntaan. Ehdotettiin, että vastuussa on noin 200 miljoonan valovuoden päässä oleva rakenne, jolle annettiin nimeksi Great Attractor (suomeksi siis suuri puoleensavetäjä).

Periaatteessa on helppo selvittää, missä tuollainen massakeskus on: kun katsoo lähellä olevia galakseja, ne virtaavat kohti massan keskusta, mutta kun katsoo sen taakse, galaksit putoavatkin meitä kohti. Valitettavasti suuren puoleensavetäjän ehdotettu sijainti on Linnunradan levyn takana, mikä vaikeuttaa havaintoja.

Vuosikymmeniä kiisteltiin siitä, onko suurta puoleensavetäjää olemassa. Jotkut totesivat, että kappaleet virtaavat meistä poispäin, vaikka katsoisi väitetyn massakeskittymän ohi, ja että meitä vetää puoleensa vielä kauempana oleva Shapleyn superrypäs, joka on noin 700 miljoonan valovuoden päässä.

Kosminen mikroaaltotausta näyttää ja kosminen inflaatio ennustaa, että maailmankaikkeus on tilastollisesti samanlainen kaikkialla. Se tarkoittaa, että tarpeeksi isossa mittakaavassa joka puolella pitäisi olla yhtä paljon ainetta, joten gravitaatio vetäisi yhtä paljon eri suuntiin. Galaksien odottaisi siis liikkuvan vain keskisuuressa mittakaavassa: yhtenäisesti virtaavat alueet eivät voisi olla muutamaa sataa miljoonaa valovuotta isompia, ja virtausnopeuden pitäisi olla sitä pienempi mitä isommista alueista on kyse.

1980-luvulla mitattiin yksittäisten galaksien liikkumisnopeuksia. On muitakin tapoja selvittää, miten liikumme. Jos galaksien jakauma on samanlainen kaikkialla, niitä pitäisi olla yhtä paljon joka puolella. Mutta kun liikumme johonkin suuntaan, siellä olevat kohteet näyttävät olevan tiheämmässä ja vastakkaisessa suunnassa kohteet näyttävät olevan harvemmassa.

Tämä aberraatioksi nimetty ilmiö liittyy etäisyyksien kutistumiseen suppeassa suhteellisuusteoriassa. Se on merkittävä vain silloin, kun nopeus on lähellä valonnopeutta. Nopeutemme galaksien jakauman suhteen on joitakin satoja kilometrejä sekunnissa, eli noin tuhannesosa valonnopeudesta. Galaksien liikkeestä johtuva tihentyminen on siis heikkoa, joten sen erottamiseksi pitää mitata monta galaksia. 2000-luvulla tästä on tullut mahdollista, koska teknologia on edistynyt niin paljon, että on saatu kartoitettua miljoonien galaksien sijainti.

Fyysikko Subir Sarkar (jonka vaikutuspiirissä olin tutkijanurani alkuvaiheilla Oxfordin yliopistossa vuosina 2002-2005) on ollut viime aikoina yksi näkyvimpiä aiheen tutkijoita. Subir on yhteistyökumppaneineen osoittanut, että galaksien tihentyminen on paljon ennustettua isompaa. Jos tämä johtuu liikkeestämme galaksien suhteen, nopeutemme on siis paljon ennustettua isompi. Nopeutta voi mitata myös muilla tavoin, ja vaikuttaa siltä, että havaintojen selittäminen galaksien liikkeiden avulla edellyttää noin miljardin valovuoden kokoista yhtenäistä virtausta.

Tilastollisesti poikkeama ennusteista on erittäin merkittävä, selvästi yli hiukkasfysiikassa (ja yhä enemmän myös kosmologiassa) löydölle käytetyn rajapyykin, joka on se, että sattuman todennäköisyys on alle yksi kahdesta miljoonasta. Sitä ei kuitenkaan mainosteta löytönä.

Yksi syy on se, että eri ryhmät ovat päätyneet hieman erilaisiin tuloksiin, ja analyysin yksityiskohdista keskustellaan. Toinen liittyy fyysikko Arthur Eddingtonin (jolla oli tärkeä rooli yleisen suhteellisuusteorian testaamisessa ja ymmärtämisessä) nimiin laitettuun sanontaan: ei pidä luottaa kokeisiin ennen kuin teoria on vahvistanut ne.

Joskus esitetään, että empiirinen tiede etenee siten, että teoria hylätään, jos sen ennusteet eivät vastaa havaintoja. Todellisuus on monimutkaisempi, jo pelkästään sen takia, että myös havainnot ovat joskus väärin, mistä Subir on itse usein huomauttanut. Niin kauan kuin havainnoille ei ole hyvää teoreettista selitystä, ne ovat epäilyksenalaisia, tai ainakaan ei tiedetä miten ajattelua pitäisi niiden takia muuttaa.

On vaikea selittää, mistä näin isojen alueiden näin isot nopeudet syntyisivät, ilman että samalla jotkin muut havainnot menisivät pieleen. Yksi mahdollisuus on se, että galaksien jakauman tihentymä ja harventuma ei johdukaan liikkeestämme, vaan galakseja todella on yhdessä taivaan suunnassa tiheämmin.

Nämä kaksi mahdollisuutta on mahdollista erottaa havaintojen avulla. Voidaan esimerkiksi mitata galaksien paikkojen lisäksi myös niiden koot. Jos havaittu galaksien tihentymä johtuu liikkeestämme, se vaikuttaa myös siihen, minkä kokoisilta galaksit eri suunnissa näyttävät. Jos taas galakseja on oikeasti tiheämmässä, ne näyttävät saman kokoisilta eri puolilla.

Tällaiset mittaukset ovat vaativia, mutta Euroopan avaruusjärjestö ESA:n Euclidsatelliitti tekee niitä parhaillaan. Euclidin ensimmäiset kosmologiatulokset julkistetaan vuonna 2026, ja ne kenties kertovat, liikummeko tosiaan paljon odotettua nopeammin, vai ovat galaksit jostain syystä sumpussa.

Kummallekaan vaihtoehdolle ei toistaiseksi ole hyvää selitystä, minkä takia monet kosmologit eivät pidä näitä outoja tuloksia kovin tärkeinä. Kolmas mahdollisuus on se, että havaintojen analysoinnissa on jotain pielessä. Tämä ei olisi harvinaista – toisaalta on tavallista, että läpimurtohavaintojen ratkaiseva merkitys tunnistetaan vasta jälkikäteen, kun kaikki on selvää.

Toistaiseksi emme tiedä, mihin suuntaan tutkimus menee: kertovatko nämä tulokset jostain tärkeästä mitä emme vielä ymmärrä, vaiko vain siitä, miten hankalaa on tulkita havaintoja.

17 kommenttia “Minne olemme menossa?”

  1. Cargo sanoo:

    Onko mitään mahdollisuutta sille, että kaukaisista galakseista virtaavat valo- sekä gravitaatioaallot kulkisivat eri nopeudella? Voisiko sellainen oletus selittää liikkeen ja tiheyshavaintojen suhdetta, vaikka maailmankaikkeus olisi tilastollisesti samanlainen kaikkialla?

    1. Syksy Räsänen sanoo:

      Ei. Havaintojen perusteella valon ja gravitaatioaaltojen nopeus on sama miljoonasosan miljardisosan tarkkuudella. Vaikka ei olisi, niiden eri nopeus ei selittäisi tätä havaintoa.

      1. Cargo sanoo:

        Kiitos vastauksesta. Nojatuolissa tuli myös mieleen, että voisiko tämä meidän liiketila olla jotenkin kiihtyvä ja se taas (ekvivalenssiperiaatteen mukaisesti?) taivuta avaruutta sekä ”sumputa” edestä päin tulevaa valoa, mikä sitten näkyisi galaksien tihentymänä?

        1. Syksy Räsänen sanoo:

          Tällaisesti kiihtyvyydestä ei ole merkkejä. Iso yhtenäinen kiihtyvä liike edellyttäisi sitä, että jokin muu kuin gravitaatio vetäisi valtavan kokoista osaa maailmankaikkeudesta tasaisesti, mitä olisi luultavasti vielä vaikeampi selittää kuin nyt tehtyjä havaintoja.

          Muuten, kommenttiosio ei ole paikka omien spekulaatioiden esittämiseen, vaikka menköön nyt.

          1. Cargo sanoo:

            Mitenköhän pimeän aineen oletetaan käyttäytyvän näissä kosmisissa virtauksissa? Voisiko miljardien vuosien kuluessa massiivinen pimeän aineen pilvi kiiriä näkyvän aineen edelle?

          2. Syksy Räsänen sanoo:

            Näin isossa mittakaavassa vain gravitaatiolla on merkitystä, joten pimeä aine ja tavallinen aine liikkuvat samalla tavalla.

  2. Eusa sanoo:

    Olisiko kuitenkin mahdollista, että fraktaalinen rakenteellinen tiheysvaihtelu jatkuu aina vain yhä suurempiin mittakaavoihin, eikä kaikkeus olekaan homogeeninen, vain havaittavuusisotrooppinen, mikä ei riittäisi todisteeksi täydellisestä homogeenisuudesta, vaan ainoastaan siitä, että mittakaavat, joilla epähomogeenisuudet havaitaan, ovat mahdollisesti vielä suurempia kuin mitä tähän asti on kyetty mittaamaan? Jospa Euclid saisi valaistusta tuohon kysymykseen.

    1. Syksy Räsänen sanoo:

      Aineen jakauma on fraktaalinen pienessä mittakaavassa, mutta homogeeninen noin 500 miljoonaa valovuotta isommassa mittakaavassa. Tästä on tarkkoja mittauksia. Siksi nämä havainnot ovatkin outoja.

      1. Eusa sanoo:

        SDSS e kykene mittaamaan sivuttaisliikkeitä. Voisivatko jopa miljardien valovuosien kokoiset havaitut kehämäiset kuviot kertoa, että suuren mittaluokan epähomogeenisuus voisi olla juurikin virtauksia ja että me voimme punasiirtymin mitata vain sitä virtausta, jonka osa itse olemme?

        1. Syksy Räsänen sanoo:

          Mihin kehämäisiin kuvioihin viittaat?

          1. Eusa sanoo:

            Viittaan niihin mitä arvellaan BAO-ilmiöiden jäännemerkeiksi. Viimeisimmät DES-mittaukset osoittavat, että BAO-skaala saattaa olla hieman suurempi kuin konkordanssimalli ennustaa.

          2. Syksy Räsänen sanoo:

            Ahaa. Ne kehät ovat tosiaan painumia varhaisen maailmankaikkeuden ääniaalloista. Tarkemmin täällä:

            https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/aanen-jalanjaljet/

            Väite siitä, että ”suuren mittaluokan epähomogeenisuus voisi olla juurikin virtauksia” ei ole mielekäs. Epähomogeenisuus tarkoittaa sitä, että galaksit eivät ole tasaisesti jakautuneet, eli se liittyy niiden paikkoihin. Liike liittyy niiden nopeuteen. Kaikki galaksien epähomogeenisuus ei ole näennäinen liikkeestä johtuva ilmiö, jos sitä tarkoitit.

  3. valtaojanesko sanoo:

    Millainen tämän Great Attractorin on epäilty olevan? Jokin erittäin massiivinen galaksijoukko?

    1. Syksy Räsänen sanoo:

      Kyllä.

  4. Lentotaidoton sanoo:

    Omasta linkistäsi: ”Fysiikassa onkin sellainen kansanviisaus, että jos teoria sopii kaikkiin havaintoihin, niin se on varmasti väärin, koska osa havainnoista on väärin”. Eli eikö tämän katsantokannan pitäisi vain ”rauhoittaa” meitä? Vanhassa linkissäsi Erkki Tietäväinen totesi neuvostofilosofian (ei välttämättä vitsinä) mukaisesti: ”Vaikuttava esitys, mutta toimiiko kone myös teoriassa?” Jos kaksi asiaa vetävät loogisesti näennäisesti eri suuntiin, niin kummankaan ei välttämättä tarvitse toistaiseksi olla väärin/oikein (eli on kolmas ratkaisu). Olemme kuulolla.

  5. robert ekman sanoo:

    kuulin että kvanttilomittuminen voisi aikaansaada painovoiman. mitä tämä tarkoittaa käytännössä?

    1. Syksy Räsänen sanoo:

      Aihe on sen verta spekulatiivinen ja kaukana merkinnän aiheesta, että en vastaa siihen tässä enkä usko että kirjoitan siitä omaa merkintääkään.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Hiilenpolttajien todistus

14.9.2024 klo 21.58, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Elokuussa Wendy Freedmanin tutkimusryhmä julkisti uuden artikkelin siitä, miten nopeasti maailmankaikkeus laajenee. Heidän tuloksistaan oli juoruiltu jo etukäteen, ja ne ovat herättäneet paljon huomiota, koska tutkimus iskee yhteen kosmologian isoimmista ongelmista: ovatko mittaukset maailmankaikkeuden laajenemisnopeudesta ristiriidassa teorian ennusteen kanssa?

Kosmologiassa on viimeisten 25 vuoden aikana vakiintunut malli maailmankaikkeudesta, missä on noin 5% tavallista (eli ytimistä ja elektroneista) koostuvaa ainetta, 25% pimeää ainetta, ja 70% tyhjön energiaa. Malli on selittänyt ja ennustanut havaintoja erittäin hyvin, mutta viimeisen kymmenen vuoden aikana on tullut ilmi yhä isompi ongelma. Kun mallin säätää selittämään kosmisen mikroaaltotaustan yksityiskohdat –jotka riippuvat siitä, miten maailmankaikkeus on laajentunut viimeisten 14 miljardin vuoden aikana– niin se ennustaa nykyisen laajenemisnopeuden pieleen.

Ei tiedetä, onko vika mallissa, mikroaaltotaustan havainnoissa, vai nykyisen laajenemisnopeuden mittauksessa. Freedmanin ryhmä pureutuu näistä viimeiseen.

Periaatteessa on yksinkertaista selvittää maailmankaikkeuden laajenemisnopeus. Tarvitsee vain mitata kuinka nopeasti galaksit etääntyvät meistä. Valitettavasti maailmankaikkeus laajenee niin hitaasti, että emme reaaliajassa erota galaksien liikkeitä.

Tiedämme kuitenkin, että läheisten galaksien etäisyys ja punasiirtymä (eli se paljonko niistä tuleva valo on venynyt) ovat verrannollisia toisiinsa, ja verrannollisuuskerroin on maailmankaikkeuden laajenemisnopeus. Niinpä riittää kun mittaa punasiirtymän ja etäisyyden.

Valon venyminen on helppo mitata. Kaikki atomit ja molekyylit lähettävät valoa vain tietyillä niille ominaisilla aallonpituuksilla. Vertaamalla taivaalta tulevan valon aallonpituuksia maanpäällisissä laboratorioissa mitattuihin saa tarkkaan selville, paljonko valo on matkalla venynyt.

Etäisyyksien mittaaminen on sen sijaan vaikeaa. Kuten punasiirtymässä, tässäkin pitää verrata jotain lähellä ja kaukaa mitattua, vaikkapa kohteiden kirkkauksia. Kosmologien ihanteena on standardikynttilä, eli kappale, vaikkapa tähtityyppi, jonka kirkkaus on samanlainen aina ja kaikkialla. Vertaamalla sitä, miten kirkkaalta kaksi standardikynttilää näyttää taivaalla saisi heti selville niiden suhteellisen etäisyyden: mitä himmeämmältä kohde näyttää, sitä kauempana se on.

