Kosmologiakurssi
Luennoin Ursalle
lauantaina 25.4. kello 12-18 kurssin kosmologiasta, jolle on annettu typäkkä
nimi Kosmologiakurssi Ia [korjaus: ihan vain Kosmologiakurssi].
Kurssille voi ilmoittautua täällä. Kurssimaksu on 15€ Ursan jäsenille, 40€ muille.
Paikkoja on rajoitettu määrä, ja ne kuulemma menevät nopeasti, eli jos haluaa
mukaan, kannattanee ilmoittautua pian. [Lisäys: Kurssi tulikin vuorokaudessa
täyteen.]
Kurssin kuvaus on tämä:
Kurssi tarjoaa napakan katsauksen moderniin kosmologiaan, sen oleellisimpiin teorioihin sekä hieman myös kosmologian historiaan. Kurssilla käsitellään mm. maailmankaikkeuden historia, ison mittakaavan rakenteet, kosmisen mikroaaltotausta, pimeä aine, pimeä energia ja kosminen inflaatio. Kurssin pitää yliopistotutkija, dosentti Syksy Räsänen.
Päivitys 1 (10/12/19): Korjattu kurssin nimi.
Päivitys 2 (11/12/19): Lisätty maininta, että kurssi tuli täyteen.
12 kommenttia “Kosmologiakurssi”
Vastaa
Tutkimushankkeen umpikuja
Galleria Duetossa aukesi keskiviikkona Metta Savolaisen taidenäyttely Ympyrän neliöiminen. Kaksi vuotta sitten samassa tilassa oli näyttely Solar Eclipse, jossa Savolainen maalasi alkeishiukkasten muotokuvia, pelkisti tähtitieteen ilmiöitä ja asetti lintuja symmetrian maailmaan.
Uusi näyttely juontaa juurensa siihen, kun Savolainen löysi veljensä jäämistöstä Wilbur Richard Knorrin antiikin ajan matematiikkaa käsittelevän kirjan The Ancient Tradition of Geometric Problems ja rupesi käymään sen todistuksia läpi. Näyttelyn geometrinen osa on rajattu tiukasti sen nimen mukaiseen ongelmaan: miten rakennetaan harpilla ja viivaimella neliö, jolla on sama pinta-ala kuin annetulla ympyrällä, eli miten neliöidään ympyrä?
Ensimmäinen askel on Pythagoraan lause, joka yhdistää suorakulmaisten kolmioiden sivujen pituudet toisiinsa neliöiden avulla. Yhtälön z2=x2+y2 kuvallinen ilmentymä on sopusuhtainen asetelma, jossa mieli lepää.
Matematiikka, kuten fysiikka, rakentuu aiempien tulosten päälle, ja Pythagoraan lause on kauskantoisten löytöjen pohjana. Mutta haaroja versoaa moneen suuntaan, eivätkä kaikki kanna hedelmää. Näyttely onkin erityisen koskettava siksi, että se kuvallisen myötätuntoisesti esittelee epäonnistuneen tutkimusohjelman.
Pythagoraan jälkeen tulee Antifon, joka yritti täyttää ympyrän yhä pienemmillä kolmioilla. Rakennelmaa pitäisi kuitenkin jatkaa yhä pienempiin kolmioihin, aina nollakokoon ja äärettömään lukumäärään asti. Siihen eivät harppi ja viivain riitä. Tarvittava matematiikka ymmärrettiin vasta 2000 vuotta myöhemmin, mutta jo antiikin kreikkalaiset hahmottivat, että Antifonen yritys ei mene perille.
Kolmas tutkija, jonka työtä näyttelyssä popularisoidaan, on Hippokrates Khioslainen, joka löysi entistä hienostuneempia geometrisia yhteyksiä. Hän sai ilmaistua kolmioiden pinta-alan ympyrän ja kuunsirpin pinta-alan summana. Kun tietyt kulmikkaat muodot oli saatu osoitettua yhtä suuriksi kuin tietyt kaarevat muodot, olisi tarvittu vain menetelmän yleistys kaikkiin kuunsirppeihin ja tulos olisi valmis.
Hippokrateen reitti johti kuitenkin umpikujaan. Koska ympyrän pinta-alassa esiintyy luku 𝞹, ei ole mahdollista harpilla ja viivaimella piirtää neliötä, jolla olisi sama pinta-ala, kuten Ferdinand von Lindemann osoitti vuonna 1882.
Vastaava vuosituhansien ajan tutkijoita riivannut ongelma oli todistaa, että yhdensuuntaiset suorat eivät risteä. 1800-luvulla ymmärrettiin, että todistus on mahdoton, koska väite ei ole yleisesti totta. Kyseessä on vain Eukleideen määrittelemän geometrian erityispiirre, joka ei päde kaikille geometrioille (erityisesti se ei päde todellisessa maailmassa).
Gallerian seinällä roikkuvat kuvalliset ratkaisut matemaattisiin ongelmiin ovat kauneudessaan pahaenteisiä, muistuttaen kirkkaista poluista jotka eivät vieneet mihinkään ja herättäen epäilyksiä nykyisten matkojen päätepisteestä.
Edellistä Solar Eclipse -näyttelyä tiukempi rajaus on kiinnostava. Aiemmin taiteilija kehitti muualta muotoja muodottomille hiukkasille, nyt matematiikkaa määrää viivat, kaaret ja pinnat, vain lauseiden valinta ja sävyjen poiminta jää taiteilijan tulkintaan. Matemaattiset todistukset ovat tulleet paperille kuviksi ja seinälle konkreettisiksi esineiksi, joiden edessä on miellyttävä seisoa ja siirrellä mielessään värillisiä palikoita.
Savolaisen töiden terävät linjat ja selvät värit (joskus ne ovat turhan sameita) tuovat mieleen matemaatikko Oliver Byrnen vuonna 1847 julkaiseman version Eukleideen klassikkoteos Alkeiden ensimmäisestä kuudesta kirjasta. Byrnen tarkoitus oli tehdä geometrian perusteet helpommin lähestyttäviksi, ja samassa hengessä Savolaisen maalaukset ovat lähempänä taiteen ja tieteen risteystä kuin edellisen näyttelyn hiukkaskuvitukset. Teoksia voi katsoa kauniina kuvina, jotka oppikirjoista puuttuivat.
Matematiikan ja fysiikan tutkimuksessa käytetään sekä geometrista että algebrallista ajattelua, karkeasti sanottuna sekä kuvia että yhtälöitä, eri ongelmissa ja eri tutkijoilla eri suhteissa. Kouluopetuksessa saattaa kuitenkin korostua algebrallinen puoli, vaikka kuvallinen esitys voisi avata joillekin helpommin ovia. Savolaisen näyttelyn avajaisissa kuuluikin hermostuneena nauruna yleisön lapsuudesta kantama matematiikan pelko hänen kertoessaan, miten kuvien geometriaa luetaan.
Todistusten kuvallinen tarkastelu voisi myös nivoa yhteen matematiikan ja kuvataiteen opetuksen koulussa. Aalto-yliopistossa matemaatikko Kirsi Peltonen on järjestänyt kursseja, jotka tuovat yhteen niin sisällön kuin kurssilaisten osalta matematiikkaa, taidetta ja arkkitehtuuria. Aallossa on elokuussa 2020 Bridges-konferenssi näiltä tiimoilta.
Tarkan geometristen teosten ohella on näyttelyn toisessa huoneessa jatkoa Solar Eclipsen symmetrialinnuille. Tällä kertaa valon ja varjon linnut ikävöivät viestejä tai muistoja kantavien aaltojen ja valkoisen kohinan seassa, Fibonaccin lukujen, taivaan kyynelten ja kirsikankukkien keskellä. Abstraktien asioiden konkreettinen esittäminen ja inhimillisten tunteiden abstrakti ylentäminen nivoutuvat kuvallisiksi runoiksi, joiden sanaton ymmärrys ei tyhjenny algebran keinoin.
Näyttely on auki sunnuntaihin 22.12. asti.
4 kommenttia “Tutkimushankkeen umpikuja”
-
Kuvataiteen geometrisista säännöistä ehkä tunnetuin on kultainen leikkaus, joka saadaan, kun jana jaetaan kahteen osaan niin, että lyhyemmän osan suhde pidempään osaan on sama kuin pidemmän osan suhde koko janaan. https://fi.wikipedia.org/wiki/Kultainen_leikkaus
Jos kvanttimekaniikkaa tai suhteellisuusteoriaa halutaan visualisoida kuvataiteen keinoin, niin luultavasti surrealismi olisi siihen sopivin suuntaus. Salvador Dalin Muiston pysyvyys kuvaa hyvin myös ajan suhteellisuutta.
https://fi.wikipedia.org/wiki/Muiston_pysyvyys -
Kun me kaikki emme asu Helsingissä niin olisiko edes yksi pieni esimerkkikuva laittaa meillekin
-
Jos näyttelyn nimi on Ympyrän neliöiminen, niin miksi esillä on toimivia geometrisia todistuksia? (retorinen kysymys.)
Veikkaanpa vain, että jos tämä samainen taiteija sattuu googlettamaan fraktaaleista, niin seuraavassa näyttelyssä keskittyneen oloinen kutsuvieraskunta saa kuulla jotakin seuraavaa: ”Katsokaapas! Jos aloitan tämän värisestä alueesta, niin loputtomien iteraatioiden jälkeen päädyn aina samaan pisteeseen.” Tosin jos kyse on akvarelleista, niin mukaan voi sotkea kvanttifysiikan epämääräisyyttä ja päätyä yhdestä suttuisesta kohdasta moneen pisteesee yhtä aikaa.
Vastaa
Tiede ja uskonto inhimillisen maailman puolesta
Evankelis-luterilaisen kirkon piispoilta ilmestyi toissapäivänä puheenvuoro Tieteiden lahja. Verkkolehti Areiopagi pyysi siihen kommentin muun muassa minulta. Muita kommentoijia olivat teologi Eero Junkkaala, filosofi Leila Haaparanta, evoluutiobiologi Mikael Fortelius, historioitsija Jaakko Tahkokallio sekä ilmastotutkija Laura Riuttanen, biokemisti Matti Leisola, filosofi Leo Näreaho, filosofi Tarja Kallio-Tamminen ja teologi Sammeli Juntunen.
Kirjoitan tieteestä, uskonnosta, ilmastonmuutoksesta, rohkeudesta, nöyryydestä ja apartheidista Palestiinassa.
”Tiedeuskoa, jonka piispat maalaavat tiedevastaisuudelle vastakkaiseksi navaksi, en tunnista tiedeyhteisöstä enkä yhteiskunnasta laajemmin. Liiallinen usko teknologiaan ja vallitsevaan yhteiskunnalliseen järjestelmään ovat kyllä oikeita ongelmia. Uskomme, että hallitsemme kättemme työt, että se minkä olemme pystyttäneet ei koskaan romahda, että kaikki järjestyy tekemällä kuten ennenkin. Tämä on uskoa ihmisen kaikkivoipaisuuteen ja hänen rakennelmiensa täydellisyyteen.”
2 kommenttia “Tiede ja uskonto inhimillisen maailman puolesta”
-
Kiitos Pentti S. Varikselle edellisen postauksen (”Tiede porttina uuteen maailmaan”) kommenteissa antamalle linkille: https://en.wikipedia.org/wiki/Metanoia_(theology)
”Metanoia” kieltämättä tuo mieleen jotain paljon avarampaa kuin sana ”repent” (katumus), jolla se on käännetty esimerkiksi englanninkieliseen raamattuun. Tietysti jälkimmäisen sanan valinta viralliseen käännökseen on paremmin sopinut mm. uppiniskaisten pakanoiden kurinpidon motivoimiseksi.
Vastaa
Tiede porttina uuteen maailmaan
Kauniaisten musiikkijuhlien tämän vuoden teema oli uusi maailma, ja 3.11. pidin esityksen otsikolla Tiede porttina uuteen maailmaan. Sikäli kun muistan, puhuin jokseenkin seuraavalla tavalla.
Uusi maailma meren tuolla puolen
Mundus Novus. Uusi maailma. Eurooppalaiset ottivat 1500-luvulla tämän termin käyttöön kuvaamaan Amerikan mantereita, jotka olivat heille ennestään tuntemattomia. (Viikingit olivat toki matkanneet Pohjois-Amerikkaan jo vuosisatoja sitten, mutta tämä oli unohtunut.)
1500-luvun tutkimusmatkat ja niihin liittyvät valloitukset mullistivat käsityksen siitä, millainen Maa on, muuttivat yhteiskunnat ja auttoivat tieteen alkuun.