Ikävä kyllä standardikynttilöitä ei ole olemassa. Tähdet ovat yksilöitä, kaikki erilaisia. Mutta joillakin tähdillä on ominaisuuksia, joita mittaamalla voi päätellä niiden kirkkauden. Esimerkiksi kefeidit ovat tähtiä, joiden kirkkaus vaihtelee ajan myötä, ja vaihtelun taajuudesta saa selville kirkkauden.

Freedmanin ryhmä on käyttänyt James Webb Space Telescopen (JWST) uusia havaintoja lähigalakseista. Aiemmin paras teleskooppi näihin mittauksiin oli Hubble Space Telescope, mutta JWST on paljon tarkempi. Se myös mittaa pidempiä aallonpituuksia paremmin kuin Hubble, minkä takia sillä saa selvemmän kuvan joistakin tähdistä, joiden valosta tärkeä osa on infrapunaista, eli sen aallonpituus on pidempi kuin näkyvän valon. Toinen uutuus on se, että Freedmanin ryhmä käytti kahden jo tunnetun tähtityypin lisäksi uudenlaisia etäisyysmittareita, tähtiä jotka polttavat ydinreaktioissaan hiiltä.

Syy tulosten saamaan huomioon on se, että Freedman ja kumpp. esittävät, että kosmologian keskiöön noussutta ristiriitaa havaintojen ja ennusteiden kanssa ei ehkä olekaan. Heidän hiilitähtien avulla mittaamansa laajenemisnopeuden arvo on täydellisen sopusoinnussa ennusteen kanssa, eivätkä kahden muunkaan etäisyysmittarin antamat tulokset poikkea ennusteesta merkittävästi.

Freedman johti 90-luvulla ja 2000-luvun alussa projektia, joka mittasi Hubble Space Telescopen avulla maailmankaikkeuden laajenemisnopeuden. Sen vuonna 2001 julkaisema tulos on kosmologian virstanpylväs.

Vastapuolella on toinen aiheen parhaista asiantuntijoista: Adam Riess, joka palkittiin vuonna 2011 Nobelilla hänen osuudestaan maailmankaikkeuden kiihtyvän laajenemisen havaitsemisessa. Riess on sittemmin ollut keskeinen tekijä maailmankaikkeuden laajenemisnopeuden yhä tarkemmissa mittauksissa. Hän on vahvasti korostanut mittausten ja ennusteen välistä ristiriitaa.

Riess on tuoreeltaan arvostellut Freedmanin ryhmän väitteitä toteamalla, että uusien tulosten virherajat ovat niin paljon edellisiä isommat, että niiden perusteella ei voi todeta ristiriidasta mitään. Tähän on syynä se, että JWST ei ole ehtinyt mitata yhtä paljon kohteita kuin vuosikymmeniä toiminut Hubble Space Telescope.

Riessin tutkimusryhmältä kesti alle kolme viikkoa julkistaa vastauksensa Freedmanin ja kumpp. analyysiin, missä he myös osoittivat, että erot aiempiin tuloksiin selittyvät sillä, millaisia kohteita on valikoitunut mukaan, kaikki tähdet kun ovat vähän erilaisia.

Lisäksi Freedmanin ryhmän käyttämään uuteen etäisyysmittariin on syytä suhtautua varauksella juuri siksi, että se on uusi, eikä sen luotettavuutta ja yksityiskohtia ole vielä saatu setvittyä. Jos tämä mittari olisi luotettava ja antaisi erilaisen arvion galaksien etäisyydestä, pitäisi pystyä selittämään, mikä kaikissa muissa mittareissa on pielessä.

Tällä hetkellä etäisyyksistä on paljon erilaisia havaintoja, eikä niitä voi kumota yhdellä uudella menetelmällä. Toisaalta ristiriidalle ei ole löytynyt hyvää teoreettista selitystä, minkä takia monet ovat vielä avoimia sille mahdollisuudelle, että etäisyysmittauksissa on jotain perustavanlaatuisesti pielessä, vaikka ongelmia ei huolellisessa syynäämisessä olekaan löytynyt.

Kuten Riessin tutkimusryhmä on todennut, meiltä puuttuu joku oleellinen pala – mutta emme ole varmoja, mistä kohtaa.

Päivitys (16/09/24): Korjattu tyhjön energian osuus.

14 kommenttia “Hiilenpolttajien todistus”

  1. Lentotaidoton sanoo:

    Muistan hyvin vuoden 1987 supernovan (SN 1987A) räjähdyksen Suuren Magellanin pilven Tarantulasumussa, koska kirjoitin silloisen tähtiseuramme lehteen pitkät stoorit räjähdyksestä että seuranneista neutriinoista (eli kopsasin Amerikkalaisten tähtilehtien tekstejä). Eli oli kyse selvästä standardikynttilästä (ja tästähän Nobelikin pokattiin). Homma näytti silloin kovin uskottavalta.

    Tyypin 1A-supernovathan ovat olleet starndardikynttilöitä. Tiedän että laajenemisnopeudesta on erilaisia katsantoja, mutta kuinka vakavasti tällaisen Freedmanin ryhmän tuloksia tulisi ottaa? Käsittääkseni neutronitähti on sittemmin löytynyt SN 1987A räjähdyspaikalta.

    1. Syksy Räsänen sanoo:

      Supernova 1987A oli tyypin II supernova. Nobelin palkinnot annettiin havainnoista, joissa käytettiin tosiaan tyypin Ia supernovia.

      1990-luvulla tyypin Ia supernovia tutkittiin paljon, ja yksi pääasiallinen tulos oli se, että ne eivät ole standardikynttilöitä. Niiden kirkkaus vaihtelee ainakin tekijällä kymmenen. (Myöskään tyypin II supernovat eivät ole standardikynttilöitä.) Sen sijaan ne ovat luotettavia etäisyysmittareita siinä mielessä, että niiden kirkkauden maksimi korreloi kirkkauden muutosnopeuden kanssa. Jotkut käyttävät termiä ”standardisoitavissa oleva kynttilä”.

      Olen alan ulkopuolinen, mutta Freedmanin ryhmän tulokset vaikuttavat hyvin vakavasti otettavilta. Sen sijaan ryhmän tulkinta siitä, että ne osoittaisivat että ristiriitaa ei ole, ei vaikuta perustellulta.

      Se miksi hiilitähdet antavat eri etäisyyden ja siksi erilaisen laajenemisnoopeuden liittyy Riessin ja kumpp mukaan siihen, missä galakseissa niitä on nyt mitattu – galaksit ovat erilaisia, ja osa antaa isomman tuloksen etäisyyksille kuin toiset. Oleellista on käyttää täydellistä (määrällisessä mielessä) otosta, missä on mukana kaikki galaksit tiettyyn etäisyyteen asti, jotta vaihtelujen vaikutus minimoituu.

  2. Seniorikosmologi sanoo:

    Sanot: ”…monet ovat vielä avoimia sille mahdollisuudelle, että etäisyysmittauksissa on jotain perustavanlaatuisesti pielessä, vaikka ongelmia ei huolellisessa syynäämisessä olekaan löytynyt.”

    Esitän taas kysymyksen, johon en ole saanut ymmärtämääni vastausta tällä enkä muullakaan foorumilla: Miten on mahdollista, että voimme havaita kohteen, joka sijaitsee väitetysti yli 13 miljardin valovuoden päässä Maasta, kun koko maailmankaikkeus on vajaat 14 miljardian vuotta vanha? Vielä vaikeampaa minun on ymmärtää, miten maailmankaikkeuden halkaisijaksi kerrotaan 93 miljardia valovuotta, johon se on siis kasvanut tuon vajaan 14 miljardin vuoden kuluessa.

    1. Syksy Räsänen sanoo:

      Maailmankaikkeus laajenee. Sen takia etäisyys siihen pisteeseen, josta valo lähti liikkeelle on isompi kuin matka-aika kertaa valonnopeus.

      Tarkemmin täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/sormustimen-verran/

      1. Seniorikosmetologi sanoo:

        En vieläkään ymmärrä vastausta kysymykseeni. Vaikka maailmankaikkeus laajenee (minkä toki ymmärrän) niin miten muutaman sadan miljoonan vuoden ikäisen kohteen voi havaita yli 13 miljardin valovuoden päässä meistä? Eihän sellainen laajenemisnopeus voi mitenkään olla mahdollista. Voitko vielä yrittää vääntää vastausta rautalangasta.

        1. Syksy Räsänen sanoo:

          Maailmankaikkeus on noin 14 miljardia vuotta vanha. Ei siis ole kovinkaan kummallista, että muutaman sadan miljoonan vuoden ikäinen kohde (josta valo siis lähti noin 13-14 miljardia vuotta sitten) näkyy yli 13 miljardin valovuoden päässä. Outoa olisi, jos se näkyisi lähempänä.

          Tämä riittäköön tästä.

  3. aRIa sanoo:

    Tyhjön energia pitänee olla 70% (eli tekstin 75% lienee typo)

    1. Syksy Räsänen sanoo:

      Tosiaan, kiitos, korjasin.

  4. Martti V sanoo:

    Laajeneminen on laskettu melko luotettaavasti sekä cmb, kvasaari että supernova- mittauksista ja tulokset eroavat mittausvirheen puitteessa merkittävästi, mikä vittaisi että kosmologinen vakio ei mahdilliseati ollutkaan aina vakio. Onko johtavia teorioita tälle ajatukselle?

    1. Syksy Räsänen sanoo:

      Jos pimeä energia on tyhjön energiaa eli kosmologinen vakio, sen energiatiheys on aina sama. Jos pimeä energia ei ole tyhjön energiaa, sen energiatiheys muuttuu ajan myötä. On kymmeniä erilaisia ehdokkaita tällaiseksi pimeäksi energiaksi.

      Vaikuttaa kuitenkin mahdottomalta selittää havaintoja pelkällä pimeän energian energiatiheyden muutoksella. Ongelmana on se, että kun säätää laajenemisnopeuden nykyarvon, tulee samalla tulee pilanneeksi muita havaintoja kuten sen miten nopeasti maailmankaikkeuden rakenteet kasautuvat (joka myös riippuu siitä miten maailmankaikkeus laajenee).

      1. Cargo sanoo:

        Voiko tuo muuttuva aineen tiheys vaikuttaa laajenemisnopeuden paikalliseen arvoon?

        1. Syksy Räsänen sanoo:

          Tässä on kyse muutoksesta ajassa. Pimeän energian energiatiheys on tyypillisesti hyvin samanlainen kaikkialla. Tavallisen aineen tiheys on sen sijaan hyvin erilainen eri paikoissa, ja tämän takia laajenemisnopeus on erilainen eri paikoissa. Tämä ei kuitenkaan selitä teorian ja ennusteiden ristiriitaa

  5. JaniK sanoo:

    Liikkuvatko galaksit superjoukoissa vastaavasti kuin tähdet galaksissa? Jos liikkuvat niin eikö se vaikuta siihen miten galaksi näyttää etääntyvän meistä?

    1. Syksy Räsänen sanoo:

      Galaksien liikkeet ryppäissä ovat vielä nopeampia ja monimutkaisempia kuin tähtien galakseissa. Galaksien paikalliset liikkeet ovat tosiaan yksi virhelähde.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Piikit ja railot

31.8.2024 klo 14.21, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Pimeä aine on paras selitys monille kosmologisille havainnoille, kosmisen mikroaaltotaustan epätasaisuuksista tähtien liikkeisiin galakseissa, ja sen ennusteet ovat pitäneet hyvin paikkansa.

Pimeälle aineelle on taasen monia selityksiä. On esitetty satoja malleja sille, millaisista hiukkasista pimeä aine koostuu, kuten supersymmetriset nynnyt, teknivärihiukkaset, aksionit, steriilit neutriinot (lempiehdokkaani pimeän aineen hiukkaseksi), ja niin edelleen.

Tai sitten ei ole mitään pimeä aineen hiukkasta, vaan kyse on mustista aukoista. Stephen Hawking oli vuonna 1971 ensimmäinen, joka ehdotti tätä. Hän oli aikaansa edellä: 1970-luvun alussa monet tutkijat eivät ottaneet pimeää ainetta vakavasti. Tuolloin ei myöskään vielä tiedetty, mitä maailmankaikkeuden alkuhetkinä oli tapahtunut. Tämän takia ei ollut vankkaa pohjaa ideoille siitä, miten nämä mustat aukot olisivat syntyneet. Ne eivät voi olla peräisin tähtien romahduksesta, koska pimeä aine on vanhempaa kuin tähdet.

Tilanne muuttui 1980-luvulla, kun kosmisen inflaation teoria kehitettiin. Inflaatio tarkoittaa avaruuden kiihtyvää laajenemista varhaisessa maailmankaikkeudessa. Inflaatiossa hiukkasfysiikan pienen mittakaavan kvanttivärähtelyt venyvät kosmisiin mittoihin. Inflaation jälkeen galaksit ja muu rakenne tiivistyy näiden tihentymien ympärille. Nykynäkökulmasta tuntuu luonnolliselta, että samalla voi syntyä epätasaisuuksia, jotka toimivat pienten rakenteiden kuten mustien aukkojen siemeninä.

Kesti kuitenkin yli kymmenen vuotta, vuoteen 1994 asti, ennen kuin mustat aukot ja inflaatio yhdistettiin tällä tavalla. Sen laskeminen, paljonko mustia aukkoja inflaation tuloksena syntyy, onkin sitten osoittautunut sen verta monimutkaiseksi, että asiasta ei ole varmuutta vieläkään, 30 vuotta myöhemmin. Paljon on kuitenkin edetty, ja viimeisimmässä artikkelissamme Sami Raatikainen, Eemeli Tomberg ja minä ratkaisimme osan ongelmasta – tai osoitimme että onkin luultua enemmän ongelmia ratkaistavana, miten asian nyt haluaa nähdä.

Inflaation loputtua alueet, joihin on pakkautunut kovasti ainetta romahtavat mustiksi aukoiksi. Se paljonko tällaisia alueita on ja paljonko niissä on massaa riippuu siitä, miten inflaatio tismalleen tapahtuu. Kuten pimeälle aineelle, myös inflaatiolle on lukuisia erilaisia malleja. Käytännössä halutaan rakentaa sellainen malli, joka tuottaa sopivasti mustia aukkoja selittämään pimeän aineen, samalla kun se synnyttää havaintojen mukaiset galaksien siemenet.

Vaikeutena on se, että mustien aukkojen tuottamiseen tarvitaan isoja epätasaisuuksia, jotka sitten vaikuttavat siihen, miten inflaatio tapahtuu. Inflaatiomalleissa, joissa ei haluta tuottaa mustia aukkoja vaan ainoastaan galakseja, epätasaisuudet ovat pieniä. Tällöin inflaation tarkastelu on kuin tyynellä järvellä liikkuvien heikkojen aaltojen laskemista. Järven pinta määrittää miten aallot liikkuvat, mutta pinnan käytös on yksinkertaista, eivätkä aallot vaikuta siihen. Kun aallot ovat isoja tyrskyjä, jotka vaikuttavat pinnan käytökseen, niiden toisiinsa kytkeytyneiden liikkeen laskeminen on vaikeaa. Sama pätee inflaatiota ajavaan kenttään ja sen värähtelyihin.

Vuonna 2020 Sami, Eemeli ja yhteistyökumppanimme Daniel Figueroa ratkaisimme osan tästä ongelmasta. Laskimme supertietokoneilla pinnan ja tyrskyjen –eli inflaatiota ajavan kentän keskiarvon ja poikkeamien– yhteisen kehityksen. Koska kvanttifluktuaatiot ovat isoja, inflaatio voi kulkea eri tavoilla, eli mustaksi aukoksi mahdollisesti romahtavan alueen tiheys voi olla hyvin erilainen.

Mustien aukkojen tekeminen on vaikeaa: vain hyvin äärimmäiset ja harvinaiset aineen tihentymät romahtavat mustiksi aukoiksi. Tämän takia laskimme inflaation kulun sata miljardia kertaa saadaksemme kiinni tiheysvaihteluiden todennäköisyysjakauman hännästä, josta mustia aukkoja syntyy. Osoitimme, että mustia aukkoja syntyy noin satatuhatta kertaa enemmän kuin silloin kun tyrskyjen vaikutusta pinnan kehitykseen ei oteta huomioon.

Uudessa artikkelissa Sami, Eemeli ja minä tutkimme mitä tapahtuu yhden mahdollisesti romahtavan alueen sisällä. Tai siis, koska vaihtelut ovat isoja ja siis kaikki tapaukset hyvin erilaisia, tutkimme miljardia aluetta, mutta yksi kerrallaan. Aiemmin oli oletettu, että massajakauma tällaisessa alueessa on kuin tasainen kumpu. Käytimme taas supertietokoneita sen laskemiseen, miltä massajakauma oikeasti näyttää. Jaoimme jokaisen alueen noin kymmeneen tuhanteen siivuun saadaksemme hienosyisen kuvan siitä, miten massa on jakautunut.

Tuloksena on se, että massajakauma ei ole sileä kumpu, vaan täynnä teräviä piikkejä ja syviä railoja, koska kvanttivärähtelyt ovat luoneet massaa sinne tänne. Musta aukko syntyy kun tietyn säteen sisällä on tarpeeksi massaa, ja laskujemme mukaan näiden satunnaisten piikkien takia niin käy miljardi kertaa useammin kuin mitä oli luultu.

Kaikkiaan siis mustia aukkoja olisi satatuhatta miljardia kertaa luultua enemmän, eli inflaatiomalleja pitäisi säätää siten, että niitä syntyy vähemmän Mutta tarina ei lopu tähän.

Avaruuden kiihtyvän laajenemisen takia inflaation aikana tyrskyt jäätyvät paikalleen. Kun inflaatio loppuu, ne heräävät taas henkiin ja tarpeeksi isot massakeskittymät romahtavat mustiksi aukoiksi. Seuraavaksi siis simuloimme, miten nuo railojen ja piikkien halkaisemat massajakaumat todella liikkuvat gravitaation ja paineen kamppaillessa. Aiemmat simulaatiot muinaisten mustien aukkojen romahtamisesta ovat perustuneet sileille jakaumille, jotka eivät ollenkaan vastaa todellisuutta. Ne pitää laittaa uusiksi, ja olemme vasta aloittamassa tätä työtä.

Myös siinä, paljonko massaa tihentymiin kertyy, eli mikä on mustan aukon massa, on tulostemme mukaan paljon vaihtelua. Jos kaikki pimeä aine koostuu mustista aukoista (eikä niistä jäljelle jääneistä pienistä nokareista) ainetta, havaintojen mukaan niiden mahdollinen massa on tarkkaan rajattu suunnilleen asteroidin massaksi. Muuten ne olisi jo nähty. Jos massajakauma osoittautuisi aina liian laajaksi havaintoihin, ajatus mustista aukoista pimeänä aineena pitäisi hylätä.

Lopulta havainnot ratkaisevat. Joko nämä mustat aukot löydetään ja niiden massat kertovat meille varhaisen maailmankaikkeuden tapahtumista, missä ne ovat syntyneet. Tai sitten osoittautuu, että pimeä aine ei voi koostua mustista aukoista, mikä olisi vahva todistusaineiston palanen pimeän aineen hiukkasten olemassaolon puolesta.

17 kommenttia “Piikit ja railot”

  1. Markku Tamminen sanoo:

    Tuttavani, maallikko niinkuin minäkin, oli kuullut mustista aukoista, oli miettinyt asiaa ja tullut siihen tulokseen, että sellaisia ei meidän maailmassamme voi olla. Sillä jos on totta, että aika pysähtyy tapahtumahorisontissa, ei mitään tapahtumahorisonttia meidän ajassamme ja maailmassamme ehdi koskaan muodostua, vaan kaikki mikä on menossa oletettuun mustaan aukkoon lähestyy ikuisesti rajaa, jota ei vielä ole edes olemassa. Siis meidän näkökulmastamme, joka tarkoittaa sitä maailmaa, jossa elämme. Voi olla, että tuttavani logiikka ontuu jossain kohdassa, mutta maallikko kun olen, en ymmärrä missä kohdassa.

    Tämä nyt meni ehkä vähän sivuun aiheesta, mutta voisitko jossain vaiheessa blogissasi selvittää hieman ongelmaa, joka ainakin minua on pitkään askarruttanut sen jälkeen kun tuttavani kertoi siitä minulle. Internetissä asiaa käsitellään paljonkin, mutta itseäni tyydyttävää ratkaisua en ole vielä löytänyt. Olisi myös mielenkiintoista tietää, onko ratkaisu yksinkertainen vai monimutkainen.

    1. Syksy Räsänen sanoo:

      Ennen tapahtumahorisontin muodostumista aikadilataatio ei ole ääretön. Tapahtumahorisontin muodostumisessa kestää äärellinen aika.

  2. Lentotaidoton sanoo:

    ”tutkimme miljardia aluetta, mutta yksi kerrallaan, ja Jaoimme jokaisen alueen noin kymmeneen tuhanteen siivuun … ja eli miljardi kertaa kymmenen tuhatta ja nämä yksi kerrallaan. ja massajakauma ei ole sileä kumpu, vaan täynnä teräviä piikkejä ja syviä railoja ja laskujemme mukaan näiden satunnaisten piikkien takia niin käy miljardi kertaa useammin kuin mitä oli luultu”.

    Ei ihme, että kosmologia tänään on supertietokonehommaa. Meinaan, ideoita ja laskentatehoa ja laskijoitakin kyllä riittää. Melkein toivoisi, että se pimeä aine sittenkin olisi jonkin sortin hiukkanen (kevyt tai painava). Supersymmetria olisi hyvä yritys mutta lienee nyttemmin lässähtänyt (kunnei LHC:kaan mitään näytä löytävän).

  3. Seniorikosmologi sanoo:

    Sanot, että musta aukko voisii olla vain asteroidin massainen. Tiheytensä vuoksi kuutiosentti mustaa aukkoa painaa puolet Maan massasta, joten asteroidin massaisen mustan aukon koko täytyy olla todella pieni, ehkä alkeishiukkasiakin pienempi. Vai olenko ymmärtänyt jotain väärin?

    1. Syksy Räsänen sanoo:

      Auringon massaisen mustan aukon säde on 3 kilometriä, ja säde on suoraan verrannollinen massaan. Asteroidin massaisten mustien aukkojen massa voi olla jotain väliltaä 10^(-15)…10^(-11) Auringon massaa, eli koko väliltä 10^(-12)…10^(-8) metriä. Siis jotain isojen molekyylien ja atomiytimen väliltä.

      Jos pimeä aine on mustien aukkojen höyrystymisestä jääneitä nokareita, niiden odotettu massa on noin mikrogramma ja koko noin 10^(-35) metriä.

      1. Martti V sanoo:

        Miten iso musta aukko voitaisiin havaita? Esim maahan osuessaan alkaisi syömään materiaa?

        1. Syksy Räsänen sanoo:

          Todennäköisyys, että musta aukko törmäisi maahan on erittäin pieni.

          Mustien aukkojen havaitsemisesta: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/rajoituksia-monesta-suunnasta/

  4. Eusa sanoo:

    Onko järkevän epäilyn piirissä, että Hawkingin säteilyn energia olisikin väärinymmärrys, esim. gravitaation pintakiihtyvyyteen liittyvää tasapainediversiota tms, eikä höyrystymistä tapahtuisi, jolloin hyvin pienetkin aukot voisivat säilyä?

    1. Syksy Räsänen sanoo:

      Hawkingin säteily ei ole ”väärinymmärrys”. Se on kvanttikenttäteorian ja gravitaation yhteinen ennustus, joka on vakaalla pohjalla, mutta jota ei ole kokeellisesti varmennettu. On siis mahdollista, että mitään höyrystymistä ei tapahdu. Joka tapauksessa ennuste ei päde enää kun aukko on hyvin pieni, eli ei ole vakaata ennustetta sille mitä höyrystymisen loppuvaiheilla tapahtuu.

  5. Jari Toivanen sanoo:

    Mitä tarkoittaa ”mustien aukkojen höyrystymisestä jääneitä nokareita”? Mitä nokareita niistä jää jäljelle? Eikö ne höyrystykään kokonaan?

    1. Syksy Räsänen sanoo:

      Ei edes teoreettisesti tiedetä, mitä höyrystymisen loppuvaiheilla tapahtuu. Kokeellisesti höyrystymistä ei ole ollenkaan varmistettu, mutta sitä pidetään luotettavana ennustuksena.

      Tarkemmin: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/konservatiivisuuden-nokareet/

  6. Cargo sanoo:

    Miten noiden kvanttivärähtelyiden voimakkuun on riippuvainen avaruuden koosta? Entä voisiko valtamerten ns. ryöstöaaltoilmiö liittyä mustien aukkojen tehtailuun, kun pienet aaltoset superpositioivat harvinaisen jättiaallon?

    1. Syksy Räsänen sanoo:

      Ei mitenkään. Emme tiedä onko maailmankaikkeud ääretön vai äärellinen, mutta se on joka tapauksessa paljon isompi kuin nämä mustat aukot.

      En ymmärrä kysymystäsi aalloista.

  7. Joksa sanoo:

    Onko Hawkingin säteilyn kontra ma:oon sisääntulevan hiukkas- ja säteilyenergian tasetta arvioitu? Siitä kai riippuu onko Hawkingin säteily ylipäätään missään merkittävässä rooliissa ma:n massan muutosten osalta?

    1. Syksy Räsänen sanoo:

      Sen jälkeen kun tällainen pieni musta aukko syntyy sen massa kasvaa siihen putoavan aineen takia nopeasti tekijällä muutama tai ehkä 20. Sen jälkeen siihen ei juuri putoa ainetta. Hawkingin säteily alkaa olla merkittävä vasta myöhemmin.

  8. Mika sanoo:

    Ehtisitkö kommentoida jossain vaiheessa tätä tuoretta artikkelia kvanttifysiikan ja suhteellisuusteorian yhdistämisestä, onko tässä löydetty jotain todella uutta vai onko näitä samoja ajatuksia kehitelty jo aiemmin?

    ”On the same origin of quantum physics and general relativity from Riemannian geometry and Planck scale formalism” https://www.sciencedirect.com/science/article/pii/S0927650524001130

    1. Syksy Räsänen sanoo:

      Ei ole kommentoimisen väärti. Tämä on esimerkki ilmiöstä, missä muuten hyvissä astrofysiikan lehdissä julkaistaan suhteellisuusteoriasta ja kvanttifysiikasta hölynpölyä, joka ei menis alan lehdissä ikinä läpi.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Kenttätöitä

21.8.2024 klo 22.02, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kirjoittaessani ja puhuessani kosmisesta inflaatiosta tai hiukkasfysiikasta olen usein viitannut asiaan nimeltä kenttä. Sen merkitys saattaa jäädä hämäräksi, ja joskus siitä erikseen kysytään. Selitän tässä hieman tätä fysiikan keskeistä käsitettä, jolla on ollut iso rooli matkalla klassisesta moderniin fysiikkaan.

Matemaattisesti on helppo sanoa mikä kenttä on: se on sääntö, joka liittää jokaiseen avaruuden ja ajan pisteeseen yhden tai useamman numeron. Esimerkiksi ilman lämpötila on kenttä: se on erilainen jokaisessa paikassa ja jokaisena ajanhetkenä. Vastaavasti ilman nopeus on kenttä, joka eroaa lämpötilasta siinä, että sillä on voimakkuuden lisäksi suunta: se kertoo, miten ilma virtaa eri kohdissa.

Lämpötila ja ilman nopeus palautuvat hiukkasiin. Kun katsoo tarkemmin, niin huomaa että ilma koostuu molekyyleistä, jotka törmäilevät toisiinsa. Lämpötila kuvaa sitä, kuinka nopeasti nämä molekyylit liikkuvat paikallisesti törmäillessään toisiinsa. Vastaavasti ilman nopeus kertoo, kuinka nopeasti suuret joukot molekyylejä liikkuvat yhdessä paikasta toiseen.

On myös kenttiä, jotka eivät palaudu hiukkasiin.

Fysiikassa tapahtui 1860-luvulla vallankumous, kun James Maxwell esitti sähkön ja magnetismin yhtenäisteorian, joka selitti myös valon. Maxwellin teoriassa sähköä ja magnetismia kuvaavat sähkö- ja magneettikenttä, jotka voidaan ymmärtää yhtenä kokonaisuutena, sähkömagneettisena kenttänä. Niillä on voimakkuuden lisäksi suunta, kuten ilman nopeudella.

Maxwell oli teoriaa kehitellessään miettinyt sähkö- ja magneettikenttien käyttäytymistä vietereiden, hihnojen ja muiden mekaanisten vertausten avulla. Hän ei ajatellut, että kentät koostuvat pienistä mekaanisista laitteista, mutta fyysikot rupesivat pohtimaan sitä, mistä ne sitten koostuvat. Esitettiin, että sähkö- ja magneettikenttä olisivat eetteriksi nimetyn aineen aaltoja.

Eetteriä tutkittiin vuosikymmeniä, mutta lopulta ajatus osoittautui virheelliseksi: sähkökenttä ja magneettikenttä eivät koostu mistään pienemmästä. Niillä ei ole alirakennetta, ne ovat itsessään perustavanlaatuisia. Tämä yksinkertainen ratkaisu oli mullistava.

Aiemmin fysiikassa oli voinut ajatella kaiken koostuvan hiukkasista. Maxwellin jälkeen tarvittiin kahdenlaisia rakennuspalikoita, hiukkasia ja kenttiä. Hiukkanen on yhdessä paikassa oleva jyvänen, kenttä on kaikkialla. Maailmankaikkeudessa on yksi sähkökenttä, jolla on eri paikoissa eri arvoja, ja yksi magneettikenttä.

Maxwellin löytämää sähkömagnetismia oli vaikea yhdistää kvanttifysiikkaan. Avaimeksi osoittautui 1940-luvulla kentän käsite: yhdistäminen oli mahdollista vain jos kaikki aine koostuu kentistä. Niinpä esimerkiksi elektronit ovat elektronikentän kupruja, kuten fotonit, mistä valo koostuu, ovat sähkömagneettisen kentän aaltoja.