Löytöretket eivät muuttaneet käsitystä Maapallosta vain siinä mielessä, että karttoihin lisättiin uusia maita, ne myös maallistivat kuvaa maailmasta. Sieltä minne oli aiemmin meren tuolle puolen sijoitettu paratiisi, löytyi tavallisia ihmisiä, ja heidän altaan samanlainen maa ja yltään samanlainen taivas kuin Euroopassa.
Eurooppalaisten valloitusretket tuhosivat Pohjois- ja Etelä-Amerikan yhteiskunnat, mutta ne myös muuttivat Euroopan yhteiskuntia perustavanlaatuisesti. Tämä ei tapahtunut vain taloudellisen vaikutuksen kautta, vaan myös siirtämällä ajattelun uusiin uomiin.
Uusi maailma meren tällä puolen
”Suurin este tieteiden edistykselle sekä uusien tehtävien ja seutujen avaamiselle niissä on ihmisten toivon puute ja oletus, että se on mahdotonta.” – Francis Bacon, 1620
Tutkimusmatkat ja niihin liittynyt teknologian kehitys osoittivat, että maailmassa on uusia asioita löydettävänä. Yllä oleva sitaatti on prototieteilijä Francis Bacon kirjasta Novum Organon. Teoksen nimi tarkoittaa jotain sellaista kuin uusi työkalu maailman ymmärtämiseen, ja Bacon hahmotteli siinä tieteen perusteita.
Kirjassa on paljon antiikin auktoriteettien arvostelua. Bacon halusi vapauttaa ajattelun muinaisten suurmiesten varjosta ja kaataa rajoitukset, jonka mukaan heidän oivalluksiaan ei voisi ylittää. Bacon lainaa termejä eri aloilta – tiedettähän ei vielä ollut, eikä siten tieteellistä sanastoakaan. Yksi sanojen lähde on oikeusoppi (jota Bacon harjoittikin), ja nykyäänkin puhutaan fysiikan laeista. Toinen oli tutkimusmatkat, kuten sitaatista näkyy: maailman toistaiseksi selvittämättömät säännönmukaisuudet esitetään maantieteellisesti uusina seutuina.
Tutkimusmatkat osoittivat, että tavalliset, (Baconin ajan) nykyaikaiset ihmiset saattoivat saada maailmasta selville asioita, joista antiikin viisailla ei ollut aavistustakaan. Tämä tuntemattomien asioiden löytäminen kaukaa johdatti tutkailemaan myös lähellä olevia tunnettuja asioita tarkemmin: lämpöä, tulta, kappaleiden liikettä ja niin edelleen.
Tieteelle on monenlaisia määritelmiä, mutta tässä kelpaa sellainen, jonka mukaan tiede on maailman kartoittamista havaintoihin pohjaavalla rationaalisella päättelyllä. (Kaikki vaikkapa Helsingin yliopiston tiedekunnissa tehtävä tutkimus ei mahdu tämän määritelmän alle.) Tämä idea olisi voitu kehittää aiemmin, jo antiikin Kreikassa. Se ei edellyttänyt 1600-luvun matemaattisia ja teknologisia edistysaskelia, vaikka sitä niiden avulla toteutettiinkin.
Ympäristö kuitenkin kehystää sitä, mitä tulee ajatelleeksi, mitä uskaltaa ajatella ja miten ajatukset johtavat uusiin ajatuksiin. Tarvittiin uudet olosuhteet asettamaan ajatukset hedelmällisiin uomiin.
Hyödyn arvaamaton maailma
Bacon korostaa luonnosta hyötymistä tieteen avulla. Hän varoittaa, että vaikka osasta tutkimuksesta on välitöntä teknologista hyötyä, sen lisäksi tarvitaan tutkimusta, jonka hyöty ei ole heti nähtävissä, mutta joka selvittää asioita ja luo pohjan myöhemmälle teknologialle. Tämä vastaa karkeasti nykyajan jakoa soveltavaan tutkimukseen ja perustutkimukseen.
Teknologian ja tieteen suhde oli alusta alkaen tiivis. Tekniikan kehitys mahdollisti asioiden entistä tarkemman tutkimisen -Bacon käsittelee esimerkkeinä mikroskooppeja ja teleskooppeja- ja tiede johti uuteen teknologiaan. Tämän kehän yhä nopeampi kiertäminen vei 1700-luvulla teolliseen vallankumoukseen.
Höyrykone toi käyttöön fyysistä voimaa yli sen, mihin ihmiset ja muut eläimet pystyvät, ja jatkuvasti ja väsymättä. Veturien voima yhdisti kaupungit toisiinsa nopein rautatein. Höyrylaivat tekivät satamien verkostossa liikkumisesta säännöllisempää ja vähemmän altista sääilmiöille moottorien työntäessä laivoja eteenpäin tuulista piittaamatta.
1800-luvulla sähkö mullisti maailman. Akkujen avulla saatettiin varastoida energiaa keinotekoisesti, tarvitsematta polttaa hiiltä, kaasua tai puuta silloin kun energiaa tarvittiin, ja sähköjohtojen avulla kuljettaa sitä kauas. Sähkövalot valaisivat kaupungit ja tekivät mahdolliseksi elää kirkkaassa valossa myös yöllä, vapauttaen elämää Auringon noususta ja laskusta. Nykyään avaruudesta Maata katsoessa näkee öisinkin valon hohteen: olemme karkottaneet pimeyden.
1900-luvulla kvanttimekaniikka oli elektroniikan ja nykykemian, siis jokseenkin kaiken nykyteknologian, pohjana, johtaen digitaaliseen teknologiaan, tietokoneisiin, satelliitteihin, internettiin.
Viimeisen kolmensadan vuoden aikana tiede on eniten maailmaa ja yhteiskuntia muuttanut tekijä.
Uusi maailma välillämme
”Teknologia ei ole hyvää eikä pahaa; eikä se ole neutraalia.” – Melvin Kranzberg, 1985
Tiede on mullistanut yhteiskuntia kahdella tavalla.
Ensinnäkin teknologinen kehitys on muutoksen moottori. Yllä oleva sitaatti teknologian historioitsija Melvin Kranzbergilta kuvaa sitä, että teknologiaa voidaan käyttää sekä edistämään että tuhoamaan inhimillistä elämää: sillä voidaan rakentaa ihmisille entistä parempia koteja entistä nopeammin, sekä entistä tehokkaammin tuhota noita koteja ja ihmisiä niissä.
Mutta sen lisäksi teknologia johdattaa kehitystä tiettyyn suuntaan, ja sillä on seurauksia, joita kukaan ei ole tarkoittanut eikä ennustanut. Höyrykoneen ja sarjatyön kehittäminen johti väestön muuttamiseen maaseudulta kaupunkien tehtaiden työväeksi, mikä mursi perinteiset käsitykset perheistä sukupuolista, sukupolvista ja yhteiskuntaluokista. Se kyseenalaisti yhteiskunnalliset valta-asetelmat, ja johti sosialistisiin ja kommunistisiin liikkeisiin, jotka vaativat uutta maailmaa. Uusi ajattelu ihmisistä ei ole irrallaan teknologiasta, vaan asiat ohjaavat toisiaan.
Toisekseen tieteessä on kyse sen selvittämisestä, mikä on totta ja mikä ei ole totta. Monet vanhoilta ajoilta periytyneet käsitykset niin maailmasta kuin ihmisistä eivät ole totta. Tutkimus on osoittanut, miten käsityksemme sukupuolista, seksuaalisuudesta ja muista ihmisten välisistä suhteista –ja suhteistamme muunlajisiin eläimiin– ovat olleet virheellisiä ja korjanneet yhteiskuntaa totuudenmukaisemmaksi. Tiede on avannut uudenlaisen ihmisyyden.
Inhimillinen maailma menneisyyden tuolla puolen
Nyt teknologia, yhdessä totuudenmukaisemman ihmiskuvan kanssa, mahdollistaa maailman, jossa jokainen voi elää ihmisarvoista elämää, vapaana nälästä, janosta, sodasta, raatamisesta, joka on täyttänyt menneisyytemme. Teknologia tekee mahdolliseksi toteuttaa meren tuolta puolelta aikoinaan etsityn jumalaisen paratiisin maan päällä. Tällaista uutta maailmaa ei ole koskaan ollut.
Yhtä lailla teknologia mahdollistaa, ensimmäistä kertaa, koko inhimillisen sivilisaation, ellei koko lajimme, tuhoamisen ilmastonmuutoksen ja joukkotuhoaseiden kautta. Alla oleva sitaatti kirjailijalta ja aktivistilta Arundhati Roylta on toiveikas; hän lausui sen erään katastrofin, Irakin sodan aikana, katsoen hetken kauhuja kauemmaksi.
”Toinen maailma ei ole vain mahdollinen, hän on jo matkalla. Voi olla, että monet meistä eivät ole enää täällä häntä tervehtimässä, mutta hiljaisena päivänä, kun kuuntelen hyvin tarkkaan, saatan kuulla hänen hengityksensä.” – Arundhati Roy, 2003
Epäinhimillinen maailma arjen tuolla puolen
Jos tiede mahdollistaa inhimillisen maailman, se on myös paljastanut että maailma on epäinhimillinen. 1900-luvulla tiede osoitti, että arkikäsityksemme maailmasta ovat perustavanlaatuisesti virheellisiä.
Suhteellisuusteoria osoitti, että avaruus ei ole passiivinen näyttämö tapahtumille, eikä aika ole erillinen mittari sille missä vaiheessa näytelmää ollaan, vaan ne ovat osa yhtä kokonaisuutta, aika-avaruutta, joka muuttuu vuorovaikutuksessa aineen kanssa. Aika kulkee eri tavalla eri paikoissa ja avaruus kehittyy ajassa; maailmankaikkeus laajenee.
Kvanttifysiikka osoitti, että käsityksemme aineesta, olemisesta ja tapahtumisesta ovat tyystin virheellisiä. Aine ei koostu kiinteistä palikoista, todellisuus on epämääräinen ja epädeterministinen.
Arkinen käsityksemme todellisuudesta on evoluution myötä kehittynyt kuvaamaan ilmiöitä ja olosuhteita, jotka ovat olleet keskeisiä henkiinjäämisemme kannalta: pituuksia millistä kilometreihin, aikavälejä sekunnin murto-osasta vuosiin, nopeuksia jotka ovat pieniä verrattuna valonnopeuteen, vähäisiä energioita ja heikkoja gravitaatiokenttiä. Tämä on pieni saareke fysikaalista maailmaa, eivätkä sen perusteella tehdyt johtopäätökset ole yleisesti päteviä.
Jos suhteellisuusteoria tai kvanttifysiikka tuntuvat omituisilta, ongelmana on rajoittunut arkikuvamme todellisuudesta. Jos kuvittelee maailman olevan litteä, niin pyöreällä maailmalla on kummallisia ominaisuuksia: jos matkaa samaan suuntaan, niin palaa takaisin alkupisteeseen, vaikka ei ole koskaan kääntynyt takaisin, ”ylös” osoittaa eri suuntaan eri puolilla maailmaa, ja niin edelleen. Pallon pinnan tunteva hahmottaa, että asiassa ei ole mitään outoa, ristiriitaista on vain kaarevan avaruuden pakottaminen litteään ajatteluun.
Merkityksetön maailma osaa vailla
Mytologioiden maailma on inhimillinen. Kenties alussa on epäinhimillinen ja käsittämätön kaaos, mutta maailmaa muokkaavat voimat ovat persoonallisia ja ihmisenkaltaisia, ja usein ihmisellä on erityinen osa kaikkeuden tapahtumissa.
Modernin kauhukirjallisuuden edelläkävijä H.P. Lovecraft kirjoitti, että hänen tarinoidensa ytimessä on se ajatus, että ihmiskunnalla ei ole merkitystä. Jossain mielessä Lovecraftin visio oli kuitenkin turhan lohdullinen. Vaikka hänen kirjojensa maailma on välinpitämätön ihmiskuntaa kohtaan, sitä ohjaavat voimat ovat vanhojen mytologioiden tapaan persoonallisia. Ihminen on merkityksetön, mutta maailma on merkityksellinen.
Tiede on osoittanut, että maailmaa hallitsevat lait ovat persoonattomia, maailmalla ei ole sisäsyntyistä merkitystä, eikä ihmisillä ei ole erityistä paikkaa maailmankaikkeudessa.
Maan pöly josta olemme kasvaneet on monipolvisten muodonmuutosten muokkaama: avaruuden laajetessa kvarkit yhtyvät protoneiksi ja neutroneiksi, jotka muodostavat ytimiä, jotka sitoutuvat elektronien kanssa atomeiksi, jotka muodostavat molekyylejä, joista syttyvät tähdet, joiden kuolema synnyttää raskaat alkuaineemme. Olemuksemme ja ihmisyydessä tärkeimpänä pitämämme asiat ovat evoluution sattumusten suomaa.
Kaikkien maailmojen alkuperä
Yllä näkyy Euroopan avaruusjärjestö ESAn Planck-satelliittiryhmän (jossa Helsingin yliopistokin on mukana) tekemä kartta kosmisesta mikroaaltotaustasta, valokuva maailmankaikkeudesta 14 miljardin vuoden takaa. Se näyttää, millainen maailma oli 380 000 vuoden iässä: kuuma keitto, jossa jotkut alueet olivat sadastuhannesosan verran harvempia ja toiset saman verran tiheämpiä. Tiheämmät alueet sittemmin tiivistyivät gravitaation vaikutuksesta ja muodostivat galakseja ja muita rakenteita.
Kaikkien rakenteiden alkuperä on näissä pienissä sattumanvaraisissa tiheysvaihteluissa: Auringon, Maan, ihmisten; kaikki saavutuksemme ja koko inhimillinen kulttuurimme on niistä lähtöisin.
Maailma yllä, alla ja välissä
Kaikkiaan, tiede on paljastanut että maailma on epäinhimillinen, sikäli kun maailma tarkoittaa maailmankaikkeutta perustavanlaatuisella tasolla.
Samalla tiede on tehnyt ensimmäistä kertaa mahdolliseksi inhimillisen maailman, sikäli kun maailma tarkoittaa arkemme fyysisiä ja sosiaalisia puitteita.
Oppaana tälle ensimmäiselle valtameren ylitykselle kohti uutta maailmaa meillä on tiede, sekä merkitykset jotka yhdessä annamme ja arvot jotka yhdessä määritämme.
19 kommenttia “Tiede porttina uuteen maailmaan”
-
Hyvin puhuttu (ja kirjoitettu), kiitos tästä!
-
Kaikki mitä SR kertoo pitää paikkansa, mutta hänen jutussaan ilmenee sama ongelma kuin monesti valtamedian uutisoinnissa eli jotain oleellista jätetään kertomatta. Suuren yleisön ja massojen ajatteluun ja maailmankuvaan voidaan vaikuttaa vain joukkomeedioilla. Ja tässä kirjapainotaito ja radio olivat aluksi avainasemassa. Nykyään niiden rinnalle ja niitä tärkeämmiksikin ovat nousseet TV ja internet kaikkine somealustoineen. Jopa niin, että internetiä pidetään uhkana, koska se tarjoaa huikeat mahdollisuudet myös propagandan levittämiseen. Siinä tieteellä ei ole vättämättä mitään merkitystä eikä arvoa.
-
Joku oli jättänyt kirjaston lukusalin viereiseen telineeseen Steven Weinbergin Kolme ensimäistä minuuttia. Luin sen kahdesti. Oikein mielenkiintoinen. Vuodelta 1976 jonka jälkeen kosmologia kaiketi on edelleen mennyt eteenpäin. Mutta ei ymmärtäkseni pahasti vanhentunut.
-
Aina yhtä mielekkäitä artikkeleja lukea. Tunnustettava tosin on, että itseä aina välillä mietityttää tieteessä käytettävä termi ”totuus”, jota näistäkin artikkeleista paljon löytyy. Mikä Syksyn ajatus on absoluuttisesta totuudesta?
”Toisekseen tieteessä on kyse sen selvittämisestä, mikä on totta ja mikä ei ole totta.”
Tämä virke esimerkiksi nostaa kylmänväreitä omassa selässä. Itse koen tieteen kuitenkin tavaksi selittää asiat rationaalisesti nykytiedon valossa, mutta mitään asiaa ei voida absoluuttiseksi totuudeksi osoittaa. Tietoisuus kun on jokaisen oma ja jokainen kokee ajatukset kuten kokee.
Kiitos hyvästä artikkelista jälleen kerran.
-
Kun elämänvyöhykkellä olevia eksoplaneettoja alkoi löytyä paljonkin, saatettiin arvella joillakin niistä luonnollisesti olevan elämää. Nyt kuitenkin monilla tällaisilla planeetoilla elämä näyttää mahdottomalta
Olemmeko sittenkin ainutlaatuiset maailmankaikkeudessa?
Monet tieteelliset näkemykset tulevat luultavasti muuttumaan, jotkut radikaalistikin. On kuitenkin yksi asia, josta paljon puhutaan, mutta josta ei kenelläkään ole yhtään tieteellistä ymmärrystä, tietoisuuden olemus. Jotkut tutkijat jopa kieltävät ongelman olemassaolon:
https://www.areiopagi.fi/2015/07/kohti-tietoisuuden-tiedetta-tsc-2015-konferenssi-helsingissa/
-
Juuri tänään oli (sattuma kyllä) täällä Tiede-palstan uutisissa mielenkiintoinen löytö: Vettä on muttei elämää – siis meidän omalla pallollamme. NASAn iskulause ”follow the water” ei olekaan niin kiveen hakattua.
-
Kirsi lehdon blogissa 17.10. vastasin näihin TIETOISUUS kysymyksiisi, sen valossa mitä esim. Neuroscience ja Evoluutiobiologia ovat tähän mennessä selvittäneet. En tässä halua toistaa 21.10 – 24.10 esittämiäni ”elollisen aineen ” jäljittämisiä 3,5mrd vuotiseen askel-askeleelta tapahtuneeseen eri ominaisuustyyppien ja eliöiden hermostorakenteiden ”heikosti emergenttien” askeleiden vähittäiseen nousuun ensin tietoisuuden, ja sitten myös erityisesti ihmisillä, myös Itsetietoisuuden asteelle. Kehitys yksisoluisista monisoluisuuden pullonkaulan kautta TUNTOISIKSI eli hermoston omaaviksi ja sitten vähitellen yhä monilajisemmiksi ja ominaisuuksiltaan rikkaammiksi ei selviä pohdiskelemalla. Itselläni on kulunut n.10v. tutustuessani aivan mikrobeista lähtien eri elämänmuotoihin sekä niiden neurofysiologiaan. Kysyms tietoisuudesta ei ole YKSI SUURI PÄHKINÄ – vaan lukuisien pienten osatekijöiden vähittäistä selvittämistä tutkimuspohjalta. Olemme vasta alullaan, mutta paljon on jo edistytty.
Omastakin aurinkokunnastamme tullaan löytämään melkoisella varmuudella mikrobeja esim Mars planeetalta. Sivilisaatioiden olemassaolon kannalta Universumimme on yhä siksi nuori, että saatamme olla ensimmäisten joukossa. Kun alkuaineet ovat kaikkialla samat ja eksoplaneettoja löytynee universumitasolla myriardeja – uskoisin pikemmin että Unirsumilla on jonkinlainen EMÄOMINAISUUS tuottaa elämää siellä missä olosuhteet (elokehät) sen vain suinkin sallivat.
-
Korjaan edelliseen: ELÄMÄOMINAISUUS, vaikka ei se paljoa muuta.
-
Tietoisuuden ongelman ratkaiseminen edellyttää tietoisuuden olemuksen pitämistä kirkkaana mielessä. Seuraavassa valitaan mielessä pidettäväksi yksi mahdollisista tietoisuuden olemuksista. Tämä tietoisuus merkitsee subjektiivisesti koettua elämyksellistä tietoisuutta. Erikoista tässä on, että kaikki ilmenevät asiat (mielensisällöt) ovat koettuja, subjektiivisia ja elämyksellisiä. Tämän voi todeta kokeellisesti luettelemalla asiaan liittyviä kvalioita. Näin ollen kaikki ilmenevä on tietoisuutta. Elämämme, itse me, olemme siis alusta loppuun pelkkä erilaisten tietoisten tilojen kokoelma, kvalioiden kokoelma.
Yleensä asiat koostuvat monista erilaisista kvalioista. Esimerkiksi tiettyyn kiveen liittyviä kvalioita (erityyppisiä tietoisuuksia, mielensisältöjä) voivat olla kiven väri, painavuus, kovuus, hinta, etäisyys minusta yms. Atomin taas muodostavat kvaliat ajateltu koko ja muoto, massa, moninaisuus, tietyt matemaattiset ja kemialliset relaatiot, erottuminen atomivoimamikroskoopissa jne. Tunnettu materian kieltäjä, filosofi, piispa ja matemaatikko George Berkeley (https://en.wikipedia.org/wiki/George_Berkeley), on ajatellut samaan tapaan. Myös itse minä koostuu hyvin suuresta määrästä kvalioita (mutta ei mistään muusta). Joku voi tietenkin tavalliseen tapaan ajatella, että kvalioiden ’takana’ on joku ’materiaalinen’ todellisuus, mutta tällaisesta puuttuu näyttö. Kaikki ajateltavissa, aistittavissa tai havaittavissa oleva koostuu pelkistä subjektiivisista elämyksistä tai tuntemuksista, kvalioista ja niiden relaatioista.
Tietoisuuden ongelman ratkaisemiseksi täytyy siis pitäytyä pelkkien ’aineettomien’, immateriaalisten objektien ja niiden relaatioiden sekä alkuperän tarkasteluun. Lähinnä tarjoutuva näkemys on kvalioiden eli tietoisuuselementtien alkuperäisyys sellaisenaan vähän alkeishiukkasten alkuperän tapaan. Myös alkeishiukkaset ja niiden tutkiminen on tietenkin ymmärrettävä kvalioina.
Kvalioiden kokeminen alkuperäisinä elementteinä vaatii joskus keskittynyttä työtä. Alkuperäisiksi elementeiksi on helppo mieltää sellaiset kvaliat kuin ilo, suru, pelko tai epäily. Alkuperäisinä kvaliat saattavat alun perin olleet kätkeytyneinä jonkinlaiseen kosmologiseen vakuumiin, josta ne kvalia kerrallaan herätetään. Tilannetta voi verrata hiukkasten kuten protonien törmäyksiin, joissa erilaisia, eri ominaisuuksia omaavia hiukkasia syntyy.
-
-
-
Korjaus: Ursan sivuilla
-
Kiitos todella mielenkiintoisesta kirjoituksesta. Haluaisin kysyä, mikä käsitys sinulla on luonnonlakien olemassaolosta. Kirjoitat, että ”maailmaa hallitsevat lait ovat persoonattomia”. Onko fysikaalisista objekteista ja tapahtumista (kappaleet, hiukkaset, kentät tmv.) riippumattomia lakeja, jotka välttämöittävät niiden toiminnan? Tämä kuulostaa varsin raskaalta metafysiikalta; ikään kuin fysikaalisen todellisuuden suhteen olisi perustavampi luonnonlakien maailma. Puhut persoonattomista laeista, mutta luonnonlain käsite syntyi 1600-luvulla nimenomaan teologisessa kontekstissa. Descartes ajatteli esim. inertia-lain juontuvan Jumalan muuttumattomuudesta. Boyle kritisoi tätä siitä, etteivät kappaleet ole moraalisia olentoja, jotka voisivat harkita, tottelevatko he käskyjä vai eivät.
Minusta uskottavampi vaihtoehto on ns. humelainen käsitys luonnonlaeista, jonka mukaan ne ovat yleistyksiä, ei-välttämättömiä säännönmukaisuuksia jotka toimivat aksioomeina joissakin systeemeissä. Fysikaalisten objektien ’tuolla puolen’ ei ole mitään itsenäisesti olemassa olevia lakeja, jotka jotenkin ’hallitsevat’ luonnontapahtumia.
Vastaa
Kohti monimuotoisuutta
Tällä viikolla Helsingissä järjestettiin 4.-5.11. NORNDiPin toinen konferenssi. NORNDiP eli Nordic Network for Diversity in Physics on naispuolisten pohjoismaisten fyysikoiden vuonna 2017 perustama ja NordForskin rahoittama projekti naisten näkyvyyden, tasa-arvon ja diversiteetin edistämiseksi fysiikassa.
Konferenssissa oli naispuolisten fyysikoiden kiinnostavia puheita fysiikan eri alueilta, kuten neutriinoiden astrofysiikasta, kaupunkien mikrometeorologiasta, maanjäristyksistä, rakenteiden vaikutuksesta maailmankaikkeuden laajenemiseen, ja aurinkoenergiaa keräävien liuosten valmistamisesta molekyylifysiikan keinoin. Lisäksi oli sukupuolikysymyksiin, tasa-arvoon ja diversiteettiin keskittyviä puheita.