Jokaista hiukkaslajia (elektronit, myonit, neutriinot, kvarkit ja niin edelleen) vastaa yksi kenttä, jonka tihentymiä hiukkaset ovat. Sen sijaan, että kenttiä olisi voinut selittää hiukkasten avulla, hiukkaset selittyivät kentillä. Mutta kentät eivät vain ole toisenlainen tapa kuvata samaa asiaa: kenttä voi tehdä asioita, mihin hiukkaset eivät kykene.

Esimerkin tarjoaa Higgsin kenttä. Toisin kuin sähkökenttä, joka on hyvin erilainen eri paikoissa, Higgsin kenttä on nykyään yhtä voimakas kaikkialla. Samaan tapaan kuin sähköisesti varatut hiukkaset vuorovaikuttavat sähkökentän kanssa, lähes kaikki tunnetut hiukkaset vuorovaikuttavat Higgsin kentän kanssa.

Kuten lämpötilalla, Higgsin kentällä ei ole suuntaa, ainoastaan voimakkuus. Niinpä, toisin kuin sähkökenttä, se ei työnnä hiukkasia mihinkään suuntaan. Sen sijaan se kasvattaa hiukkasten massoja, sitä enemmän mitä vahvemmin ne Higgsin kanssa vuorovaikuttavat. Tätä ei voi selittää hiukkasten avulla: kentän tihentymät ja tämä massojen mekanismi ovat eri puolia kentän käyttäytymisessä.

Higgsin kentän vuorovaikutukset ovat paljon heikompia kuin sähkökentän, ja sen hiukkasten elinikä on hyvin lyhyt, toisin kuin fotonien, jotka ovat ikuisia. Siksi sitä on vaikeampi havaita: Higgsin kentän aallot eli Higgsin hiukkanen löydettiin vasta vuonna 2012, CERNin LHC-kiihdyttimessä.

Higgsin löytäminen vahvisti kaikkien tunnettujen vuorovaikutusten (paitsi gravitaation) yhtenäisteorian, hiukkasfysiikan Standardimallin, kuten radioaaltojen ja muiden uusien sähkömagneettisten aaltojen löytäminen 1800-luvulla vahvisti Maxwellin esittämän sähkön ja magnetismin yhtenäisteorian.

18 kommenttia “Kenttätöitä”

  1. Jyri T. sanoo:

    Aihetoive: Claudia de Rhamin (Imperial College London) ajatus pikkiriikkisen massan omaavista gravitoneista eli ”gravitaation massasta”. Uhka vai mahdollisuus?

    1. Syksy Räsänen sanoo:

      Gravitonien mahdollista massaa on tutkittu vuosikymmeniä, de Rham on tosiaan yksi avainhenkilöitä nykyään, kuten myös Fawad Hassan Tukholmassa, joka oli sattumoisin postdoc-tutkija Helsingissä kun oli jatko-opiskelija. Lisään mahdollisten aiheiden listalle, katsotaan kirjoitanko siitä.

      1. Jyri T. sanoo:

        Samaan syssyyn voisi koplata myösJonathan Oppenheimin ehdotuksen siitä, miten gravitaatio voitaisiin yhdistää kvanttimekaniikkaan satunnaisuuden kautta.

        1. Syksy Räsänen sanoo:

          Siitä tuskin kirjoitan, spekulaatioita on monenlaisia.

  2. Eusa sanoo:

    ”Maailmankaikkeudessa on yksi sähkökenttä, jolla on eri paikoissa eri arvoja, ja yksi magneettikenttä.”

    Eikö ole syytä puhua vain yhdestä sähkömagneettisesta kentästä? Se, mikä näyttää puhtaalta sähkökentältä yhdessä koordinaatistossa, voi näyttää sähkö- ja magneettikentän yhdistelmältä toisessa koordinaatistossa. Raja-arvoisesti kausaliteetin vauhdissa c kentällä olisi vain magneettista merkitystä?

    1. Syksy Räsänen sanoo:

      Kyllä, sähkökenttä ja magneettikenttä ovat osia yhdestä kokonaisuudesta, sähkömagneettisesta kentästä.

  3. robert ekman sanoo:

    pyyntö:

    voisitteko (mikäli ette ole tätä jo tehneet) täsmentää Pimeän virtauksen/Suuren atttrakotrin olemusta meille kuolevaisille.
    kiitos!

    Robert Ekman

    1. Syksy Räsänen sanoo:

      Laitan mahdollisten aiheiden joukkoon.

  4. robert ekman sanoo:

    entä aika? onko aika kenttä?

    1. Syksy Räsänen sanoo:

      Ei. Mutta aika-avaruuden etäisyyksiä ja kaarevuutta kuvaava asia nimeltä metriikka on kenttä.

  5. Heikki Poroila sanoo:

    Maallikon näkökulmasta gravitaatio vaikuttaa mitä suurimmassa määrin kentältä, joka on läsnä kaikkialla tuntemassamme maailmassa. Johtuuko sen sopimattomuus yhtenäisteoriaan siitä, ettemme ole löytäneet gravitaation aiheuttajaa vai liittyykö asiaan myös jotain teoreettista yhteensopimattomuutta?

    1. Syksy Räsänen sanoo:

      Gravitaatio eroaa muista vuorovaikutuksista siinä, että sitä välittävä kenttä ei elä avaruudessa, vaan on aika-avaruus itse (tarkemmin sanoen aika-avaruuden etäisyydet ja kaarevuuden määrittävä kenttä).

      Tästä seuraa teoreettisia ongelmia, kuten se, että kenttäteorioiden muotoilussa on yleensä tärkeä tietää etukäteen miten aika kulkee, mutta gravitaation kohdalla sen määrittävät teorian yhtälöiden ratkaisut, sitä ei tiedetä etukäteen. Muitakin ongelmia on. Gravitaatiosta ja sen yhdistämisestä muihin vuorovaikutuksiin:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/schrodingerin-raketti/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/aika-avaruuden-atomit/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/aika-avaruuden-ainesosat/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/eroon-suuresta-jarjettomyydesta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/painon-valittajasta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/suoraviivaista/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaikki-tai-ei-mitaan/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/miksi-kaiken-teorialla-on-merkitysta/

  6. Joksa sanoo:

    Kuinka tuo kentän perustavanlaatuisuus määräytyy?

    Sähkö- ja magneettikenttä muodostavat sähkömagneetisen kentän, mutta kummallakaan ei ole omaa erillistä hiukkastaan, magneetti- tai sähköhiukkasta, vaan joillakin hiukkaskentillä on sähkövaraus ominaisuus. Eikö siis sähkömagneettinen kenttä ole pikemminkin näiden varauksellisten hiukkaskenttien vuorovaikutusilmiö ja siis ei perustavanlaatuinen?

    1. Syksy Räsänen sanoo:

      Hyvä kysymys. Asia on perustavanlaatuinen jos sitä ei voida selittää minkään muun avulla.

      Sähkömagneettiseen kenttään liittyvä hiukkanen on fotoni. Fotoneita (eli valoa, radioaaltoja, mikroaaltoja jne.) voi olla vaikka ei olisi söhkövarauksia. Tämä sähkömagneettisten aaltojen olemassa olo oli Maxwellin löytämien yhtälöiden merkittävä ennustus (tai siis näkyvän valon osalta selitys).

      Lisää perustavanlaatuisista laeista:

      https://web.archive.org/web/20220618081432/http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/perustuslakien_saatamisjarjestys

  7. robert ekman sanoo:

    lievästi kenttään liittyen:

    luin Stephen Hawkingin kirjasta(vuodelta 2001) että kosmologinen vakio voisi olla miinus ääretön, mutta onko tämä mahdollinen?

    1. Syksy Räsänen sanoo:

      En tiedä mitä hän kirjassaan kirjoitti. Todellisessa maailmassa se ei ole miinus ääretön.

      1. robert ekman sanoo:

        sivulla 94, hän sanoi että tällöin kosmologinen vakio kumoaisi kvanttiheilahteluista aiheutuvat äärettömän suuret energian

        1. Syksy Räsänen sanoo:

          Ahaa. Vaikea kommentoida tarkkaan, kun en ole lukenut.

          Mutta kyse lienee tyhjön energian (ja kosmologisen vakion, jotka ovat tässä yhteydessä sama asia) arvon laskemisesta kvanttikenttäteoriassa. Tietyllä laskemistavalla näyttää siltä, että kvanttikenttäteoriassa esiintyy äärettömiä suureita joista vähennetään toinen ääretön suure, niin että tulos on äärellinen. Tämä ei liity erityisesti tyhjön energiaa: sama pätee vaikkapa hiukkasten massoille. Laskun voi tehdö myös niin, että äärettömiä suureita ei esiinny. Ei tästä nyt sen enempää, menee sen verta ohi merkinnän aiheesta.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Ennen lämpökylpyä

27.6.2024 klo 22.21, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kosminen inflaatio on paras selityksemme maailmankaikkeuden rakenteiden alkuperälle. Edellisessä merkinnässä kirjoitin siitä, että emme tiedä miten inflaatio on alkanut. Käsittelen nyt sitä, miten se loppui.

Inflaatiossa maailmankaikkeuden laajeneminen kiihtyy. Kun inflaatio loppuu, laajeneminen alkaa siis hidastua. Se hidastuuko vai kiihtyykö laajeneminen riippuu siitä, millainen kappaleiden välinen gravitaatio on. Jos ne vetävät toisiaan puoleensa, laajeneminen hidastuu. Jos ne sen sijaan työntävät toisiaan poispäin, laajeneminen kiihtyy.

Isaac Newtonin vuonna 1687 esittämässä gravitaatioteoriassa massat vetävät toisiaan puoleensa. Mutta vuonna 1915 löydetyn yleisen suhteellisuusteorian, josta Newtonin teoria on vain karkea yksinkertaistus, mukaan on olemassa myös hylkivää gravitaatiota. Antigravitaatio ei ole vain scifi-idea, se on todellisuutta.

Tämä liittyy siihen, että yleisessä suhteellisuusteoriassa gravitaation lähteenä ei ole vain massa, vaan myös muut aineen ominaisuudet, kuten paine. Jos paine on positiivinen (kuten tavallisen aineen tapauksessa), sen gravitaatio on puoleensavetävä. Mutta jos paine on negatiivinen, sen gravitaatio hylkii. Jos negatiivinen paine on tarpeeksi iso, se voittaa massojen puoleensavetävän vaikutuksen ja avaruuden laajeneminen kiihtyy.

Inflaation aikana maailmankaikkeuden aine ei ollut jakautunut lukemattomiin erillisiin hiukkasiin niin kuin nykyään. Silloin avaruuden täytti tasaisesti yksi (tai ehkä useampi) kenttä. Kyseessä voi olla hiukkasfysiikan Standardimallin Higgsin kenttä tai jokin toistaiseksi tuntematon kenttä; on esitetty satoja erilaisia mahdollisuuksia siitä, millainen se olisi.

Kun tämä kenttä on tarpeeksi tasainen (eli sama kaikkialla) ja hitaasti muuttuva (eli sama eri aikoina), sen paine on negatiivinen ja gravitaatio hylkivä, eli avaruuden laajeneminen kiihtyy. Kentän arvo laskee hitaasti, joten se säilyy pitkään suunnilleen samanlaisena, ja siksi inflaatio kestää kauan. Lopulta kenttä kuitenkin lähestyy pienintä mahdollista arvoaan. Tällöin se alkaa muuttua nopeasti kunnes asettuu täysin aloilleen, eikä sen gravitaatio ole enää hylkivää. Siksi maailmankaikkeuden laajeneminen hidastuu.

Kiihtyvä laajeneminen piti kentän tasaisena. Kun inflaatio loppuu, kenttä rypistyy nopeasti, koska gravitaatio on taas puoleensavetävää ja siksi kasvattaa epätasaisuuksia. Kenttään syntyy kupruja, eikä se pysy yhtenäisenä vaan hajoaa hiukkasiksi, kuten näkkileipä rutistaessa pirstaloituu leivänmuruiksi.

Syntyneet hiukkaset voivat sitten törmäillä toisiinsa ja hajota toisiksi hiukkasiksi. Inflaatio on yksinkertainen tapahtuma, missä kaikki on hyvin tasaista ja muuttuu hitaasti, mutta sen loppu on sotkuinen. Hajoamisen yksityiskohdat riippuvat siitä, millainen kenttä inflaatiosta oli vastuussa, millaisia hiukkasia on olemassa ja miten ne vuorovaikuttavat keskenään.

Tämä inflaatiokentän hajoaminen tunnetaan nimellä esilämmitys (engl. preheating). Nimen taustalla on se, että lopuksi inflaatiota ajaneen kentän hajoamisesta syntyneet hiukkaset päätyvät lämpötasapainoon, ja niiden muodostama kuuma keitto tasoittuu. Jotkut kutsuvat tätä aineen syntyä inflaation lopussa ja sekoittumista tasaiseksi kuumaksi keitoksi nimellä alkuräjähdys. Itse käytän sanaa ennemmin sen alkuperäisessä tarkoituksessa, ajan ja avaruuden alkuna (josta emme tiedä mitään), mutta makuja on monia.

Kun lämpötila tasaantuu samaksi kaikkialla ja aine on lähellä lämpökuolemaa, jäljet esilämmityksen monipolvisista vaiheista katoavat. Yksi mahdollinen poikkeus on se, että rypistymisessä saattoi kehittyä niin isoja aineen tihentymiä, että ne romahtivat mustiksi aukoiksi, joita voisi havaita vielä nykyään.

Varmasti jäljelle jäävät vain inflaation aikana syntyneet pienet epätasaisuudet, jotka kattavat niin ison alueen, että ne eivät pyyhkiydy lämpökylvyssä pois. Gravitaatio myöhemmin kasvattaa aineen epätasaisuuksista galakseja ja muita rakenteita. Epätasaisuudet avaruudessa itsessään, eli gravitaatioaallot, matkaavat maailmankaikkeuden halki lähes muuttumattomina, ja niitä voi mitata vielä nykyään. Kenttien ja hiukkasten loiskinta esilämmityksen aikana sekin synnyttää gravitaatioaaltoja.

Oleellisinta esilämmityksessä on kuitenkin se, kauanko se kestää ja paljonko maailmankaikkeus sen aikana laajenee. Tämä vaikuttaa siihen, paljonko inflaation aikana syntyneet epätasaisuudet venyvät, eli minkä kokoisina ne nyt näkyvät meille kosmisessa mikroaaltotaustassa ja galaksien jakaumassa. Taivas kantaa muistoa aineen synnystä.

27 kommenttia “Ennen lämpökylpyä”

  1. Martti V sanoo:

    Kun inflaatiota ajava kenttä hajosi, laajeneminen jatkui vaikkakin hidastuen. Dominoikoi negatiivinen paine myös silloin vai miksi laajeneminen jatkui ? Olettaisi, että tasaisen inflaaation jälkeen hiukkaspiurossa oli pieniä tiheymiä, jotka ylsivät hitusen positiivisen paineen puolelle. Vai oliko muutos paineessa dramaattisempi, vai miten mustia-aukkoja heti syntyisi?

    1. Syksy Räsänen sanoo:

      Inflaation jälkeen paine on positiivinen, ja gravitaatio on puoleensavetävä.

      Jos gravitaatiota ei olisi, maailmankaikkeus laajenisi tasaisesti vakionopeudella. Kun gravitaatio on puoleensavetävä, laajenemisnopeus laskee. Se ei kuitenkaan laske heti (jos koskaan) nollaan.