Konferenssin avasi Helsingin yliopiston vararehtori (ja hiukkasfyysikko) Paula Eerola. Matemaattis-luonnontieteellisessä tiedekunnassa yleisesti ja fysiikassa erityisesti on pitkään ollut ongelmana naisten pieni osuus sekä opiskelijoista että tutkijoista. Aloittavien opiskelijoiden osalta tilanne on parantunut huomattavasti. Matemaattis-luonnontieteellisessä on itse asiassa nykyään kaikista tiedekunnista kaikkein tasaisin aloittavien opiskelijoiden sukupuolijakauma: naisia on 45%. Kaikissa muissa tiedekunnissa valtaosa opintonsa aloittavista on naisia. Seuraavaksi vähiten epätasainen tilanne on oikeustieteellisessä ja teologisessa, missä 63% aloittavista opiskelijoista on naisia.
Matemaattis-luonnontieteellisen tiedekunnan osastoista paras tasapaino on fysiikassa, missä aloittavista opiskelijoista naisia on 43%. Epätasaisimmat luvut ovat tietojenkäsittelytieteessä (31% naisia) ja kemiassa (65% naisia), mutta edellisen tilanne muuttuu nopeasti: naisten osuus on yli kaksinkertaistunut viimeisten neljän vuoden aikana.
Viime vuosikymmenellä aloittavista fysiikan opiskelijoista vain kolmannes oli naisia. On vaikea sanoa varmasti, mistä muutos johtuu, mutta siihen lienee vaikuttanut se, että fysiikan osasto on panostanut siihen, miten fysiikkaa esitetään kouluille ja tuonut esille naispuolisia roolimalleja. Uusien alojen kuten ilmakehätieteen kasvu on myös saattanut vaikuttaa.
Henkilökunnan tilanne on paljon epätasaisempi: matemaattis-luonnontieteellisessä tiedekunnassa henkilökunnasta 29% on naisia; professorien kohdalla osuus on 13% (tilastoissa on muuten vain kaksi sukupuolta). Eija Tuominen esitteli keräämiään lukuja fysiikan osalta Suomen yliopistoista. Helsingissä naisten osuus professoreista on isoin, 8/38 (21%). Huonoin tilanne on Itä-Suomen yliopistossa, missä 12 fysiikan professorin joukossa ei ole ainuttakaan naista (0%). Seuraavaksi epätasaisin tilanne on Aalto-yliopistossa, missä 22 professorista yksi on nainen (5%) ja Jyväskylän yliopistossa, missä 18 professorista yksi on nainen (6%). (Näissä luvuissa ovat mukana apulaisprofessorit, täysprofessorien kohdalla tilanne olisi luultavasti vieläkin karumpi.)
Tilanne on samanlainen muissa pohjoismaissa: mitä korkeammalle mennään, sitä vähemmän naisia on, eikä ongelma korjaannu itsekseen ajan myötä. Yleinen yhteiskunnallinen tasa-arvo ei myöskään takaa naisten tasapuolista edustusta, vaan siihen vaikuttavat monet tekijät. (Esimerkiksi Birzeitin yliopistossa Miehitetyillä palestiinalaisalueilla noin 80% fysiikan opiskelijoista on naisia, vaikka yleinen tasa-arvon tilanne on siellä heikompi kuin Suomessa.)
Naisten vähäiseen osuuteen vaikuttavat ainakin tiedostamattomat ennakkoluulot, lasten hankkimisen vaikea yhdistäminen tutkimustyöhön (missä vaikuttaa myös lapsenhoidon ja kotitöiden epätasainen jakautuminen), naispuolisten roolimallien ja ohjaajien puute, naispuolisten kollegoiden puute, avoin syrjintä sekä seksuaalinen ja sukupuoleen perustuva häirintä.
Jadranka Gvozdanovic kertoi, että Euroopan unionin ylenpalttisen arvostettujen aloittavien tutkijoiden ERC-tutkimusrahoituksen hakijoista naisia on 31% ja saajista 27%. Naisten tutkimussuunnitelmat arvioidaan yhtä hyväksi kuin kuin miesten, mutta heidän tutkijan potentiaalinsa saa huonommat arviot. Jälkimmäinen on epämääräisempi ja vaikeammin punnittava asia, ja arviot siitä saattavat siksi olla helpommin ennakkoluulojen vietävissä. Tätä on yksittäisissä tapauksissa vaikea osoittaa, mutta asiasta on yleisesti ottaen tutkimusnäyttöä. Esimerkiksi on todettu, että täysin identtisistä hakemuksista, joista toisessa on miehen ja toisessa naisen nimi miehen nimellä varustettu arvioidaan korkeammalle. Gvozdanovicin mukaan arvioihin vaikuttaa myös se, että miehet herkemmin liioittelevat ja naiset vähättelevät saavutuksiaan.
Mutta kuten olen aiemmin kirjoittanut, ei ole selvää, miksi tilanne on erityisen huono fysiikassa. Aikoinaan kaikki yliopistojen alat olivat vain miehille, ja kaikissa oli aluksi samat ongelmat. Miksi fysiikassa ja läheisillä aloilla edistys on ollut muita hitaampaa? Osa syistä liittyy ennakkokäsityksiin fysiikasta, koska naisia on jo aloittavissa opiskelijoissa vähemmän, osa siihen mitä yliopistoissa tapahtuu, koska naisten osuus laskee korkeammalle noustessa.
Tomas Brage tarjosi yhdeksi selitykseksi fyysikoille ominaista kognitiivista harhaa. Fysiikan teorioiden muotoilussa ja ongelmien ratkaisemisessa sosiaalisten tekijöiden ja yhteiskunnallisten ennakkoluulojen vaikutus on vähäinen. (Niillä on kyllä iso vaikutus siihen, mitä teorioita arvostetaan ja mitä ongelmia lähdetään ratkaisemaan.) Niinpä on helppo kuvitella, että fyysikkona tekee päätöksiä opiskelijoiden ja tutkijoiden valinnasta yhtä lailla ilman ennakkoluuloja. Ennakkoluuloja on vaikeinta ottaa huomioon silloin kun kuvittelee, että niitä ei ole. Koulutus ja kokemus analyyttisestä ajattelusta auttaa päätösten tekemisessä rationaalisesti vain silloin kun tuntee oman ajattelun lähtökohdat. Jotkut myös esittivät, että erityisesti fysiikassa ja matematiikassa vaalitaan sankarimyyttiä yksinäisestä nerosta, joka yleensä mielletään mieheksi.
Usea puhuja korosti sitä, että ongelman korjaamiseen ei riitä lukujen mittaaminen tai ohjeiden laatiminen, vaikka niistä on hyvä aloittaa. On tärkeää tiedottaa tasa-arvosta ja kouluttaa sen toteuttamiseksi kaikilla tasoilla, alkaen johdosta. On oleellista saada johdolta selvä viesti tasa-arvon ja diversiteetin merkityksestä, joka auttaa konkreettisten toimien saamisessa läpi.
Läpinäkyvyyden lisääminen valintojen ja palkkauksen kaikilla tasoilla on keskeistä: tasapuolisuutta on vaikea varmistaa, jos ei ole tietoa siitä, mitä tapahtuu. Prosesseissa olisi syytä olla mukana ulkopuolinen tarkkailija, joka voi varmistaa tasapuolisuuden toteutumisen. Pitää myös olla mahdollisuus katkaista prosessi, jos tasapuolisuus ei toteudu, vaikkapa sen takia että paikasta on tiedotettu valikoivasti. Esimerkkinä mainittiin tapaus, jossa haku laitettiin uusiksi, kun kaikki ehdokkaat olivat miehiä. Tasapuolisuus on tärkeä ottaa huomioon alusta alkaen, ei vain lopullisia valintoja tehdessä. Omat ongelmansa on paikoissa, jotka täytetään suoraan kutsumalla, ilman avointa hakua. (Mainittakoon, että minut nimitettiin sekä viisivuotiseen yliopistonlehtorin tehtävään että nykyiseen pysyvään yliopistotutkijan paikkaan ilman hakua.) Kannustimien luomisen merkitystä korostettiin: jos rahoitus riippuu diversiteettitavoitteiden saavuttamisesta, tilanne muuttuu nopeasti.
Tanskassa on paikkoja, joita saavat hakea vain naiset ja muuta vain naisille tarkoitettua rahoitusta. Yksi tällaisten järjestelyjen ongelma on se, että jos naisille on korvamerkittyä rahaa, niin tätä pidetään syynä olla antamatta heille sellaista rahoitusta, jota kaikki voivat hakea. Sukupuolikiintiöt ovat toinen joskus käytetty väline, mutta avoimien ja ennakkoluulot huomioon ottavien, tasapuolisten prosessien ja käytäntöjen luominen esitettiin tehokkaampana keinona tasa-arvon ja diversiteetin toteutumiseen. Kiintiöt voivat korjata lukumäärien vinoumia, mutta sivuuttavat niihin johtavat syyt.
Kiintiöiden käyttämisessä esimerkiksi arviointilautakunnissa ja muissa päättävissä tai neuvovissa elimissä on myös se ongelma, että kun naiset ovat vähemmistössä, heille tulee suhteettoman paljon tällaista hallinnollista työtä. Tämä vie aikaa pois tutkimukselta, opetukselta ja muulta arvostetummalta (ja kiinnostavammalta) työltä.
Yritysmaailmaan siirtynyt Vala Hjörleifsdóttir kertoi, että hänen kokemuksensa mukaan yliopistoissa fysiikassa halutaan palkata yksittäisiä supertähtiä, kun taas yrityksissä mietitään, kuka on ryhmän kokonaisuuden kannalta paras ehdokas. Hän totesi, että koska jälkimmäisessä tapauksessa ajatellaan tutkimuksen tekemisen kokonaisuutta eikä vain yksilöä, diversiteettikysymys nousee automaattisesti osaksi päätöksentekoa.
NORNDiP-verkoston nimessä esiintyy sana diversiteetti eli monimuotoisuus, jota nykyään käytetään ennemmin kuin naisten edustusta tai tasa-arvoa. Käsitteillä on suuri merkitys ajattelun ohjaamisessa, ja termi diversiteetti auttaa hahmottamaan sitä, että sukupuolia on useampia kuin kaksi ja tasa-arvossa on muitakin akseleita kuin sukupuoli. Usein etniseen taustaan liittyvään syrjintään on kiinnitetty vähemmän huomiota kuin sukupuoleen liittyvään.
Esimerkiksi CERNin diversiteetti- ja inkluusio-ohjelman johtaja Louisa Carvalho puhui CERNissä otetuista askeleista tasa-arvon suhteen mitä tulee sukupuoleen ja seksuaaliseen orientaatioon. Sitä ei kuitenkaan pidetä mainitsemisen arvoisena, että CERNin ainoa Euroopan ulkopuolinen jäsenvaltio Israel perustuu sekä laillisesti että käytännössä yhden etnisen ryhmän ylivaltaan ja rotusortoon. Sitä, että Israelin akateemiset instituutiot osallistuvat rotuerottelun ylläpitämiseen ei katsota diversiteettikysymykseksi – lähitulevaisuudessa tämä nähtäneen aikamme omituisuutena.
NORNDiPin konferenssi on hyvä esimerkki ruohonjuuritasolta nousevasta toiminnasta. Osallistujat olivat muutamaa poikkeusta lukuun ottamatta fyysikoita, joten he tuntevat alan käytännöt hyvin, ja olivat itse keränneet datan ja käyneet sitä läpi. (Data-analyysi on tietysti fyysikoille tuttua, ja esityksissä oli paljon lukuja.)
Samalla täytyy sanoa, että tällainen ruohonjuuritason konferenssi on itsessään osoitus ongelmasta. Jos tasa-arvo ja diversiteetti otettaisiin vakavasti, yliopistoilla olisi palkattuja ammattilaisia, jotka järjestelmällisesti keräisivät aiheesta tarkkaa dataa; analysoisivat sitä; auttaisivat diversiteettitavoitteiden muotoilemisessa; ja seuraisivat tavoitteiden saavuttamista ja raportoisivat siitä suositusten kera. Nyt tutkijat joutuvat tekemään tätä oman alansa osalta vapaaehtoisesti työnsä ohella. Kun kyseiset tutkijat ovat ylivoimaisesti naisia, niin diversiteetin edistäminen itsessään osaltaan lisää epätasa-arvoa, se kun vie naispuolisten fyysikoiden aikaa.
Niin luvuilla mitatun tasa-arvon edistäminen kuin häirintätapauksiin puuttuminen koetaan liian usein niiden ongelmaksi, josta tilanteesta kärsivät. Yliopistojen johto on helposti passiivinen ja sysää ratkaisujen keksimisen ongelmia esille tuovien vastuulle (joilla ei kuitenkaan ole valtaa muuttaa asioita), sen sijaan että ryhtyisi toimeen.
Luvut ja ylätason analyysi eivät yksin välitä ongelman laajuutta. Naisfyysikoiden kertomukset omista kokemuksista epäasiallisesta kohtelusta valaisevat ongelmien konkreettisuutta, sekä siltä kannalta että asioissa on edetty että myös siinä, että on vielä paljon korjattavaa.
Yksi tällaisten tapaamisten hyöty on se, että tasa-arvosta kiinnostuneet tapaavat ja verkostoituvat. Usein ihmiset eivät uskalla kertoa häirinnästä tai kiinnittää huomiota rakenteellisiin vääristymiin tiedeyhteisössä, koska pelkäävät, että heidät leimataan ongelmalliseksi.
NORNDiPiin voi liittyä lähettämällä viestin osoitteeseen norndip@gmail.com. Helsingin yliopiston Kumpulan kampuksella toimii naisverkosto, joka on avoin kaikille sukupuolille. Fysiikan osastolla ongelmista sopii raportoida hyvinvointiryhmälle, joka luotsasi viime vuonna kampukselle menettelyohjeen (Code of Conduct).
13 kommenttia “Kohti monimuotoisuutta”
-
”Matemaattis-luonnontieteellisessä on itse asiassa nykyään kaikista tiedekunnista kaikkein tasaisin aloittavien opiskelijoiden sukupuolijakauma: naisia on 45%.”
Monien tasa-arvoaktivistien mielessähän tavoite ei ylipäänsä ole tasapuolinen sukupuolijakauma, vaan naisten aliedustukse korjaus. Naisten yliedustusta taas ei yleensä nähdä ongelmana, vrt. tasa-arvolautakunnat.
Kovin vähän on äänekkäitä puheenvuoroja ja toimia näkynyt miesoletettujen opiskelijoiden lisäämisen puolesta yliopistoissa, vaan yleensä nämä seminaarit ja muut keskittyvät naisoletettujen vähyyteen, vaikka tilanne – kuten tuot esiin – taitaakin olla jo päinvastoin suurimmassa osassa tiedekuntia.
Missä vaiheessa tarvitaan erityistoimenpiteitä ja -kohtelua miesopiskelijoiden määrän kasvattamiseksi?
Onko sitten tasan 50/50 (mihin muunsukupuoliset lasketaan?) menevä jako opiskelijoissa ja työntekijöissä tavoiteltava tila? Voidaanko olettaa, että koko populaation tasolla kiinnostus kaikkia aloja kohtaan jakautuu tasaisesti? Vai millä perusteella opiskelu- tai työpaikat pitäisi jakaa, eikö kiinnostus ja kompetenssi olekaan hyvä mittari?
Hyvin kuvaavaa nykyiselle tasa-arvokeskustelulle on, että yliopistossa toimii ”kaikille sukupuolille avoin” naisverkosto. Tasa-arvon ajajat ovat enimmäkseen kiinnostuneita lähinnä naisten asemasta ja sen parantamisesta, mikä näkyy ihan jo tällaisten verkostojen nimeämisessä, vaikka juhlapuheissa muuta väitettäisiinkin.
-
Kirjoituksesi on hyvä ja monimuotoinen katsaus konferenssin sisältöihin. Tiedostamattomien ennakkoluulojen tiedostaminen on tosiaan tärkeää. Osa ennakkoluuloista voi olla myös tiedostettuja, mutta niitä ei kyseenalaisteta. Tieteen kuten monen muunkin alan historiassa on kerrottu paljon miehistä ja naiset ovat jääneet marginaaliin. Tämä saattaa johtaa siihen, ettei naisten panokseen huomata kiinnittää huomiota riittävässä määrin. Tämä on onneksi muuttumassa tai ainakin ollaan tietoisempia asiasta, mistä tämä konferenssi naisten näkyvyyden, tasa-arvon ja diversiteetin edistämiseksi fysiikassa on yksi esimerkki. Faktojen perusteella voi tarkastella, missä kohdin on vääristymiä, selvittää, mistä ne johtuvat ja sitten tehdä asioille jotain.
-
Ja sitten se taas ei ole ongelma että naisia on enemmän hampaalla, lääkiksessä, psykalla, kemialla, yleensäkkään yliopistossa tai lukiossa, mutta se on iso ongelma, että naisia ei ole tarpeeksi fysiikalla, joten he saavat sieltä ensimmäisenä tai toisena vuonna työpaikan – ohi kolmannen ja neljännen vuoden pätevimpien miesopiskelijoiden.
Nykyään fyysikan työpaikka hauissa suositaan jopa naisia. Jos kaksi yhtä pätevää henkilöä hakee työpaikkaa, joista toinen on nainen ja toinen on mies, niin valitaan huomattavasti useammin nainen.
-
Toinen tyttäristäni opiskeli yliopistossa tietotekniikkaa ja toinen matemaattisia tieteitä. Käsittääkseni varsinainen mahdollinen eriarvoinen kohtelu on tullut vastaan vasta työelämässä.
Mielipiteeni on, että ok silloin tällöin voi herätellä erityiskonferenssilla, mutta siitä ei saisi tulla tapaa. Ainakin kiintiöiden ajan kuulusi olla jo ohi. Kun pidämme itsestäänselvänä, ettei ulkoisiin seikkoihin kiinnitetä huomiota, on se itseään ruokkiva kulttuuri ja tasavertaisuus kukoistaa kaikissa näkökulmissa.
-
Naisten syrjimisellä ja vähättelyllä on pitkät perinteet. Kristinuskolla yli 2000 ja islamilla 1600 vuotta. Johtuisiko Birzeitin yliopiston mieskato siitä, että heillä on muutakin tekemistä esim. rakettien ampuminen Israeliin. Juutalaisuus suhtautuu naisiin em. uskontoja suopeammin, sillä juutalaisen äidin lapset ovat aina juutalaisia, mutta isän ei. Israelin tiede on maailman kärkeä ja siellä naisillakin on mahdollisuus päästä huipulle kuten v. 2009 kemian nobelisti Ada Yonath. Aiemmin myös Ruotsin Akatemian Nobel-komitea on syyllistynyt selvään naisten syrjintään mm. Rosalind Franklinin ja Lise Meitnerin tapauksissa. Nykyään Israelissa on Lise Meitnerille omistettu Minerva Center. Minusta suurin este tätä nykyä naisten tasa-arvoistumiselle on ääri-islam, joka ylpeilee mm. sillä, että nyt naisetkin saavat ajaa autoa Saudi-Arabiassa. Sekulaarisissa maissa naisilla on sitä vastoin miesten kanssa yhtälaiset mahdollisuudet ”naisittaa” yliopistojen opetus- ja tutkimusvirat ja nousta tieteen huipulle.
-
Paluuviite: Tähtitieteellinen yhdistys Ursa: Tuoreimmat
Vastaa
Paikan täyttäminen
Pari viikkoa sitten tutkijakollegani Tommi Tenkasen vieraillessa Helsingissä juttelimme työhuoneellani inflaatiosta, pimeästä aineesta ja pimeästä energiasta. Sitten kiistelimme hänen paljon huomiota saaneen artikkelinsa lehdistötiedotteesta ja termistä alkuräjähdys. Lopuksi Tommi antoi minulle käteen vasta ilmestyneen kirjansa Pimeän aineen arvoitus sanoen, että sen alussa on alkuräjähdykselle määritelmä, josta en pidä. Hän oli totisesti oikeassa, mutta kirjassa on myös paljon sellaista mistä pidän.
Ursan julkaisema kirja on kauniskantinen ja hyväntuoksuinen. Sen 12 luvussa ja noin 200 sivulla käydään läpi pimeän aineen perusteita niin teorian kuin havaintojen osalta. Kunkin luvun avaa viehättävän vanhakantainen yhden virkkeen tiivistelmä sisällöstä, ja jokaisen lopussa on kolmen pointin kertaus. Sellainen onkin hyödyllinen tällaisessa tietokirjassa, joka kulkee tarinallisesti ja jossa tietoa pitää pohjustaa huolella.
Tommi on teoreettinen fyysikko, mutta kertoo tarinan havainnot edellä. Tämä on asianmukaista, meillä kun on paljon pimeään aineeseen viittaavia havaintoja, mutta emme tarkalleen tiedä millainen teoria sitä kuvaa. Ensimmäinen luku on pikajuoksu kosmologian virstanpylväiden ohi, sen jälkeen käydään yksittäisiä aiheita tarkemmin läpi. Pimeän aineen tutkimus yhdistää astrofysiikkaa ja hiukkasfysiikkaa, ja kirjassa molemmat puolet ovat sopivalla painolla mukana.
Pimeä aine on yksi kosmologian keskeisiä kysymyksiä, avoin paikka maailmankaikkeuden kalusteluettelossa. Kirjassa käsitellään pimeää ainetta erittäin monipuolisesti, 1900-luvun alkupuolen havainnoista kosmiseen mikroaaltotaustaan, gravitaatiolinsseihin, galaksien ja ison mittakaavan rakenteen simulaatioihin, pimeän aineen hiukkasten suoraan ja epäsuoraan havaitsemiseen ja niiden tuottamiseen hiukkaskiihdyttimissä. Historiassa on kiinnostavia yksityiskohtia, joita en aiemmin tiennyt. Kokeiden historia tuo esille fyysikkojen kekseliäisyyden, ja mukaan ovat päässeet uusimmat hauskat ehdotukset pimeän aineen etsimisestä DNA-rihmoilla ja 12 kilometrin syvyydestä kaivetuilla mineraaleilla.
Lukuisista vaihtoehdoista pimeän aineen hiukkaselle kirjassa on käsitelty tarkimmin nynnyjä, aksioneja ja mustia aukkoja. Tommi mainitsee myös eksoottisen mahdollisuuden siitä, että pimeä aine olisikin monimutkaisempaa ja muodostaisi kenties jopa pimeän aineen planeettoja ja olentoja. Myös se vaihtoehto, että pimeää ainetta ei olisikaan olemassa käydään läpi.
Kirjassa esitellään Suomessa pimeän aineen tiimoilta tehtävää tutkimusta. Tommi on siinä mukana, ja kirjoittaa jonkin verran omasta työstään ja polustaan tutkijana. Tarina liikkuu Higgsin hiukkasen löytämisestä CERNin saleissa Planck-satelliitin tuloksen käsittelyyn Helsingin yliopiston fysiikan tutkimuslaitoksen seminaarihuoneessa, ja sieltä Johns Hopkinsin yliopiston käytäville.
Tieteen tekemisen ennalta-arvaamattomuus ja yhteisöllisyys tuodaan hyvin esille. Pimeällä aineella on ollut monta kokkia, mikä esitetään selitykseksi sille, että sen enempää Fritz Zwicky kuin Vera Rubin ei saanut Nobelin palkintoa. On tosin ironista, että selitystä on valaistu sitaatilla Jim Peeblesiltä, joka saa tänä vuonna Nobelin palkinnon osittain pimeästä aineesta.
Tällaisissa kirjoissa on vaikea välttää toistoa, koska asiat risteävät, mutta sitä olisi voinut karsia. Kerronnan selkeyttä minun on hankala arvioida ensinnäkin siksi, että olen kirjoittanut samoista aiheista ja toisekseen siksi, että tutun tekstiä on vaikea irrottaa henkilöstä. Minusta kuitenkin tuntuu, että selitykset liikkuvat turhan nopeasti ja jäävät joskus pintapuolisiksi. Ymmärrykselle olisi voinut tarjota enemmän tukea. On saman tien sanottava, että 200 sivussa käydään läpi paljon asiaa, ja syvyyden ja laajuuden välillä pitää tehdä valinta. Meno on myös välillä hieman poukkoilevaa: temaattista ja kronologista kerrontaa ei ole saatu sovitettua saumattomasti yhteen, ja tarina kulkee eri poluille, joilta palataan myöhemmin takaisin.
Teksti on positiivissävyistä ja kepeää. Kirjaan on haastateltu tutkijoita, mutta haastateltujen persoonallinen ääni ei juuri kuulu. Poikkeuksena on kenties tunnettu teoreetikko Nima Arkani-Hamed, jonka suureellisia ja osittain virheellisiä väitteitä esitellään kritiikittä. Arkani-Hamed esimerkiksi väittää, että ”edes yksinkertaisimpia wimpejä ei ole [kokeellisesti] suljettu pois, ei todellakaan”. Tätä väitettä voi kauniisti kutsua markkinapuheeksi: totta se ei ole. Havainnot ovat sulkeneet pois alkuperäiset yksinkertaiset wimpit jo aikapäiviä sitten, ja pimeän aineen hiukkasten pitää vuorovaikuttaa ainakin miljardi kertaa heikommin kuin mitä alun perin ajateltiin.