      1. Martti V sanoo:

        Muuttuiko paine inflaation loputtua kuitenkin jatkuvana funktiona negatiivisesta positiiviseen? Ilmeisesti laajeneminen koki äkkijarrutuksen. Voiko ajatella, että laajenemiseen jäi kuitenkin tietty inertiaan verrattavissa oleva energia, jolla laajeneminen jatkui vakionopeudella, jota gravitaatio alkoi hidastaa?

        1. Syksy Räsänen sanoo:

          ”Muuttuiko paine inflaation loputtua kuitenkin jatkuvana funktiona negatiivisesta positiiviseen?”

          Kyllä. Samoin kiihtyvyys muuttuu jatkuvasti positiivisesta negatiiviseen.

  2. Lentotaidoton sanoo:

    Räsänen: ”Jotkut kutsuvat tätä aineen syntyä inflaation lopussa ja sekoittumista tasaiseksi kuumaksi keitoksi nimellä alkuräjähdys. Itse käytän sanaa ennemmin sen alkuperäisessä tarkoituksessa, ajan ja avaruuden alkuna (josta emme tiedä mitään), mutta makuja on monia.”

    Tämähän kietoutuu siihen kuuluisaan ja onnettomaan Fred Hoylen 1949 radioesitelmän tölväisyyn Big Bang. Tämä ei tietysti selittänyt tieteellisesti mitään mutta tämä jäi elämään suuren yleisön käsityksenä kosmoksemme synnystä, ns. ”alkuräjähdyksestä”.
    Nykytiede selittää asian mieluummin ns HBB:nä, eli Hot Big Banginä. Ja tällä termillä viitataan nimenomaan ns inflatonkentän (mikä se sitten on ollutkin, siitä on monia teorioita, yksi suosittu on Higgsin kenttä) hajoamisena hiukkasiksi. Tästä eteenpäin fysiikkamme selittää asioita johdonmukaisesti.
    Tämä on kuitenkin toinen asia kuin absoluuttinen (ideologinen) ”ajan ja avaruuden alku”. Kuten Räsänen toteaa: ”siitä emme TIEDÄ mitään”. Suhtis nyrjähtää tässä singulariteetteineen (Hawkin/Penrose) eikä parempaa teoriaa ole (yleisesti hyväksyttynä) keksitty.

  3. Joksa sanoo:

    ”Samoin kiihtyvyys muuttuu jatkuvasti positiivisesta negatiiviseen.” Tarkoittanee perioidia ennen kuin tyhjiöenergia muutti kiihtyvyyden positiiviseksi?

    Jos esilämmitysvaihe hukkaa todisteet kehityskulusta niin onko inflaatioteoria tasolla ’paras arvaus toistaiseksi’, kunnes ennakoituja jälkiä löydetään?

    Jos inflaatiota ajaneen kentän hajoaminen on synnyttänyt hiukkaset jotka törmäillessään hajoivat toisiksi niin eikö kenttä tule olla painavimpien alkeishiukkasten kenttä sekä kaikkien muidenkin alkeishiukkasten kentät sisältävä jotta hajoaminen keveimmiksi olisi mahdollista, eli inlaatio sisältäisi kaikki alkeiskuikkaskentät, ei pelkästään jonkun yhden kenttä?

    Toisaalta, kiinnostaa koska katsotaan koittaneen hetki jolloin ajan kulun voi katsoa alkaneen, koska entropiaa on määriteltävissä jne? Ajan kulun käynnistäminenhän määrittäisi esim. voiko inflaatiolla tai valolla katsoa olleen nopeus, ja siis aika-avaruus lainkaan olemassa, vai pitäisikö sen katsoa syntyneen vasta tuossa inflaatiota ajaneen kentän hajoamistapahtumassa.

    1. Syksy Räsänen sanoo:

      Aivan, kiihtyvyys muuttuu miljardeja vuosia myöhemmin taas positiiviseksi joko tyhjön energian takia tai jostain muusta syystä.

      Inflaatiota voi vielä järkevästi epäillä, mutta se on tehnyt useita ennusteita, jotka on kokeellisesti varmennettu. Kuten tekstin lopussa mainitaan, inflaation synnyttämät pitkät epätasaisuudet aineessa eivät katoa esilämmityksen melskeissä. Inflaation ennusteista lisää täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/seitseman-ennustusta-menneisyydesta/

      Inflaatiokenttä ei koostu yksittäisistä kenttää vastaavista hiukkasista. Esimerkiksi jos Higgsin kenttä on inflaatiota ajava kenttä, se ei koostu Higgsin hiukkasista. Hiukkaset ovat pieniä tihentymiä kentässä, inflaatiota ajava kenttä on tasainen (kvanttifluktuaatioita lukuun ottamatta). Niinpä se voi hajota myös hiukkasiksi, jotka ovat raskaampia kuin Higgsin hiukkanen. Hajoamisprosessi on monimutkainen ja riippuu vahvasti siitä, millainen kenttä on ja millaisia hiukkasia on. Mutta yksi tapa on se, että inflaatiokenttä muuttuu nopeasti ajassa, ja tämän takia sen kanssa vuorovaikuttavien kenttien massa muuttuu ajassa nopeasti (vrt. se miten Higgsin kenttä antaa hiukkasille massat), minkä takia niiden hiukkasia syntyy (ja Higgsin kentän energia pienenee).

      Inflaation aikana aika kuluu kuten nytkin. Ei tiedetä mitä tapahtui ennen inflaatiota eli koska aika on alkanut (vai onko maailmankaikkeus ollut aina olemassa).

  4. Joksa sanoo:

    Avaruuden laajeneminen ja suppeneminen ovat oikeastaan aika mielenkiintoisia prosesseja.

    Heti kun avaruus laajenee vähänkin niin sehän laajenee etäältä valoa nopeammin muodostaen kosmisen horisontin, vastaavasti suppeneminen. Tuolla kriteerillä inflaation voisi katsoa jatkuva, avaruus kun etääntyy valon nopeuden ylittäen kosmisen horisontin takana. Laajenemisnopeuden muutos siirtää kosmista horisonttia suuntaan tai toiseen. Kaikkien avaruuden pisteiden laajeneminen tai suppeneminen valon nopeudella on kai mahdotonta koska se edellyttäisi ääretöntä nopeutta. Inflaatioteorian valoa nopeamman laajenemisen prosessi vaikuttaisi oikeastaan tarvitsevan hieman tarkempaa kuvausta mitä sillä tasaisessa keskipisteettömässä avaruudessa tarkoitetaan?

    Avaruuden supistuminen sinisiirtäisi etäältä tulevan valon niin energiseksi että se varmaan saisi koko taivaan hehkumaan aurinkoakin kuumempana. Todellinen lämpökylpy.

    1. Syksy Räsänen sanoo:

      Avaruuden laajenemisen tahtia ei mitata nopeuden yksiköissä, eli pituus/aika (metrejä/sekunnissa). Sitä mitataan yksiköissä pituus/aika/pituus, koska kappaleet etääntyvät toisistaan sitä nopeammin, mitä kauempana ne ovat.

      Tällä hetkellä maailmankaikkeuden laajenemisnopeus on noin 70 kilometriä/sekunnissa/(3 miljoonaa valovuotta). Tämä tarkoittaa sitä, että jos kappaleiden välinen etäisyys on 3 miljoonaa valovuotta, niin välinen etäisyys kasvaa noin 70 kilometriä joka sekunti. Jos niiden etäisyys on 6 miljoonaa valovuotta, niin välinen etäisyys kasvaa noin 140 kilometriä joka sekunti, ja niin edelleen. Valoa nopeammasta laajenemisesta puhuminen on siksi hieman harhaanjohtavaa.

      Tämä ei tarkoita sitä, että kappaleet liikkuisivat, vaan niiden väliin tulee lisää tilaa. Ei ole mitään periaatteellista rajaa sille, kuinka nopeasti kappaleiden väliin voi tulla tilaa.

      Horisontti ei synny avaruuden laajenemisesta. Horisontti on se raja, minne asti juuri näemme. Vaikka avaruus ei laajenisi, olisi olemassa horisontti jos maailmankaikkeuden ikä on äärellinen, koska olisi silti alueita, mistä meille ei vielä ole tullut signaaleja.

      Laajenemisnopeudessa on paikallisia vaihteluita, ja joissain alueissa (esimerkiksi kun aine romahtaa galakseiksi) avaruus supistuu ja valon energia kasvaa hieman, eli tapahtuu sinisiirtymä.

  5. Harri Lehtonen sanoo:

    Avaruus siis laajenee nopeudella , joka kasvaa lineaarisesti niiden välissä olevaan etäisyyteen verrattuina. Kulmakerroin on noin 70/3=23,3. Tästä seuraa jakolaskulla. Valonnopeus/23.3=noin 12800 miljoonaa valovuotta.
    Mikä meni pieleen, kun näemme kuitenkin noin 50000 miljoonan valovuoden päähän.
    Johtuuko ero valon venymisestä avaruuden mukana, vai teinkö laskuvirheen
    Harri

    1. Syksy Räsänen sanoo:

      Noilla jako- ja kertolaskuilla ei ole mitään tekemistä tilanteen kanssa.

      Maailmankaikkeus on noin 14 miljardia vuotta vanha, joten jos se ei laajenisi, näkisimme 14 miljardin valovuoden päähän. Koska maailmankaikkeus laajenee, kosminen horisontti on kuitenkin kauempana, ja näemme noin kolme kertaa kauemmas, tosiaan noin 50 miljardin valovuoden päähän.

      Ei tästä sen enempää.

  6. Joksa sanoo:

    Enqvist:
    ”Willem de Sitter oli jo 1920-luvulla osoittanut, että tuolloin maailmankaikkeus laajenisi eksponentiaalisen nopeasti. Vauhti on niin nopeaa, ettei edes valo pysy laajenemisen perässä. Tätä vaihetta Guth kutsui kosmiseksi inflaatioksi. ”

    Pedanet:
    ”Vuonna 1979 Alan Guth oivalsi, että ulkoavaruudessa oli tila, jossa energiaa varastoitui Higgsin kenttään. Joulukuussa hän kokeili Higgsin kenttää oloissa, jotka vastasivat heti alkuräjähdyksen jälkeen vallinnutta tilaa. Tulos oli yllättävä. Higgsin kenttä osoittautui olevan voimakkaasti luotaan työntävä, ja alle 10 potenssiin –35 sekunnissa maailmankaikkeuden koko räjähti 10 potenssiin 100- kertaiseksi.”

    Nuo Pedanetin luvut voitaneen kääntää myös laajenemisnopeudeksi yksikköön pituus/aika/pituus ja laskea myös millä etäisyydellä horisontti olisi ollut sillä laajenemisvauhdilla, eli millä (varmaan hyvin pienellä) pituus/aika/pituus -yksikön jälkimmäisen pituus-suureen arvolla laajeneminen ylittää valon nopeuden. Jos tarpeen.

    Mutta onko niin että ’ulkoavaruudessa’ on edelleenkin samainen tila, jossa energiaa varastoituu Higgsin kenttään saaden aikaan vastaavan räjähdyspotentiaalin, vai pelkästään ”alkuräjähdyksen jälkeen vallinneessa tilassa”, mitä se sitten tarkoittaneekin?

    1. Syksy Räsänen sanoo:

      Tuo Pedanetin teksti ei pidä paikkaansa. Puhe tuollaisesta ”ulkoavaruuden tilasta” on hölynpölyä.

  7. Jussi Lipponen sanoo:

    Moi Syksy,
    Osaisitko vähän avata jotain kohtia kolumnistasi?
    En ymmärrä mitä tarkoitat kentällä.
    Enkä mitä on kentän arvo ja kuinka se vähenee ja aiheuttaa laajenemisen hidastumista.
    Leivän murujen esilämmitys lämpötasapainoon ja siitä seurannut aika-avaruuden alku on myös asia josta haluaisin soittaa ukille jos hän eläisi.
    Monipolvisten vaiheiden jälkien katoaminen lämmityksen aikana ei myöskään aukea.
    En tainnut ymmärtää kuin lopusta jotain.
    No mielenkiintoista oli, luin tekstin monesti ja kirjoitin ylös kahdesti.
    Kiitos ja kivoja tulevaisuuden muistoja.

    1. Syksy Räsänen sanoo:

      Tekstissä olikin monta asiaa joita ei selitetty. Yksi niistä on se mikä on kenttä. Asia voi olla helppo hahmottaa ajattelemalla sähkökenttää. Sillä on kaikkialla joku voimakkuus ja suunta. Sähkökenttä ei koostu mistään pienemmästä, se on itsessään perustavanlaatuinen rakennuspalikka. Sähkökentästä vähän lisää täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/valon-vihjeita/

      Inflaatiota ajava kenttä on samanlainen kuin sähkökenttä, mutta sillä ei ole suuntaa, ainoastaan voimakkuus. Sähkökentän arvo tarkoittaa sähkökentän voimakkuutta, ja samaan tapaan inflaatiota ajavan kentän arvo kertoo miten voimakas kyseinen kenttä on. Kentän arvo laskee koska maailmankaikkeus laajenee – tätä en tässä tarkemmin avaa.

      Niin kauan kuin kenttä on tasainen ja muuttuu hitaasti, sen paine on negatiivinen ja siksi sen gravitaatio on hylkivä. Kentän arvo laskee koko ajan, ja kun se lähestyy pienintä mahdollista arvoa, se ei enää muutu hitaasti. (En selitä tässä miksi!) Silloin sen paine ei enää ole negatiivinen, joten sen gravitaatio muuttuu puoleensavetäväksi ja laajeneminen alkaa hidastua.

  8. Joksa sanoo:

    Kaikkien tietyn lajin hiukkasten ollessa saman kentän tihentymiä sen hajoaminen hiukkasiksi sen laajennettua ja heikennyttyä hieman epätasaiseksi tuntuu hieman epäloogiselta. Onko kenttä voimakkuudella tilavuuteen nähden tekemistä asian kanssa, samaan kvanttitilaanhan kun voi asettua vain yksi fermioni.

  9. Joksa sanoo:

    Korjaus, edellisessä kommentissa ’kvattitilan’ sijaan ’tilakvantti’.

    1. Syksy Räsänen sanoo:

      Oikea termi on kvanttitila. Kentän voimakkuus suhteessa tilavuuteen ei ole oleellinen.

      Kun gravitaatio on hylkivää ja laajeneminen kiihtyy, kentän pienet epätasaisuudet eivät kasva vaan tasaantuvat. Kun gravitaatio on puoleensavetävää, laajeneminen hidastuu ja epätasaisuudet kasvavat. Ne kasvavat sitä nopeammin mitä hitaampaa laajeneminen on. Kun kenttä ryppyyntyy, siitä myös syntyy hiukkasia (pieniä tihentymiä).

      Koko prosessi on paljon monimutkaisempi, eikä sen kokonaisuuden selittäminen lyhyesti ja yleistajuisesti ole helppoa.

  10. Cargo sanoo:

    ”Kun tämä kenttä on tarpeeksi tasainen (eli sama kaikkialla) ja hitaasti muuttuva (eli sama eri aikoina), sen paine on negatiivinen ja gravitaatio hylkivä, eli avaruuden laajeneminen kiihtyy.”