Harhaanjohtava on myös Arkani-Hamedin väite, että Higgsin hiukkasen ”olemus on täysin paradoksaalinen”. Todellisuudessa Higgsin LHC-kiihdyttimessä mitatut ominaisuudet vastaavat hiukkasfysiikan Standardimalliin ennusteita erinomaisen hyvin. Ne sopivat myös hyvin joihinkin sen laajennuksiin, kuten steriilejä neutriinoita sisältävään nuMSM:ään. On toki totta, että jotkut teoreetikoiden vaalimat mallit (kuten supersymmetrinen Standardimalli) sopivat havaintoihin huonosti. Tämä on paradoksaalista vain jos haluaa pitää kiinni teoreettisista ideoista silloinkin kun havainnot osoittavat toista. Tältä osin tiedeyhteisön käsittely jää kirjassa pinnalliseksi, kriittisiä sävyjä ei juuri ole.
Kirjassa on kuitenkin yleensä huolella eroteltu se, mitä tiedetään varmasti, mikä on luultavasti totta, mikä on villiä spekulaatiota ja mitä havainnot tästä kaikesta sanovat. Epävarmuudet on huomioitu hyvin myös lopun sanastossa, mikä onkin varmaan lukijoille hyödyllinen, sen verta paljon erikoistermejä tästä aiheesta kertoessa väistämättä tulee käyttäneeksi.
Tällaisissa kirjoissa pitää valita valheensa, koska usein lukija ymmärtää paremmin, jos asian selittää yksinkertaisesti ja väärin kuin monipolvisesti ja oikein. Kirjassa on kuitenkin useita yksinkertaistuksia ja huolimattomuuksia, joiden kanssa olisi mielestäni syytä olla tarkempi. Alla jokunen esimerkki.
Tekstissä sanotaan, että neutriinot kiitävät aina lähes valonnopeudella. Itse asiassa kosmiset neutriinot (eli lähes kaikki neutriinot) ovat maailmankaikkeuden laajenemisen takia pudonneet kauas valonnopeudesta.
Kosmisen mikroaaltotaustan polarisaatio on jo mitattu, ja sitä tuottavat muutkin tapahtumat kuin kosminen inflaatio.
Kirjassa useaan kertaan toistetaan yleistä harhakäsitystä siitä, että ”aine on energiaa ja energia ainetta”. Energia on aineen ominaisuus, aivan kuten liikemäärä, massa, nopeus tai sähkövaraus. Se ei ole erillinen olemisen muoto. Kun kirjassa käydään läpi pimeää ainetta ja pimeää energiaa, tämä muotoilu on erityisen hämmentävä.
Tommi kirjoittaa, että hiukkasfysiikan ja astrofysiikan välillä ei juuri ollut yhteyttä ennen pimeän aineen teorioiden nousua 1980-luvulla. Itse asiassa Yhdysvaltojen ydinaseprojektista tunnettu Robert Oppenheimer toi astrofyysikot ja suhteellisuusteoreetikot yhteen 1960-luvulla kvasaarien selittämiseksi, ja samalla muitakin hiukkasfyysikoita tuli mukaan kuvioihin, kuten esimerkiksi Pedro Ferreiran kirjassa Täydellinen teoria käydään läpi. Myös Neuvostoliitossa Lev Landaun ja Jakov Zeldovitšin ryhmissä siirryttiin sujuvasti hiukkasfysiikan ja astrofysiikan välillä 1960-luvulta asti.
Ei ole totta, että ”kukaan ei tiennyt miksi” maailmankaikkeuden laajeneminen kiihtyy, kun se vuonna 1998 havaittiin. Osa tämän vuoden Jim Peeblesin Nobelin palkinnosta myönnetään siitä, että hän vuonna 1984 palautti tyhjön energian (joka johtaa kiihtyvään laajenemiseen) kosmologian keskiöön. Tämä ei ole pieni yksityiskohta, vaan valaisee havaintojen ja teorian suhdetta: vuoden 1998 havainnoista on mahdollista lukea, että maailmankaikkeuden laajeneminen on kiihtynyt vain jos etukäteen olettaa, että tyhjön energiaa on olemassa. (Myöhemmät havainnot ovat varmentaneet asian ilman tätä havaintoa oletusta.) Kokeellisten ryhmien kysymyksenasettelu muotoutui nimenomaan teoreetikoiden työn päälle, ja tämä oli myös syy siihen, miksi teoreetikot hyväksyivät havainnot niin nopeasti. Eri asia on sitten se, onko selitys oikea. Pyrkimys dramatisointiin johtaa kirjassa harhaan myös LIGOn havaitsemista gravitaatioaalloista kerrottaessa.
Avaruuden ja aika-avaruuden kaarevuus menee selityksissä sekaisin: tuntuu tarpeettomalta yksinkertaistaa esimerkiksi valon taipumista puhumalla vain avaruuden kaarevuudesta, kun avaruuden ja aika-avaruuden kaarevuus kuitenkin myöhemmin esitellään erillisinä käsitteinä.
Entäpä se alkuräjähdys? Tutkijat käyttävät sanaa kolmessa eri merkityksessä: ajan ja avaruuden alku (alkuperäinen merkitys); aineen synty inflaation lopussa; tai aikakausi, jolloin aine oli nykyistä kuumempaa ja tiheämpää. Kirjassa on valittu viimeinen, epämääräisin vaihtoehto, vieläpä siten, että alkuräjähdys päättyy vasta atomien muodostumiseen, eli kestää 380 000 vuotta. Mutta tekstissä on tehty selväksi, miten termiä käytetään, mikä saattaa sentään lieventää väärinkäsityksiä.
Lopussa oleva kirjallisuusluettelo osoittaa, miten paljon hiukkaskosmologiasta suurelle yleisölle suunnattuja kirjoja onkaan suomeksi julkaistu. Joukossa ei kuitenkaan tätä ennen ollut ainuttakaan vain pimeälle aineelle omistettua teosta. Tämän paikan kirja täyttää, ja esittelee pimeästä aineesta kaiken oleellisen. Erityisen ajankohtainen kirja on niille, jotka haluavat syventää tietojaan tämän vuoden Nobelin palkinnon tiimoilta.
Päivitys (28/10/19): Korjattu havainto oletukseksi.
11 kommenttia “Paikan täyttäminen”
-
Pimeälle aineelle on omistettu aiemminkin kokonainen kirja suomeksi:
Kosminen Cocktail – Kolme osaa pimeää ainetta, Terra Cognita 2015
Kirjoittaja on Katherine Freese
Kirja oli ihan ok, mutta olen lukenut paljon parempiakin tietokirjoja fysiikan saralta.
-
eikös hiukkasfysiikan Standardimalli ennusta joitain asioita astronomisen epätarkasti
-
Sodassa, rakkaudessa ja pimeän aineen etsinnässä kaikki keinot ovat luvallisia. Siis ydinmagneettinen resonanssikin (NMR). Ao. linkissä esitetty prof. Dmitry Budkerin CASPEr (Cosmic Axion Spin Precession Experiment) tutkimushankkeen idea on, että pimeän aineen magneettikenttä vaikuttaa magneettisen hiili-13-isotoopin Larmor-prekessiotaajuuteen. Toistaiseksi tulos on ollut sama kuin muissa pimeän aineen etsinnöissä, mutta NMR-spesialistit uskovat, että menetelmän herkkyyden parantuessa jotain löydetään. Siitä voitaisiinkin antaa sitten kuudes NMR Nobel-palkinto Rabi’n, Bloch’in & Purcell’in, Ernst’in, Wuetrich’in ja MRI:n kehittäjien saamien palkintojen jälkeen.
https://phys.org/news/2019-10-piece-dark-puzzle.html
-
”vuorovaikuttaa ainakin miljardi kertaa heikommin kuin mitä alun perin ajateltiin” on puhekielen ilmaisu ja aiheuttaa ongelmia tulkitessa tekstiä matemaattisessa mielessä. Parempi olisi ilmaista esim. ”vuorovaikuttaa heikommin kuin miljardisosalla siitä kuin mitä alun perin ajateltiin” tai ”vuorovaikuttaa ainakin 99.9999999% heikommin kuin mitä alun perin ajateltiin”.
Kiitos kirja-arvostelusta. -
Ehdit jo kirjoittaa uuden blogimerkinnän mutta minulla olisi kysymys Tenkasen kirjaan liittyen joten laitan sen tänne. Primordiaaliset mustat aukot ovat yksi mahdollinen selitys pimeälle aineelle. Aineen ja antiaineen epätasapaino on tiedossa. Voiko antiaine muodostaa mustan aukon ja jos voi, niin eroaako sellainen musta aukko millään tavalla tavallisen aineen muodostamasta mustasta aukosta?
-
Hyvä kirjoitus, jonka ansiosta odotan parempaa tai perusteellisesti korjattua / täydennettyä kirjaa tästä aiheesta.
Terv. kiinnostunut amatööri
Vastaa
Spekulaatioista tieteeksi
Ruotsin kuninkaallinen tiedeakatemia ilmoitti tänään, että vuoden 2019 fysiikan Nobelin palkinnosta puolet saa James Peebles ja toisen puolen Michel Mayor ja Didier Queloz. Palkinto myönnetään ”ansioista maailmankaikkeuden kehityksen ja Maapallon paikan kosmoksessa ymmärtämisessä”. Peeblesin osuus annetaan ”teoreettisista löydöistä fysikaalisessa kosmologiassa”, Mayorin ja Quelozin ”auringonkaltaista tähteä kiertävän eksoplaneetan löytämisestä”.
Yleensä fysiikan Nobelin palkinnot annetaan yksittäisestä kokeellisesta tai teoreettisesta edistysaskeleesta, kuten maailmankaikkeuden kiihtyvän laajenemisen havaitsemisesta, alkeishiukkasten massojen alkuperän ymmärtämisestä, neutriinojen massojen löytämisestä tai törmäävien mustien aukkojen lähettämien gravitaatioaaltojen havaitsemisesta.
Mayorin ja Quelozin nobelinpuolikas sopii tähän kaavaan. Peeblesin kohdalla on sen sijaan kyse ennemmin elämäntyöpalkinnosta: palkinnon perusteluissa tuodaan esille työ usean aiheen parissa, nostamatta yhtä toisten ylitse. Lyhyen perustelun termi ”fysikaalinen kosmologia” kehystää tekstiä: Peeblesiä kuvaillaan avainhenkilöksi kosmologian siirtymässä ”spekulaatioista tieteeksi”. Tämä siirtymä ajoitetaan 1960-luvulle, tarkalleen Peeblesin vuoden 1965 tieteelliseen artikkeliin, jossa hän yhdisti kosmisen mikroaaltotaustan galaksien syntyyn. Myös fyysikko Jakov Zeldovitšin artikkeli samalta vuodelta mainitaan. Perustelujen mukaan näitä kahta artikkelia ”voidaan pitää alkupisteenä fysikaaliselle kosmologialle, missä fysiikan lakeja sovelletaan koko maailmankaikkeuteen”.
Tämä on liioiteltua. Kuten tekstissä mainitaan, koko maailmankaikkeuden käsittelyn yleisen suhteellisuusteorian keinoin aloitti jo Albert Einstein vuonna 1917, ja vuonna 1922 Aleksander Friedmann löysi mallin, jolla maailmankaikkeuden laajenemista kuvataan vielä nykyäänkin. Termillä ”fysikaalinen kosmologia” luultavasti haetaan sitä, että vasta muiden fysiikan haarojen yhdistäminen kosmologiaan teki siitä (ja yleisestä suhteellisuusteoriasta) todella hedelmällisen tieteenalan. Tämäkin kehitys tosin alkoi jo aiemmin: kuten taustamateriaalissa kerrotaan, vuonna 1948 Ralph Alpher, George Gamow ja (ainakin nimensä osalta) Hans Bethe yhdistivät ydinfysiikan ja kosmologian selittääkseen alkuaineiden synnyn.
Tämä ei muuta sitä, että Peebles todella on ollut keskeinen rooli monissa kosmologian tärkeimmissä oivalluksissa. Hän oli ensimmäisten joukossa ennustamassa kosmisen mikroaaltotaustan olemassaolon, selvittämässä kevyiden alkuaineiden syntyä, ja kehittämässä pimeän aineen malleja, joissa on kyse uudesta tuntemattomasta hiukkasesta. Peebles myös nosti nykyään pimeän energian nimellä tunnetun aineen kosmologian keskiöön yli 10 vuotta ennen kiihtyvän laajenemisen havaitsemista (jonka se selittää).
(Tiedeakatemian sekä suurelle yleisölle suunnatussa että tieteellisessä taustamateriaalissa on muuten selitetty väärin se, miten kosmisen mikroaaltotausta epätasaisuuksista voidaan päätellä avaruuden geometria. Edelliseen merkintään liittyen on huvittavaa huomata myös se, että ilmaisua big bang, alkuräjähdys, on käytetty näissä teksteissä eri tavalla: edellisessä termillä viitataan kaiken alkuun ja ja jälkimmäisessä aikakauteen, jolloin aine oli kuumaa ja tiheää.)