    Mikä tuon inflaatiokentän muutosta ohjaa? Onko sillä jokin alkutila, joka ajautuu potentiaalikuoppaan? Onko tuo alunperin tyyni inflaatiokenttä alkanut aikakehityksen myötä aaltoilemaan ja sitten jonkinmoisen resonaation kautta luovuttanut energiansa muille aaltoileville kentille? Voisiko tuo inflaatiokenttä olla edelleen olemassa ja imeä muiden kenttien energiaa ”tasaisella tavalla” itseensä ja sitä kautta aiheuta nykyisen kiihtyvän laajenemisen?

    1. Syksy Räsänen sanoo:

      Inflaatiokentää käyttäytyy vähän kuin mäkeä alas valuva kivi. Vertauksessa kiven korkeus vastaa kentän arvoa. Kenttä alkaa siis korkeasta arvosta ja valuu sieltä alas.

      Yksi esilämmittelyn muoto inflaation lopussa on tosiaan sellainen, missä inflaatiokentän liike on resonanssissa ja siksi sen energiaa siirtyy paljon muille kentille.

      Eräs yksinkertainen mahdollisuus pimeälle energialla on inflaatiokentän tyhjön (eli yksinkertaisimman tilan) energia, eli se, että kentän minimiarvolla sen energia ei ole nolla.

      1. Cargo sanoo:

        Kiitos vastauksesta. Onko muuten mahdollista selittää kansantajuisesti, että miksi tuo kentän tasaisuus aiheuttaa avaruuden kiihtyvän laajenemisen, vai onko se pelkkää korkeampaa matematiikkaa? Löytyisikö esim. mitään analogiaa siihen, että painovoima tasaisen pallokuoren sisällä on nolla, jolloin painovoima ei vastusta alkutilan pallon sädettä laajenevaa liikettä?

        1. Syksy Räsänen sanoo:

          Ei ole tuollaista analogiaa. En keksi siihen mitään yksinkertaista kansantajuista selitystä.

          1. Cargo sanoo:

            Mutta jos massa kertoo avaruudelle miten kaareutua, ja tasaisesti jakautunut aine/energia aiheuttanee kaikkialla tasaisen kaarevuuden, niin eikö sellainen muoto viittaa pallomaiseen pintaan? Tuollaisen laajenevan pallopinnan massapisteet loittonevat toisistaan sitä nopeammin mitä kauempana ne ovat. Joo, en nojatuolifilosofoi enempää 🙂

          2. Syksy Räsänen sanoo:

            Jos aine on tasaisesti jakautunut, niin avaruuskin on tosiaan samanlainen kaikkialla. Tällöin se voi olla euklidinen avaruus, hyperpallo (tässä tapauksessa siis kolmiulotteinen pallopinta) tai hyperboloidinen pinta (eli vähän kuin kolmiulotteinen satulapinta).

            Lisää aiheesta täällä, ei tässä nyt siitä enempää:

            https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/suoraviivaista/

        2. Martti V sanoo:

          Jos olisi massiivinen pallokuori jonka sillä on tyhjiö , niin sen sisällä kaikki putoaa kohti keskusta, jossa massakeskipiste. Jos ajatellaan isotrooppista ääretöntä kosmosta, sillä ei ole massakeskipistettä, joten isoilla mittasuhteilla ei ole mitään tiettyä suuntaa johon gravitaatio vetäisi. Hypoteettisesti jos pimeää energiaa ei olisi, niin laajeneminen jatkuisi sitä.ilmankin. kun galaksien väli alkaa olemaan satoja miljoonia valovuosia niin niiden välinen vetovoima alkaa olemaan niin marginaalinen, niin ei ole ihme että laajeneminen vain jatkuu ikuisuuteen. Onko tähän argumenttia?

          1. Syksy Räsänen sanoo:

            Galaksien tyypillinen etäisyys on jokunen miljoonaa valovuotta. Laajeneminen tosiaan jatkuisi ikuisesti vaikka pimeää energiaa ei olisi, koska galaksien massa ei ole tarpeeksi iso vetämään niitä enää takaisin yhteen.

            Tämä on kaukana merkinnän aiheesta, joten tästä nyt sen enempää.

          2. Martti V sanoo:

            Korjaus edelliseen kommenttiini. Shell teoreeman mukaan tosiaan gravitaatio ei aiheuta voimaa pallokuoren sisällä. Vaikkakin hieman aiheen vierestä. Suoraviivaisinta olisi ajatella, että inflaatiota ajava voima aiheuttaa nykyisen kiihtyvän laajenemisen, kun paine on laajentumisen seurauksena suurilla tyhjillä alueilla painunut alle nollan.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Kolmelta aamuyöstä

17.6.2024 klo 17.18, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Vastailen Ropecon-tapahtumassa paneelissa Kiva tietää kolmelta aamuyöstä… kysymyksiin kosmologiasta ja ehkä muustakin. Lippuja Ropeconiin saa täältä.

Ohjelmanumero pidetään lauantain 21.7. ja sunnuntain 22.7. välisenä yönä kello 2.30-3.15. Sen kuvaus on seuraava:

Mitä olet aina halunnut tietää kolmelta aamuyöstä? Kysy mitä haluat, Ropeconiin kokoontuneet asiantuntijat vastaavat mitä haluavat! Asiantuntijaryhmässä mukana (vähintään) eläinlääkäri Katri, kosmologi Syksy, kallonkutistaja Janka, örkkilogian tohtori Loponen, Ropeconin johtava viherpesuasiantuntija Merli, historian jännien naisienkin tietäjä Maria ja hyvien tarinoiden ja pelisuunnittelun konkari Tuomas ja kenties muitakin kummajaisia. Keskustelua moderoi traumatologi Tube.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Aivot tyhjyydessä

9.6.2024 klo 22.16, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kosminen inflaatio on menestynein selitys maailmankaikkeuden rakenteiden alkuperälle. Viime kädessä meidänkin olemassaolomme selittyy inflaatiolla: ihmiset ovat voineet kehittyä tähän koska tässä on planeetta osana aurinkokuntaa; tähän on muodostunut aurinkokunta koska tässä on galaksi; galaksi on syntynyt tähän siksi, että varhaisten aikojen hiukkaskeitossa oli tässä hieman enemmän hiukkasia kuin ympäristössä.

Inflaatiossa jokin kenttä johti hyvin varhaisina aikoina maailmankaikkeuden laajenevaan kiihtymiseen, ja kvanttivärähtelyjen takia kentän voimakkuus oli hieman erilainen avaruuden eri osissa. Kun kenttä inflaation lopuksi hajosi hiukkasiksi, sinne missä kentän energiatiheys on isompi syntyi enemmän ainetta.

Koska kvanttivärähtelyt ovat sattumanvaraisia, ei ole mitään syytä sille, miksi inflaatiota ajava kenttä oli keskivertoa voimakkaampi juuri tässä. Tässä mielessä inflaatio päättää selitysten ketjun. Mutta seuraavaksi tulee mieleen kysyä, miten inflaatio alkoi ja mitä tapahtui ennen sitä.

Tästä on vaikea saada tietoa, koska inflaatio pyyhkii tehokkaasti tiedon aiemmasta. Kiihtyvän laajenemisen takia kappaleet etääntyvät toisistaan yhä nopeammin, joten avaruus näyttää yhä tyhjemmältä. Pian kaikki inflaatiota mahdollisesti edeltäneet rakenteet ovat venyneet niin kauas, että niitä ei voi havaita.

Inflaatio perustuu siihen, että kun kenttä on hyvin tasainen ja muuttuu hyvin hitaasti, eli kun sen voimakkuus on melkein sama kaikkialla ja kaikkina aikoina, niin kentän gravitaatio on hylkivä. Tämä johtaa kiihtyvään laajenemiseen, mikä puolestaan tasoittaa kenttää entisestään. Mutta entä jos kenttä on epätasainen?

On tehty tietokonesimulaatioita, missä oletetaan erilaisia epätasaisuuksia ja katsotaan alkaako inflaatio. Tulokset riippuvat siitä, mitä sisään laittaa. Jos kenttä on hyvin epätasainen tai lähellä pienintä arvoaan, inflaatio ei koskaan lähde käyntiin. Vaikuttaa myös olevan tavallista, että monissa paikoissa kenttä romahtaa ja syntyy mustia aukkoja.

Mutta jos inflaatio alkaa jossain, niin pian inflaatiota läpikäyvä osa kattaa suurimman osan maailmankaikkeuden tilavuudesta, koska sen tilavuus kasvaa niin paljon nopeammin kuin muiden alueiden. Tämän perusteella tekisi mieli todeta, että inflaation alkaminen on äärimmäisen todennäköistä, koska riittää että ehto sille toteutuu yhdessä paikassa.

Tällöin tulee kuitenkin melkein huomaamattaan hyväksyneeksi sen idean, että todennäköisyys on verrannollinen tilavuuteen: mitä isompi osa maailmankaikkeudesta on kokenut inflaation, sitä todennäköisempää on, että olemme sellaisessa osassa jolle niin on käynyt.

Mutta jos jatkaa tätä päättelyä, törmää outoihin ongelmiin. Mitä kauemmin inflaatio jossain alueessa kestää, sitä enemmän sen tilavuus kasvaa. Olisi siis todennäköistä, että näkemässämme maailmankaikkeuden osassa inflaatio olisi loppunut niin myöhään kuin mahdollista – eli maailmankaikkeuden ikä (laskettuna inflaation lopusta) olisi juuri ja juuri niin pitkä, että ihmisiä on ehtinyt syntyä.

Tämä ei vastaa havaintoja: maailmankaikkeus on 14 miljardia vuotta vanha, mikä on paljon enemmän kuin mitä meidän tuottamiseemme tarvitaan. Jokin menee pieleen.

Monissa inflaatiomalleissa takia inflaatio kvanttipotkujen takia jatkuu jossain maailmankaikkeuden kolkissa ikuisesti. Vaikka tämä olisi kuinka epätodennäköistä ja tällainen alue olisi aluksi miten pieni tahansa, sen tilavuus kasvaa valtavan paljon isommaksi kuin kaikkien muiden alueiden.

Niinpä jos todennäköisyys olla jossain alueessa on verrannollinen sen tilavuuteen, on todennäköisempää että mitään planeettoja ja muita rakenteita ei itse asiassa ole olemassa, vaan sen sijaan satunnaisten kvanttivärähtelyjen tuotoksena on syntynyt tyhjästä sinun aivosi, joiden kaikki muistot ovat sattuman tuotosta, ja jotka hetken kuvittelevat lukevansa tätä tekstiä ennen kuin suistuvat takaisin tyhjyyteen. Vaikka tällaisen tapahtuman todennäköisyys on naurettavan pieni, inflaation aiheuttaman tilavuuden kasvu voittaa sen.

Järkevä johtopäätös näyttää olevan, että todennäköisyys sille, että havaitsemme tietyt olosuhteet ei olekaan verrannollinen siihen, kuinka isossa osassa koko maailmankaikkeuden tilavuutta nämä olosuhteet vallitsevat.

Mutta mikä on sitten oikea tapa arvioida inflaation alkamisen todennäköisyyttä? Tai vaikka ei välittäisi siitä, miten inflaatio on alkanut, niin pitää olla joku tapa laskea sen ennusteiden todennäköisyyksiä – inflaation kvanttivärähtelyillehän ei mitään muuta voikaan laskea. Jos eri aikoja inflaatiota läpikäyneissä alueissa on inflaation päättyessä hieman erilaiset epätasaisuudet (eli niissä syntyy hieman erilaisia rakenteita), niin pitää tietää miten painottaa eri alueiden todennäköisyyksiä.

Toistaiseksi tätä ongelmaa ei ole osattu ratkaista. Yleensä vain oletetaan, että inflaatio on alkanut vain yhdessä alueessa, ja että se loppuu sen kaikissa osissa suunnilleen samaan aikaan. Mitään kunnollista perustetta tälle ei kuitenkaan ole.

Jotkut inflaation arvostelijat ovat tarttuneet tähän ja julistaneet, että inflaatio ei ennusta mitään eikä siksi ole tieteellinen teoria. On kuitenkin tavallista, että tieteessä tehdään oletuksia, joita ei osata perustella. Jos havainnot sitten vastaavat ennusteita (kuten inflaation tapauksessa), todetaan että jotain on tehty oikein ja yritetään sitten ymmärtää miksi perusteettomat oletukset näyttävät toimivan.

Yksi lupaava mahdollisuus inflaation syvemmäksi ymmärtämiseksi voisi olla sen kvanttiluonteen jälkien tarkempi etsiminen siinä toivossa, että ne valaisevat tilannetta. Tässä ollaan sikäli onnellisessa tilanteessa, että tulevat havainnot sekä kosmisesta mikroaaltotaustasta että erityisesti galaksien jakaumasta taivaalla antavat meille paljon lisää tietoa, jota verrata inflaation ennusteisiin.

13 kommenttia “Aivot tyhjyydessä”

  1. Lentotaidoton sanoo:

    ”Niinpä jos todennäköisyys olla jossain alueessa on verrannollinen sen tilavuuteen, on todennäköisempää että mitään planeettoja ja muita rakenteita ei itse asiassa ole olemassa, vaan sen sijaan satunnaisten kvanttivärähtelyjen tuotoksena on syntynyt tyhjästä sinun aivosi, joiden kaikki muistot ovat sattuman tuotosta, ja jotka hetken kuvittelevat lukevansa tätä tekstiä ennen kuin suistuvat takaisin tyhjyyteen. Vaikka tällaisen tapahtuman todennäköisyys on naurettavan pieni, inflaation aiheuttaman tilavuuden kasvu voittaa sen.”

    Tulipa heti mieleen :Aivot tyhjyydessä: Boltzmannin aivot -väite on äärimmilleen viety johtopäätös siitä, että pienen mittakaavan häiriö on todennäköisempi kuin ison mittakaavan.

  2. Joksa sanoo:

    Inflaation alkamisen todennäköisyyden arvionti tuntuu olevan vähintään yhtä spekulatiivinen asia kuin lopun Big Ripkin.

    Selittääkö inflaatio avaruuden säikeisen rakenteen? Jos varhaisten aikojen hiukkaskeitto oli täysin satunnaista kvanttiporeilua niin se ei kai voinut sisältää säikeiden aihioita? Jos säikeet ovat inflaatiota myöhemmän kehityksen tuotosta niin kai sen myötä myös galaksit.

    1. Syksy Räsänen sanoo:

      Inflaatio on selittänyt ja ennustanut havaintoja suurella menestyksellä. Big rip on spekulaatio, jolle ei ole tukea havainnoista.

      Tarkoitatko avaruuden säikeisellä rakenteella sitä, että galaksit muodostavat rihmoja? Tämä (ja muut suuren mittakaavan rakentene yksityiskohdat) tosiaan selittyy inflaation avulla. Inflaatio ennustaa rihmojen siemenet.

      1. Joksa sanoo:

        Big Riphän on avaruuden kiihtyvän laajenemisen väistämätön lopputulema eli havaintoon perustuva päätelmä. Eikö pikemminkin merkittävä muutos avaruuden laajenemisvauhdissa ja sen myötä Big Ripiltä välttyminen olisi havaintoon perustumaton spekulatiivinen teoria?

        1. Syksy Räsänen sanoo:

          Ei ole. Big Rip tapahtuu malleissa, joissa kiihtyvän laajenemisen aiheuttavan pimeän energian energiatiheys kasvaa (ja kasvaa rajatta) laajenemisen myötä. Useimmissa pimeän eergian malleissa näin ei tapahtu, mahdollisuutta pidetöön varsin spekulatiivisena eikä sille ole tukea havainnoista.

  3. Joksa sanoo:

    Voiko pimeän energian energiatiheys olla kasvamatta kiihtyen laajenevassa avaruudessa koska vakiolla etäisyydellä ja pimeän energian energiatiheydellä lajenemisvauhdin pitäisi myös pysyä vakiona? Vakiokiihtyvyydelläkin kosmologinen horisontti väistämättä kutistuisi pisteeseen joskus, vaikea sanoa voisiko sitten tai sen jälkeen pitää pimeän energian energiatiheyttä rajattomana tai ei.

    1. Syksy Räsänen sanoo:

      Virkkeesi eivät pidä paikkaansa. Jos pimeän energian energiatiheys on vakio (kuten on tyhjön energialla, eli parhaiten motivoidulla ehdokkaalla, joka myös sopii havaintoihin hyvin), maailmankaikkeuden laajenemisnopeus kasvaa tulevaisuudessa eksponentiaalisesti.

      Ei tästä sen enempää.

  4. maanmittari sanoo:

    Minkä kokoinen maailmankaikkeus oli inflaation alkaessa? Onko mahdollista, että osa maailmankaikkeutta ei kokenut inflaatiota?

    1. Syksy Räsänen sanoo:

      Ensimmäiseen kysymykseen ei tiedetä vastausta, lisää aiheesta täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/sormustimen-verran/

      Kyllä, on mahdollista, että osassa maailmankaikkeutta inflaatio ei koskaan alkanut. Tehdyissä simulaatioissa tyypillisesti niin käykin: inflaatio alkaa jossain, mutta ei kaikkialla.

      1. Martti V sanoo:

        Onko inflaatio korkealla energiaskaalalla tapahtuva faasimuutos? Jos inflaatio ei tapahtunut kaikkialla niin oliko näillä alueella alhaisempi energiatiheys?

        1. Syksy Räsänen sanoo:

          Inflaatio ei ole faasitransitio. Yksi ensimmäisiä ideoita inflaatiosta tosin oli sellainen, missä inflaatio tapahtuu faasitransition yhteydessä: korkeaenergisemmän faasin energiatiheys johtaa silloin kiihtyvään laajenemiseen.

          Maailmankaikkeuden alueiden energiatiheys laskee koko ajan, ja inflaation aikana se laskee hitaammin kuin silloin kun ei ole inflaatiota. Niissä alueissa, missä ei tapahtunut inflaatiota on siis tosiaan alhaisempi energiatiheys. (Näin ainakin teorian mukaan – emmehän havaintojen kautta tiedä niistä mitään, tai edes onko sellaisia alueita olemassa.)

      2. Joksa sanoo:

        Jos maailmankaikkeus on joskus ollut niinkin äärellisen kokoinen kuin sormustin niin miten sen rajattomuutta tulee tulkita? Kuten mustan aukon horisontin sisäpuolta, eli geodeeseja ei johda sen ulkopuolelle..ko?

        1. Syksy Räsänen sanoo:

          Tuo viittaa siihen, minkä kokoinen nyt näkemämme maailmankaikkeuden osa oli varhain, ei koko maailmankaikkeuden kokoon. Lisää alla olevassa merkinnässä:

          https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/sormustimen-verran/

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Pimeyden perkaaminen

26.5.2024 klo 14.14, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Vuoden toistaiseksi merkittävin askel kosmologiassa otettiin viime kuussa, kun Dark Energy Spectroscopic Instrument eli DESI (suomeksi siis Pimeän Energian Spektroskooppinen Instrumentti eli PESI) julkaisi ensimmäiset havaintonsa.

Sonoran aavikolle Yhdysvalloissa rakennettu teleskooppi mittaa tarkkaan galaksien paikkoja taivaalla. Niiden perusteella se määrittää, miten nopeasti maailmankaikkeus laajenee ja kuinka iso aineen tiheys on. DESI tekee havaintoja yhteensä viisi vuotta, joista on nyt kulunut kolme. Huhtikuussa julkistettu analyysi perustuu ensimmäisen vuoden dataan – nykyään kosmologiset havainnot ovat niin laajoja ja monimutkaisia, että vuodessa kerätyn datan perkaamiseen menee ainakin kaksi vuotta. Ensimmäisen vuoden analyysi ei ole edes vielä kokonaan valmis.

Teknologian kehitys on ollut jo yli 30 vuotta tärkein kosmologiaa eteenpäin vievä tekijä. DESI mittasi vuodessa kuuden miljoonan galaksin paikat. Tämä on kaksi kertaa niin paljon kuin mitä edellinen iso havaintoprojekti Sloan Digital Sky Survey keräsi 20 vuodessa. Viidessä vuodessa DESI tulee mittaamaan 40 miljoonan galaksin sijainnin.

Nyt julkaistu analyysi perustuu varhaisen maailmankaikkeuden ääniaaltojen jalanjäljen seuraamiseen. Kosmisesta mikroaaltotaustasta nähdään, millainen aineen jakauma oli varhaisina aikoina. Kun mitataan galaksien jakaumaa eri aikoina (eli eri etäisyyksillä meistä), niin nähdään miten jakauma muuttuu aikojen kuluessa, eli miten maailmankaikkeus on kehittynyt.

Havaintojen edistymisestä kertoo sekin, että DESIn havainnot ovat niin tarkkoja, että niiden virheet ovat käytännössä merkityksettömiä. Analyysin virherajat, jotka ovat alle prosentin, tulevat kokonaan teoreettisesta mallista galaksien jakauman kehitykselle: jotta galaksien paikoista voi lukea, miten maailmankaikkeus on kehittynyt, pitää tietää, miten ne liikkuvat ympäriinsä aikojen kuluessa.

Yksi DESIn päätavoitteista on pimeän energian muutoksen mittaaminen. Pimeä energia on jokin tuntematon aineen muoto, jonka on kenties vastuussa siitä, että maailmankaikkeuden kiihtyminen on viimeisen muutaman miljardin vuoden aikana kiihtynyt.

Keskeinen kysymys on se, onko pimeä energia tyhjän tilan energiatiheyttä vai jotain monimutkaisempaa (vai onko kiihtymiselle jokin muu selitys). Tyhjön energiatiheys on sama kaikkialla ja aina. Vaihtoehtojen energiatiheys sen sijaan muuttuu ajan myötä, mikä vaikuttaa maailmankaikkeuden laajenemisnopeuteen.

DESIn havainnot eivät ole yksin kovin herkkiä pimeän energian mahdolliselle muutokselle, mutta yhdistettynä muihin havaintoihin ne terävöittävät kuvaa huomattavasti. DESIn uuden analyysin mukaan tyhjön energia ei enää sovi havaintoihin hyvin. Todennäköisyys sille, että tyhjön energia on oikea kuvaus verrattuna malliin, missä pimeä energia muuttuu ajan kuluessa on jotain väliltä 80:1 ja 10 000:1 tyhjön energiaa vastaan, käytetyistä havainnoista riippuen.

Suurin osa tyhjön energiasta poikkeavista havainnoista keskittyy maailmankaikkeuden kehityksen tiettyyn aikaan. Voi olla, että tuolloin tapahtui jotain erityistä, tai sitten siinä kohtaa on analyysissä jokin ongelma.

On liian aikaista tehdä johtopäätöksiä pimeän energian luonteesta: nopeasti etenevät havainnot varmistavat tai kumoavat tämän poikkeaman. On mielenkiintoista nähdä, mitä satelliitin Euclid ensi vuonna julkistettavissa havainnoissa näkyy, Euclid kun on suunniteltu juuri pimeän energian muutoksen mittaamiseen.

Pimeää energiaa vähemmälle huomiolle ovat jääneet DESIn tulokset neutriinoista. Maailmankaikkeudessa on valtavasti neutriinoja, kevyitä hiukkasia, jotka vuorovaikuttavat niin heikosti, että ensimmäisen sekunnin jälkeen ne voi havaita vain gravitaation avulla.

Aikoinaan 1970-luvulla neutriinoja ehdotettiin pimeäksi aineeksi. Pian kuitenkin todettiin, että niiden massa on liian pieni, että ne voisivat selittää kaiken pimeän aineen, ja ne liikkuvat liian nopeasti pysyäkseen sen verta paikallaan mitä galaksien kasaamiseen tarvitaan.

Nämä kaksi seikkaa ovat vieläkin neutriinojen kosmologisen tutkimuksen ytimessä. Varhaisina aikoina neutriinot pyyhkivät aineen jakaumaa tasaisemmaksi kirmatessaan lähes valonnopeudella ympäri maailmankaikkeutta. Tämän takia rakenteita syntyy varhain vähemmän. Kun maailmankaikkeus laajenee, neutriinot hidastuvat, ja myöhäisinä aikoina ne liikkuvat niin hitaasti, että ne putoavat galakseihin ja muihin massakeskittymiin. Siksi rakenteita syntyy myöhään enemmän. Vaikutus on pieni, koska neutriinot ovat paljon kevyempiä kuin muut hiukkaset: niiden massa on ainakin miljoona kertaa pienempi kuin seuraavaksi kevyimmän hiukkasen, elektronin.

DESI on tehnyt tarkimman mittauksen neutriinoiden vaikutuksesta galakseihin. Mitä isompi massa, sitä isompi vaikutus. DESI näkee miten varhaiset neutriinot tasoittavat aineen jakaumaa, mutta ei vielä pysty mittaamaan sitä, miten ne myöhemmin klimppiytyvät. Mutta DESIn tulosten antama isoin mahdollinen neutriinoiden massa on jo lähellä sitä, mikä neutriinokokeista tiedetään niiden pienimmäksi mahdolliseksi massaksi.

On todennäköistä, että neutriinoista tulee lähivuosina ensimmäiset hiukkaset, joiden massa mitataan taivaalta kosmologisin keinoin eikä laboratoriossa hiukkasfysiikan menetelmin. Nähtäväksi jää, ehtiikö ensimmäiseksi DESI, Euclid, vai jokin muu koe. Edistys tapahtuu tässä askel kerrallaan, ei äkillisen läpimurron kautta.

DESI on Euclidin ohella esimerkki siitä, miten kosmologisten havaintojen kärki on siirtymässä kosmisen mikroaaltotaustan havainnoista galaksien muodostamien rakenteiden tutkimiseen. Mikroaaltotaustan yksi etu on se, että sen teoreettinen käsittely on helppoa, kun taas galaksien liikkeisiin liittyy enemmän sotkua, mutta menetelmät galaksien liikkeiden kuvaamiselle ovat jo varsin hienostuneita.

Mikroaaltotaustasta on vielä luvassa kiinnostavia tuloksia muutaman vuoden kuluessa (erityisesti gravitaatioaaltojen saralla), mutta ison mittakaavan rakenteen puolella on enemmän kasvun varaa: moni galaksi on vielä mittaamatta.

19 kommenttia “Pimeyden perkaaminen”

  1. Eusa sanoo:

    Voisiko neutriinomeren energia korreloida pimeän aineen jakaumaan neutriino-oskillaatiolla? Yksittäisten neutriinojen energiahan vaihtelee. Onko pois suljettua, että energia neutriinojen kesken kimpuissa voisi jakautua ”matkan varrelle” niin, että ryhmänä ottaisi isompaa amplitudia pimeän aineen haloissa. Neutriinot olisivat tuossa spekulaatiossa siis aika-avaruuden runsainta rakennetta koheroiden siihen eikä itseensä kuten sähkömagneettinen aalto…

    1. Syksy Räsänen sanoo:

      Ei.

  2. Mika sanoo:

    Mitä tarkoittaa ”Kun maailmankaikkeus laajenee, neutriinot hidastuvat”?

    1. Syksy Räsänen sanoo:

      Kun maailmankaikkeus laajenee, niin kaikkien vapaasti liikkuvien hiukkasten liikemäärä laskee.

      Fotoneille, jotka ovat massattomia, tämä tarkoittaa sitä, että niiden aallonpituus venyy suoraan verrannollisesti maailmankaikkeuden laajenemiseen, mutta ne kulkevat silti aina valonnopeudella.

      Massallisille hiukkasille tämä tarkoittaa sitä, että niiden aallonpituus venyy kohti niiden massan antamaa alarajaa, ja niiden nopeus pienenee suoraan verrannollisesti siihen maailmankaikkeuden laajenemiseen.

      1. Mika sanoo:

        Kiitos. Ymmärränkö oikein, että hiukkasen aallonpituus on suoraan yhteydessä sen liikemäärään ja (massallisilla hiukkasilla) siten nopeuteen?

        Maailmankaikkeushan laajenee edelleen, kenties kiihtyvästi, joten hidastuuko kaikkien massallisten hiukkasten liike siis yhä tänäkin päivänä?

        1. Syksy Räsänen sanoo:

          Aallonpituus on kääntäen verrannollinen hiukkasen energiaan. Energia E liittyy massaan m ja liikemäärään p yhtälön E^2 = (m c^2)^2 + (p c)^2 mukaisesti.

          Liikemäärä p on kääntäen verrannollinen maailmankaikkeuden laajenemiseen: kun pituudet kaksinkertaistuvat, liikemäärä puolittuu. Eli vapaiden massallisten hiukkasten nopeudet tosiaan laskevat jatkuvasti.

  3. Mika sanoo:

    Aivan tietysti, aallonpituus ja energia ovat se yhdistävä tekijä ja liikemäärä tosiaan tulee tuosta yhtälöstä. Kiitos!

    Onko tällä vapaiden massallisten hiukkasten nopeuksien laskulla jotain käytönnön merkitystä nykyisessä maailmankaikkeudessa, vai onko se merkityksellinen ilmiö ainoastaan varhaisten aikojen ilmiöita tutkittaessa?

    1. Syksy Räsänen sanoo:

      Isoin vaikutus on neutriinoihin, koska varhaisina aikoina niiden liikemäärään liittyvä energia on paljon isompi kuin massaan liittyvä energia, mutta myöhäisinä aikoina niiden liikemäärään liittyvä energia laskee alle massaan liittyvän energian. Silloin ne putoavat galakseihin.

      Muiden hiukkasten massat ovat niin isot eli nopeudet ovat jo varhain niin pieniä, että niiden käytös ei kvalitatiivisesti muutu, mutta isommalla nopeudella on toki kvantitatiivinen merkitys. Lisäksi massaklimppeihin kuten galakseihin gravitaation takia sitoutuneiden hiukkasten nopeus määräytyy klimpin massajakaumasta, eikä enää laske laajenemisen takia (koska galaksit jne. eivät laajene).

      1. Joksa sanoo:

        Neutriinon kosminen käyttäytyminen on mielenkiintoinen ilmiö ja tässä keskustelussa aivan kiitettävästi avattu. Konkretisoi kosmologisen, matemaattisen ja kvanttinäkökulmien nivoutumista.

        Eikö avaruuden laajenemisilmiö aiheuta galaksien ja galaksiryhmien ulkopuolellakaan aineessa jotain rakennemuutosta tai epävakautta perusvuorovaikutusten vaikutusetäisyyksien mittakaavojen muutoksesta johtuen? Tai säilyykö aineen vakaus myös hajottavien voimien vähenemisestä johtuen?

        1. Syksy Räsänen sanoo:

          Mitä tarkoitat ”perusvuorovaikutusten vaikutusetäisyyksien mittakaavojen muutoksella” ja ”hajottavien voimien vähenemisellä”?