Kaikki nämä asiat ovat joko nykykosmologian varmennettuja menestyksiä tai tärkeitä avoimia kysymyksiä. Keskeisistä tutkimusaiheista vain aineen ja antiaineen välisen epäsuhdan synty ja kosminen inflaatio puuttuvat listasta; ne ovat hiukkasfysiikan puoleista kosmologiaa, ja Peebles on lähestynyt aihetta astrofysiikasta käsin. Peebles kyllä käytti inflaation ennusteita keskeisenä elementtinä pimeää ainetta ja pimeää energiaa koskevassa työssään. Joitakin kutkuttanee se, miten taustamateriaali esittelee (aivan oikein) inflaation muuhun kosmologiaan elimellisesti kytkeytyvänä tärkeänä osana, siitä kun ei ole vielä myönnetty Nobelin palkintoja, joita povataan ja janotaan.
Sattumoisin juuri tänään kurssilla Fysiikkaa runoilijoille sanoin, että pimeästä aineesta ei ole vielä annettu ainuttakaan Nobelin palkintoa, vaikka se havaittiin jo 86 vuotta sitten. Monet olivat toivoneet Vera Rubinille Nobelia pimeään aineeseen liittyvistä havainnoista, mutta hän kuoli 88-vuotiaana vuonna 2016 sitä saamatta.
Peeblesillä on ollut siinä määrin merkittävä rooli pimeän aineen muuttamisessa lähes varmaksi asiaksi, että lausuntoni voi katsoa kumotuksi: pimeä aine on tunnustettu Nobelilla. Taustaselityksissä pimeä aine esitetään jokseenkin varmennettuna tosiseikkana, josta on vain avoinna se, mistä hiukkasista on kyse. Erikseen mainitaan supersymmetriaan liittyvät nynnyt sekä aksionit, ja korostetaan tarvetta löytää pimeän aineen hiukkanen selvyyden saamiseksi.
Palkinto kunnioittaa paitsi Peeblesin monipuolista ja vuosikymmeniä uraa uurtanutta työtä, myös kosmologian kehittymistä rikkaaksi kokonaisuudeksi, jossa palaset ovat loksahtaneet paikoilleen hämmästyttävän saumattomasti. Mahdollisena särönä taustamateriaalissa mainitaan se, miten tällä hetkellä avaruuden avaruuden laajenemisnopeuden määrittäminen eri havainnoista antaa poikkeavia tuloksia, ja uskalletaan luvata että ”fysikaalisella kosmologialla on lisää yllätyksiä varastossa”.
13 kommenttia “Spekulaatioista tieteeksi”
-
Onko esimerkkejä toiseen suuntaan niin, että jo tunnustettu tiede olisikin palannut spekulaatioksi? Eli kuinka jo järkevän epäilyn ulkopuolelle asetettu hypoteesi/teoria kokeekin kolauksen – itselle mieleen tulee absoluuttinen avaruus ja aika, jota klassisesti pidettiin itsestäänselvyytenä, mutta osoittautuikin sitten spekulaatioksi…
-
https://iopscience.iop.org/article/10.3847/1538-4357/ab32da/pdf
Mustan aukon tapahtumahorisontti on vakiinnuttanut asemansa miltei ”järjellisen” epäilyksen ulkopuolella, mutta kun vahvoja todennuksia tai falsifiointia ei ole voitu saavuttaa, riittää yrityksiä osoittaa se spekulaatioksi. Tämä ei ole huono yrite.
-
En oikein ymmärrä miksi piti sekoittaa samaan Nobelin palkintoon kosmologiaan kuuluva aihe ja sitten eksoplaneetta-aihe ?
Eikö olisi ollut järkevämpää, kun kummatkin aiheet kai erikseenkin vaivatta ylittävät Nobel-riman, antaa palkinnot erillisinä vuosina ? -
Tällaisissa tapauksissa tulee sellainen olo, että yksin eivät olisi koko palkinnon arvoisia.
-
Syksystä oli hieno henkilökuva Ylen verkkosivuilla, Kulttuuricocktailissa.
Koska en ole missään sosiaalisessa mediassa, en pysty niitä kanavia pitkin kysymään yhtä mieltäni askarruttavaa seikkaa haastatteluun liittyen. Toivottavasti kirjoittaisit jossain näkemyksestäsi lisää.
”Ihmiskuntakin vääjäämättä kuolee sukupuuttoon maailmankaikkeuden mittakaavassa ihan kohta.”
Tuo kohta kiinnostaa erityisen paljon. Oletko tuota mieltä sinä vai toimittaja, ja jos se on sinun kertomaa, niin mihin tämä mielestäsi perustuu?
Onko kyseessä ilmastonmuutos, ydinsota, evoluution vääjäämätön tulema, Auringon pääsarjavaiheen päättyminen vai maailmankaikkeuden lopullinen kohtalo? Vai joku muu?
P.S. Pahoittelut, että tämä ei liity merkintään mitenkään, mutta en keksinyt muutakaan keinoa kysyä asiasta.
Vastaa
Kauneus, portti ja taide
Puhun tiistaina 22.10. kello 18.30 Kirkkonummen komeetan tilaisuudessa aiheesta Kauneus kosmologiassa. Tilaisuuteen on vapaa pääsy.
Puhun sunnuntaina 3.11. kello 15.45 Kauniaisten Uudessa Paviljongissa otsikolla Tiede porttina uuteen maailmaan. Puhe on osa Kauniaisten musiikkijuhlia, joiden teema on uusi maailma. Tiivistelmä on seuraavanlainen: ”Tiede on avannut oven arkitodellisuuden alle sekä ylle levittäytyvään tuntemattomaan maahan. Se on mullistanut niin kuvamme maailmasta ja ihmisestä kuin niiden monisyisestä suhteesta.” Tilaisuuteen on vapaa pääsy.
Mainittakoon, että avoinna on haku kuukauden taiteilijaresidenssin CERNiin tieteeseen liittyvän taiteen tekemiselle. Haku on avoinna Suomen kansalaisille ja Suomessa pysyvästi asuville. Residenssi kestää kuukauden. Matkat, majoitus ja ruokailu korvataan, ja residenssiin liittyy 5000 Sveitsin frangin apuraha. Englanninkielinen hakuohje on täällä. Haun deadline on 4. marraskuuta 2019.
Vastaa
Takaisin alkuun
Viime kuussa sai lukea niin kotimaisia kuin ulkomaisia otsikoita siitä, miten pimeä aine voi olla alkuräjähdystä vanhempaa. Ajattelin, että en kirjoittaisi tästä mitään, tiedekohujahan tulee ja menee. Mutta kun minulta on toistuvasti kysytty asiasta –varmaankin siksi, että tutkimuksen takana on suomalainen Tommi Tenkanen, joka työskentelee Johns Hopkins -yliopistossa– niin yritän hieman valaista sitä mistä on kyse ja mistä ei ole kyse.
Aiheesta julkaistujen juttujen selkeys oli vaihteleva, kuten odottaa sopii. (Tämä Helsingin Sanomien juttu on paremmasta päästä.) Tavalliseen tapaan harhaanjohtavimmat elementit ovat peräisin tieteellistä artikkelia markkinoivasta lehdistötiedotteesta, eivät toimittajien näpeistä. Tiedotteessa sanotaan, että pimeä aine voi koostua hiukkasista, jotka ovat syntyneet ennen alkuräjähdystä, ja voimme niiden avulla saada tietoa ajasta ennen alkuräjähdystä. Tiedotteen mukaan tutkijat ovat pitkään uskoneet, että pimeä aine on alkuräjähdyksen jäänne, ja silloin sitä olisi monissa tapauksissa jo pitänyt löytyä. Siinä myös kerrotaan, että ajatus siitä, että pimeä aine on ajalta ennen alkuräjähdystä ei ole uusi, mutta tätä ennen kukaan ei ole pystynyt esittämään laskuja, jotka tukisivat ideaa.
Yllä olevasta pieni osa on väärin, mutta oikeastaan kaikki on harhaanjohtavaa. Suurin ongelma on tapa, jolla ilmaisua ”ennen alkuräjähdystä” (”pre-big bang”) on käytetty. Sanaa alkuräjähdys käytetään kahdessa merkityksessä. Sillä on alun perin tarkoitettu kaiken ajan ja avaruuden alkua. Sittemmin jotkut ovat ruvenneet tarkoittamaan sanalla alkuräjähdys kaiken aineen syntyä kosmisen inflaation lopussa, tai vain maailmankaikkeuden laajenemista ja jäähtymistä. Jälkimmäinen käytäntö on omiaan johtamaan ihmisiä harhaan, ja mielestäni sitä kannattaa välttää, vaikka olen itsekin siihen sortunut.
Sekä tieteellisessä artikkelissa että tiedotteessa kyllä todetaan, että ilmaisulla ”ennen alkuräjähdystä” tarkoitetaan kosmisen inflaation aikaa. Miksei siis puhuta suoraan kosmisesta inflaatiosta?
Kun tiedotteessa todetaan, että mallin ennusteiden avulla voidaan saada tietoa ”alkuräjähdystä” edeltävästä ajasta eli inflaatiosta, niin tämä on totta. Muotoilu antaa kuitenkin ymmärtää, että tässä olisi jotain erityistä, vaikka asia on näin kaikissa inflaatiomalleissa, joita on julkaistu satoja kohta neljän vuosikymmenen ajan.
Yksinkertaisimmissa inflaatiomalleissa on yksi kenttä, jonka energiatiheys ajaa avaruuden kiihtyvää laajenemista. Inflaation aikana kvanttivärähtelyt saavat aikaan kupruja kentässä. Inflaation loputtua kenttä hajoaa tavalliseksi aineeksi ja pimeäksi aineeksi, ja nämä perivät kentän epätasaisuudet, joiden ympärille galaksit ja muut rakenteet sitten tiivistyvät.
Tenkasen artikkelissa pimeä aine ei ole peräisin inflaatiota ajavasta kentästä. Sen sijaan siitä vastaa erillinen kenttä, jolla on omat kvanttivärähtelynsä inflaation aikana. Lehdistötiedotteen väite siitä, että tällaista ideaa ei olisi aiemmin toteutettu ei pidä paikkansa.
Ensimmäisen tieteellisen julkaisun, jossa aineen eri osat ovat peräisin inflaation aikaisista eri kentistä, joilla on omat kvanttivärähtelynsä, kirjoitti Silvia Mollerach vuonna 1990. Ensimmäinen yksityiskohtainen kahden kentän mallin sovellus havaittuihin epätasaisuuksiin on Kari Enqvistin ja hänen silloisen jatko-opiskelijansa (ja huonetoverini) Martin Slothin käsialaa vuodelta 2001. Huvittavaa kyllä, Enqvist ja Sloth todella käsittelivät ”pre-big bang”-mallia, jossa säieteorian avulla voidaan jatkaa alkuräjähdyksestä taaksepäin. Tämä Tenkasen käyttämä termi viittaakin fyysikoiden keskuudessa yleensä tällaiseen mahdollisuuteen, ei kosmiseen inflaatioon. Myös ideaa, jossa pimeä aine koostuu erillisestä kentästä on tutkittu paljon. Yksi tunnetuimpia pimeän aineen kandidaatteja, aksionit, on siitä esimerkki (kuten Tenkanen artikkelissa tuo aivan oikein esille).
Mikä Tenkasen tutkimuksessa sitten on uutta? Siinä esitetään ensimmäistä kertaa, että inflaation aikana pimeän aineen kentän tila (ja siten pimeän aineen tiheys) määräytyy klassisen fysiikan ja kvanttivärähtelyjen vaikutusten välisestä tasapainosta. Tämä on kiinnostava ja huomion arvoinen idea. Toteutusta voi arvostella: artikkelissa sovelletaan vain massattomille kentille pätevää kvanttivärähtelyjen laskua kentille, joiden massa alkaa olla merkittävä, ja toisaalta kvanttivärähtelyjen oletetaan sammuvan heti kun kentän massa ylittää tietyn rajan, vaikka todellisuudessa siirtymä on jatkuva. Mutta nämä ovat yksityiskohtia, joista tutkijat voivat keskustella ja julkaista tarkempia analyysejä; on tavallista, että uuden idean ensimmäisessä versiossa tehdään yksinkertaistuksia, joita myöhemmin hiotaan.
Malli ennustaa, että aineen epätasaisuudet ovat pienessä mittakaavassa isompia kuin inflaatiomalleissa yleensä, tavalla jonka voisi todentaa havainnoilla. Tämä on kiinnostavaa. Mutta lehdistötiedote eksyy myös tarinoimaan, että jos pimeä aine olisi sen sijaan ”alkuräjähdyksen jäänne”, niin se olisi pitänyt jo monissa tapauksissa havaita. Kyllä, suurimmassa osassa osassa inflaatiomalleja pimeä aine syntyy inflaation loputtua ja kyllä, monissa pimeän aineen malleissa pimeän aineen hiukkasia olisi jo pitänyt löytyä, mutta näillä kahdella asialla ei ole mitään tekemistä toistensa kanssa.
Tapaus muistuttaa tammikuun uutisointia toisesta maailmankaikkeudesta, jossa aika kulkee taaksepäin. On tehty ihan tavallista kelpo tutkimusta, joka perustuu aiemmin tunnettuihin asioihin ja jossa otetaan pieni askel eteenpäin. Sitten asiasta uutisoidaan tavalla, joka hämärtää paitsi lukijoiden käsitystä siitä, mistä kyseisessä tutkimuksessa on kyse, myös siitä, mitä aiheesta ylipäänsä. Tämä ei ole uutta. Tuntuu siltä, kuin aina saisi palata ensimmäiseen hiukkaskosmologian blogimerkintääni 12 vuotta sitten, joka käsitteli tiedeuutisoinnin ongelmia; esimerkeistä ei ole sittemmin ollut pulaa.
Tutkijoiden ei tulisi laittaa nimeään harhaanjohtaviin tiedotteisiin, eikä toimittajien pitäisi uskoa kaikkea mitä tutkijat (saati yliopistojen PR-osastot) sanovat.
35 kommenttia “Takaisin alkuun”
-
Mukavaa, että tartuit aiheeseen. Moni kohta esittämässäsi kritiikissä onkin ihan aiheellista tai muuten pohtimisen arvoista.
Pidän termiä ”alkuräjähdys” parhaimpana kuvaamaan inflaation jälkeistä “kuuman alkuräjähdyksen” tilaa ja olen yrittänyt eri yhteyksissä promota esimerkiksi termin ”alkusingulariteetti” käyttöä silloin, kun puhutaan, no, alkusingulariteetista tai arkisemmin ilmaistuna kaiken alusta. Onhan meillä esim. yleisesti käytetty käsite ”alkuräjähdyksen nukleosynteesi”, jossa esiintyy termi ”alkuräjähdys”, mutta jolla ei ole mitään tekemistä alkusingulariteetin kanssa. Käsitteistö on muuten tällä hetkellä ristiriitaista ja luulen, että se hämärtää erityisesti suuren yleisön kuvaa siitä, mistä kulloinkin puhutaan ja mitä varmasti tiedämme tapahtuneeksi. Koska alkusingulariteetti sanana jo löytyy, mielestäni olisi syytä käyttää myös sitä.
Tietysti voi puhua ”alkuräjähdyksestä” ja ”kuumasta alkuräjähdyksestä” kuten tutkijoiden keskuudessa usein tehdään, mutta tämä on minusta hieman tarpeetonta hiusten halkomista. Kuumalle alkuräjähdykselle ja “alkuräjähdyksen” nukleosynteesille voisi tietysti keksiä myös jotkin ihan uudet nimet, mutta tuskin on realistista olettaa, että niitä aletaan käyttää. Eikä minusta tarvitsekaan, kun termi “alkusingulariteetti” jo löytyy.
Määrittelisin siis kosmoksen historiaa kuvaavan terminologian seuraavasti: (hypoteettinen) alkusingulariteetti -> tapahtumia, joista ei ole varmuutta -> kosminen inflaatio (tästäkään ei toki ole vielä täyttä varmuutta) -> alkuräjähdys -> tavanomainen laajeneminen (jonka voi vielä jakaa eri ajanjaksoihin, kuten “pimeään aikakauteen”, ensimmäisten tähtien syntyyn jne.). Sanoisin, että alkuräjähdys oli ajanjakso, joka kesti inflaation päättymistä seuranneesta maailmankaikkeuden lämpenemisestä kosmisen mikroaaltotaustan syntyyn ja siten sisälsi myös nukleosynteesin. Mielestäni määritelmä ei ole tyystin huono.
On syytä huomata, että lehdistötiedote ja artikkeli on kirjoitettu lukijalle, joka ei välttämättä ole aiheen asiantuntija. Termi “ennen alkuräjähdystä” on paitsi tarkoitettu herättämään mielenkiintoa (tapahtuiko tämä onnistuneesti vai ei, siitä voi tietenkin keskustella), myös ankkuroimaan kosmisen inflaation ajankohta. Kenties niissä olisi kuitenkin pitänyt vielä selventää, ettei tällä viitata alkusingulariteettiä edeltäneisiin tapahtumiin, mitä se sitten tarkoittaisikaan.
Mainitsit, että “kun tiedotteessa todetaan, että mallin ennusteiden avulla voidaan saada tietoa ’alkuräjähdystä’ edeltävästä ajasta eli inflaatiosta, niin tämä on totta. Muotoilu antaa kuitenkin ymmärtää, että tässä olisi jotain erityistä, vaikka asia on näin kaikissa inflaatiomalleissa, joita on julkaistu satoja kohta neljän vuosikymmenen ajan.” Tässähän on jotain erityistä: mallissa stabiilin pimeän ja tavallisen aineen energiatiheyden häiriöt eivät täysin vastaa toisiaan, eli teknisemmin ilmaistuna isokurvatuuriperturbaatio on nollasta poikkeavaa ja vieläpä kasvaa pienempiä kokoskaaloja kohti mentäessä. Tietenkin on myös sellaisia monen kentän inflaatiomalleja, jotka tuottavat isokurvatuuria ja on oma kysymyksensä, millä tarkkuudella sen lähteestä voidaan sanoa, mikäli sitä koskaan havaitaan. Periaatteessa myös Enqvistin ja Slothin epästabiilin kentän sisältämä kurvatonimalli voisi tuottaa samankaltaisen signaalin. Kaikkien näiden avulla voidaan luodata kosmisen inflaation aikaisia tapahtumia, enkä tiedä missä olisi sanottu, ettei asia olisi näin tai että olisin itse keksinyt tämän.
Kenties viittasit yo. lainauksella lehdistötiedotteen lauseeseen ”While the idea that dark matter existed before the Big Bang is not new, other theorists have not been able to come up with calculations that support the idea.” Se kieltämättä häiritsee itseänikin ja myönnän, että lause olisi joko pitänyt poistaa tai muotoilla toisin. Tästä kirjoitinkin jo omalle FB-seinälleni jokin aika sitten. Tiedotteen lause viittaa tämän tyyppisen pimeän aineen havaittaviin vaikutuksiin ja niiden antamaan tukeen mallille, ei siihen, etteikö muita kenttiä voisi olla olemassa inflaation aikana ja etteikö niillä voisi olla havaittavia vaikutuksia. Silti, kuten FB-seinälläni totesin, mallin tukemisessa ei kysymys tietenkään ole teoreettikkojen laskuista vaan viime kädessä havainnoista. Tätä lehdistötiedotteessa olisi pitänyt selventää.
Lopuksi täytyy sanoa, etten voi ottaa täyttä kunniaa sen keksimisestä, että tiettyjen olosuhteiden vallitessa inflaation aikana pimeän aineen kentän tila määräytyy klassisen fysiikan ja kvanttivärähtelyjen vaikutusten välisestä tasapainosta. Tämän nyt julkaistun artikkelin syntyyn vaikutti merkittävästi toinen artikkeli, jonka kirjoitin vuosi sitten Lontoon Imperial Collegessa työskentelevien Arttu Rajantien ja Tommi Markkasen kanssa (https://arxiv.org/abs/1811.02586), ja sitäkin edelsi Jim Peeblesin ja Alexander Vilenkinin paperi vuodelta 1999 (https://arxiv.org/abs/astro-ph/9904396), joka tosin ei ole saanut kovin paljon huomiota osakseen ja jonka mekin löysimme vasta kun olimme viimeistelemässä artikkeliamme.
Nyt julkaistun uuden artikkelini pääpointti on se, että aiempaa yksinkertaisempi skenaario riittää tuomaan klassisen fysiikan ja kvanttivärähtelyiden vaikutukset tasapainoon ja tuottamaan tätä kautta riittävästi pimeää ainetta. Artikkelissa myös näytän, millaisia havaittavia vaikutuksia tällä ja muilla vastaavilla malleilla on, kuten kirjoititkin.
-
Mieleen tuli vielä muutama kommentti:
Mainitsit, kuinka ”lehdistötiedote eksyy myös tarinoimaan, että jos pimeä aine olisi sen sijaan ’alkuräjähdyksen jäänne’, niin se olisi pitänyt jo monissa tapauksissa havaita. Kyllä, suurimmassa osassa osassa inflaatiomalleja pimeä aine syntyy inflaation loputtua ja kyllä, monissa pimeän aineen malleissa pimeän aineen hiukkasia olisi jo pitänyt löytyä, mutta näillä kahdella asialla ei ole mitään tekemistä toistensa kanssa.” Näillä on siinä mielessä paljonkin tekemistä toistensa kanssa, että monissa niissä tapauksissa, joissa pimeä aine olisi jo pitänyt havaita maanpäällisissä hiukkaskokeissa, ei ole mahdollista, että pimeä aine olisi syntynyt jo inflaation aikana. Tämä johtuu siitä, että pimeän ja tavallisen aineen välinen vuorovaikutus olisi näissä tapauksissa niin vahvaa, että pimeä aine väistämättä päätyi tasapainoon tavallisen aineen kanssa kuuman alkuräjähdyksen hiukkaspuurossa ja lopulta putosi pois tasapainosta, eli on väistämättä ”alkuräjähdyksen jäänne” ilman mitään mahdollisuutta saada tietää, miten tällainen aine käyttäytyi inflaation aikana, sillä informaatio siitä on tasapainon myötä pyyhkiytynyt pois. Sama ei toki päde toisin päin: mikäli pimeä aine ei päätynyt tavallisen aineen kanssa tasapainoon, se on voinut syntyä joko kosmisen inflaation aikana tai vasta sen jälkeen. Monissa näistä tapauksista sitä ei olisi vielä pitänytkään löytyä, kt. esim. https://arxiv.org/abs/1806.11122 (ja perään samankaltainen malli, jossa sen olisikin jo voinut löytää: https://arxiv.org/abs/1807.05022). Paljon on tottakai myös sellaisia malleja, joissa pimeä aine päätyi tasapainoon, mutta jota ei vielä ole ollut mahdollista havaita.
Toisena asian mainittakoon, että Mollerachin artikkeli ei itse asiassa ole ensimmäinen, jossa pohdittiin useamman kentän kvanttivärähtelyitä. Oman artikkelini julkaisun jälkeen tulin tietoiseksi tästä Michael Turnerin ja Lawrence Widrow’n paperista vuodelta 1988, jossa he pohtivat hyvin paljon oman artikkelini kaltaista tilannetta: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.37.3428 He myös epäsuorasti sanovat, että värähtelyt voivat tuottaa pimeää ainetta (mainitsemalla, että ”ainetta voi olla olemassa kiinnostavia määriä”), mutta eivät puntaroi muita havaittavia vaikutuksia enempää kuin toteamalla, että tällaisissa malleissa inflaation energiaskaala on rajoitettu. Artikkeli tosin on käytännössä täysin unohtunut, sillä 30 vuodessa se on kerännyt vain 10 viitettä.
-
-
Tarkoitin, että hiusten halkomista on termien ”alkuräjähdys” ja ”kuuma alkuräjähdys” käyttäminen siinä mielessä, että on mielestäni turha käyttää yhtä sanaa ja alkaa sitten lisäkäsitteillä jatkaa sitä tarkoittamaan eri asiaa kun yhtä hyvin toiselle voisi keksiä oman sanansa. Tai sitten käyttää olemassa olevaa ”alkusingulariteettia” ja vielä täsmentää perään, että tällaisesta ei sitten oikeasti ole mitään tietoa, siinä missä (kuuma) alkuräjähdys on pitävä fakta. Vakavasta asiasta on toki kysymys, eikä ketään pidä tietoisesti johtaa harhaan. Olet oikeassa siinä, että kosmologia on historiallisista syistä täynnä aika kummallista ja helposti harhaanjohtavaa käsitteistöä. Itsekin syyllistyn jatkuvasti termin ”reheating” käyttämiseen, mutta termiä ”rekombinaatio” en käytä koskaan. Tämä johtunee siitä, että rekombinaatiota voi kutsua esim. ”kosmisen mikroaaltotaustasäteilyn synnyksi”, mutta reheatingille en ole koskaan