          1. Joksa sanoo:

            Ajatushypoteesina oli että Big Rip ei olisi alkeishiukasten tasollakaan on-off tilanne vaan kehittyisi avaruuden laajetessa. Vahvan vuorovaikutuksen näkökulmasta kvarkien etäisyydet kasvaisivat ytimissä paikallisen avaruuden laajenemisen mukana. Täydessä Big Rip tilanteessa matka kosmologiseen horisonttiin olisi pienempi kuin kvarkkien välimatka jolloin gluoni ei enää kykene välittämään vahvaa vuorovaikutusta. Tätä ennen perusvuorovaikutukset heikkenisi etäisyyksien kasvun suhteessa ja ydin hajoaisi aikaisempaa herkemmin esim. hiukkastörmäyksien seurauksena elleivät törmäysenergiat olisi heikeneet samassa suhteessa. Kehityskulku ilmenisi avaruuden laajenevilla alueilla aikaisemmin kuin galaksien sisällä ja galaksit jäisivät saarekkeiksi kvarkki-gluonimassaan..?

          2. Syksy Räsänen sanoo:

            Big Rip eli se, että maailmankaikkeuden laajenemisnopeus kasvaa niin nopeasti, että siitä tulee äärellisessä ajassa ääretön ja maailmankaikkeus lakkaa olemasta on hyvin spekulatiivinen. Se on eri asia kuin se, että maailmankaikkeus laajenee tai että se laajeneminen kiihtyy.

            Ei siitä sen enempää.

  4. Lentotaidoton sanoo:

    Räsänen: ”eikä enää laske laajenemisen takia (koska galaksit jne. eivät laajene)”.

    Sinä, maapallo, aurinko, galaksimme emme laajene. Gravitaatio pitää yhdessä. Nykyään vasta galaksijoukot laajenevat toisistaan. Selityksenä n 5 miljardia vuotta sitten ns pimeä energia ”voitti” gravitaation. Noin 4,5 gigaparsekin etäisyydellä olevat galaksit etääntyvät jo valoa nopeammin. Näitä voimme kuitenkin toistaiseksi nähdä, koska menneisyydessä kosmos laajeni hitaammin. Esim laajenemisen pysyvä jatkuminen eristää kuitenkin joskus galaksimme (tai senaikuisen yhdistyneen ellipsigalaksin) muista galakseista.

    Tulemme paradoksaalisesti takaisin käsitykseen kosmoksesta kuten se oli Einsteinin aikaan. Ei ole mahdollisuuksia todeta tieteellisesti muita galakseja (ei edes taustasäteilyä eikä kosmoksen laajenemista). Tähtien alkuaineprosentteja voisimme tutkia – jos vain tietäisimme mitä ne kosmologisesti tarkoittavat. Silloin elliptinen galaksimme olisi maailmankaikkeuden ”keskus” ja ainut mitä yleensä mielestämme on olemassa. JOS tuolloin yleensä olisi minkäänlaisia olioita tekemässä kosmologisia havaintoja.

    1. Syksy Räsänen sanoo:

      Pienenä korjauksena se, että Linnunrata ei ole elliptinen galaksi vaan spiraaligalaksi. Ja pimeä energia ei heti vie Linnunrataa pois muiden galaksien läheisyydestä, koska galaksimme on sitoutunut osaksi paikallista galaksien ja kääpiögalaksien ryhmää. Lopulta senkin jäsenet yksitellen irtautuvat toisistaan, mutta siihen menee kauemmin.

      1. Lentotaidoton sanoo:

        Siis se tuleva galaksimme, johonka olisi tulevaisuudessa sulautunut Andromedasta alkaen paljon paikallista tavaraa, tulisi siis olemaan se suuri elliptinen galaksimme. Pikkuhiljaa (noin 3 triljoonan, 30^18 vuoden päästä) kaikki muut galaksit häipyvät näkyvistä. Jäljellä on vain se yhdistetty elliptinen jättigalaksi, eli senaikuisten tiedemiesten koko maailmankaikkeus. Silloin kosminen taustasätelykin olisi niin heikkoa, että se ei pystyisi läpäisemään tämän galaksin omaa sätelyä (ja siis kertomaan kosmoksen todellista ikää). Käsitys olisi silloin sama kuin Einsteinin aikaan: maailmankaikkeus on yhtä kuin oma (ikuinen) galaksimme. Näin minä sen käsitin.

        1. Till Sawala sanoo:

          On totta, että jos kosminen laajeneminen jatkuu LCDM-mallissa ennustetulla tavalla, tulevaisuuden ”paikallinen universumimme” on paljon pienempi. Paikallisen ryhmän ulkopuoliset galaksit saattavat kadota näkyvistä jo muutaman 100 miljardin (10^8) vuoden kuluttua. Meillä saattaa olla pian uutisia Linnunradan ja Andromedan törmäyksestä. Palataan tähän pian – voisimme elää spiraaligalaksissa vielä jonkin aikaa 🙂

          1. Lentotaidoton sanoo:

            ”Paikallisen ryhmän ulkopuoliset galaksit saattavat kadota näkyvistä jo muutaman 100 miljardin (10^8) vuoden kuluttua.”

            Toki näin voi käydä. Mutta pointti oli se, että tuolloiset astronomit voisivat toki silti vielä havaita kosmista taustasäteilyä (sekä laskea tähtien alkuaineprosentteja) ja tehdä siitä johtopäätöksiä kosmoksen äärellisestä iästä ja maailmankaikkeuden laajenemisesta. Eli ”poissa näkyvistä” ei vielä tarkoita etteivätkö astronomit voisi silti vielä laskeskella kosmoksen ikää ja olettaa, että jotain muutakin on saattanut olla olemassa. Vasta kun taustasäteily ei enää pysty läpäisemään silloista (mainitsemani vanhaa) elliptistä galaksia, syntyy käsite maailman ainoana olemisesta.

  5. Lentotaidoton sanoo:

    ”Suurin osa tyhjön energiasta poikkeavista havainnoista keskittyy maailmankaikkeuden kehityksen tiettyyn aikaan. Voi olla, että tuolloin tapahtui jotain erityistä, tai sitten siinä kohtaa on analyysissä jokin ongelma. – ja: Nyt julkaistu analyysi perustuu varhaisen maailmankaikkeuden ääniaaltojen jalanjäljen seuraamiseen. Ja: Yksi DESIn päätavoitteista on pimeän energian muutoksen mittaaminen”.

    Onko tämä sanomasi ”poikkeavat havainnot” ja ”tietty aika” eli ”tuolloin” se 380.000 vuotta BB:stä tapahtunut?

    1. Syksy Räsänen sanoo:

      Ei, DESI:n havainnot ovat paljon myöhemmiltä ajoilta. Ongelmallinen kohta vastaa noin punasiirtymää 0.5, eli noin 8 miljardin vuoden ikää.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Kehittyneitä tutkimuksia

10.5.2024 klo 21.02, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Olin viime viikolla Dublin Institute of Advanced Studiesissa (DIAS) konferenssissa, joka juhlisti sitä että Irlanti on liittymässä hiukkasfysiikan tutkimuskeskus CERNin jäseneksi. DIAS perustettiin vuonna 1940, edellisellä vuosikymmenellä aloittaneen Princetonin Institute of Advanced Studyn mallin mukaisesti. Kun Princetonissa oli Albert Einstein, Dubliniinkin haluttiin merkittävä fyysikko, ja natseja Itävallasta pakoon lähtenyt Erwin Schrödinger, yksi kvanttimekaniikan kehittäjistä, saatiin houkuteltua instituutin ensimmäiseksi johtajaksi.

Konferenssin pääjärjestäjä Venus Keus oli Helsingissä tutkijana ennen kuin sai DIASista Schrödingerin mukaan nimetyn tutkijanpaikan. Kun julkisuuteen on viime vuosina tullut se, miten Schrödinger seksuaalisesti ahdisteli tyttöjä, niin hänen nimeään on Dublinissa häivytetty, ja Venuksenkin titteli on muutettu vain muotoon vanhempi tutkija.

Konferenssin nimi Cosmology, Astrophysics, Theory and Collider Higgs 2024 on valittu siten, että lyhenteeksi tulee CATCH22+2, jälleen yksi esimerkki fyysikoiden huumorista. Nimen mukaisesti konferenssi kattoi laajan alueen: aiheet vaihtelivat kokeellisesta hiukkasfysiikasta teoreettiseen kosmologiaan, ja kaikesta siltä väliltä. Suurin osa oli hyvin erikoistuneita katsauksia, ja oli mielenkiintoista kurkistaa kokeita lähellä olevien hiukkasfyysikoiden tutkimukseen ja kiistoihin.

Viiden päivän aikana oli noin sata puhetta, ja kun jokaisella puhujalla oli 20 minuuttia aikaa, tahti oli hengästyttävä. Sen lisäksi, että konferenssiin saa näin mahtumaan enemmän näkökulmia, lyhyissä puheissa on se hyvä puoli, että siinä vaiheessa kun esitykseen kyllästyy, niin se onkin jo kohta ohi.

Kokeiden puolesta hiukkasfysiikan tilanne on nopeasti kerrottu: kaikki on sopusoinnussa yli 50 vuotta vanhan Standardimallin kanssa. Sekä teoria että sitä luotaavat LHC-kiihdyttimen kokeet ovat kehittyneet tarkaksi kokonaisuudeksi, jonka palat sopivat yhteen vaikka kuinka hienosyisesti katsoo.

Higgsin hiukkanen on Standardimallin huonoimmin tunnettu osuus, ja monet puheet keskittyivät siihen. Erityisesti tutkitaan sitä, ovatko Higgsin hiukkasen vuorovaikutukset itsensä ja muiden hiukkasten kanssa sellaisia kuin mitä Standardimalli ennustaa, koska niissä on vielä eniten tilaa poikkeamille.

Ideat siitä, millaista uutta fysiikkaa mahdollisten poikkeamien taustalle voisi olla eivät valitettavasti ole kehittyneet samaa tahtia kokeiden ja niiden analysoimiseen käytetyn koneiston kanssa.

On joitakin kauniisti kasattuja teorioita, kuten nuMSM ja SM*A*S*H. Mutta monia malleja tunnutaan tutkivan vain sen takia, että saataisiin selville mitä tapahtuu jos ne pitävät paikkansa, ei siksi, että ne ratkaisisivat kokeellisia tai teoreettisia ongelmia kilpailijoitaan paremmin. Tieteenfilosofi Imre Lakatos jakoi teoriat edistyviin ja rappeutuviin, ja joidenkin hiukkasfysiikan teorioiden kohdalla on saanut todistaa siirtymää yhdestä luokasta toiseen vuosien kuluessa.

Kosmologiassa tulee koko ajan uusia havaintoja, ja hiukkasfysiikkaakin luodataan kiihdytinten lisäksi yhä enemmän taivaalle katsomalla. Tämän vuoden tammikuussa otettiin askel, kun Euroopan avaruusjärjestö ESA virallisesti valitsi gravitaatioaaltokoe LISA:n toteutettavaksi. LISA näkee toisiaan kiertäviä mustia aukkoja galaksien keskustoissa ja muualla, ja kenties myös Higgsin jäätyessä syntyneiden kuplien törmäyksiä ensimmäisen sekunnin sadasmiljardisosan ajoilta – jos niitä tapahtui.

Toinen kiinnostava uutinen on se, että CERN hyväksyi maaliskuussa kokeen SHiP, joka etsii uusia kevyitä hiukkasia. Nykyisissä LHC:n kokeissa tähdätään korkeisiin energioihin, jotta hiukkastörmäyksissä voidaan tuottaa raskaita hiukkasia. Jos energia ei riitä hiukkasten tuottamiseen, niitä on vaikea havaita. Vaikeita tavoittaa ovat myös hiukkaset, jotka ovat hyvin kevyitä, mutta vuorovaikuttavat hyvin heikosti. SHiP on kiinnostava avaus tällä uudella saralla, ei vähiten siksi, että se voi löytää hiukkasfysiikan suosikkimallini nuMSM:n uusia neutriinoja.

Maria Martinez Zarazogan yliopistosta raportoi pimeän aineen etsimisestä. Jo monia vuosia koeryhmä nimeltä DAMA/Libra on väittänyt löytäneensä pimeän aineen hiukkasen, mutta kukaan muu ei ole onnistunut toistamaan tulosta. Useampi ryhmä yrittää nyt tehdä kaiken mahdollisimman samalla tavalla kuin DAMA/Libra, jotta asiaan saataisiin selvyys.

Martinez on koeryhmässä ANAIS, joka ei aiemmin nähnyt mitään merkkejä DAMA/Libran tuloksesta. Nyt ANAIS on kerännyt dataa kolmen vuoden ajan, eikä vieläkään näe mitään signaalia, ja tulos on 99.5% varmuudella ristiriidassa DAMA/Libran tulosten kanssa. Tämä sopii yhteen vuosi sitten lopettaneen kokeen COSINE-100 havaintojen kanssa. Ensi vuonna ANAIS saavuttaa asiasta 99.999943% varmuuden, mitä hiukkasfysiikassa pidetään löydön rajapyykkinä.

On hieman mielivaltaista, mihin vedetään rajan siitä, että jotain on löytynyt tai osoitettu olemattomaksi. Tilastollista epävarmuutta isompi kysymys on se, onko kokeiden vertailussa jäänyt jokin asia huomiotta. Ainoa tunnettu iso kysymysmerkki on se, että DAMA/Libra mittaa elektronien törmäyksissä syntynyttä valoa, kun taas ANAIS katsoo atomiydinten törmäyksissä syntynyttä valoa. Valon määrästä päätellään törmäyksen energia, ja se kertoo mahdollisen pimeän aineen hiukkasen massan. Valon määrän ja energian suhde on erilainen elektroneille ja atomiytimille, joten periaatteessa ANAISilta olisi voinut vahingossa jäädä näkemättä DAMA/Libran signaali koska se katsoo väärää energiaa.

COSINUS-koe, missä Helsingin yliopistokin on mukana, sulkee tämän porsaanreiän. COSINUS aloitti virallisesti 18. huhtikuuta, ja ensimmäisiä tuloksia sopii odottaa vuonna 2026. COSINUS ja muut uudet pimeän aineen kokeet myös antavat uusia tarkempia rajoja pimeän aineen vuorovaikutukselle tavallisen aineen kanssa, riippumatta DAMA/Libran tuloksesta – elleivät ne sitten näe jotakin.

Konferensseissa käyminen ylläpitää tajua siitä, mitä alalla tapahtuu. Kun katsoo hieman omasta eroavaa tutkimusta ulkopuolelta, tulee samalla miettineeksi omaa työtä laajemmasta näkökulmasta ja pohtineeksi sen merkitystä. Hiukkasfyysikot myös arvostelevat toisten työtä varsin avokätisesti, ja kritiikkiin vastaaminen kehittää ajattelua enemmän kuin kehuista kiittely.

1 kommenttia “Kehittyneitä tutkimuksia”

  1. Martti V sanoo:

    Kyselin aikoja sitten, että voisiko aika-avaruudella olla primitiivisiä rakenteita eikä pimeää ainetta tarvittaisi. Keskustelu johti MONDiin. Nyt asia on muotoiltu paremmin https://www.avaruus.fi/uutiset/kosmologia-ja-teoreettinen-fysiikka/painovoimaa-saattaa-esiintya-ilman-massaa.html

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *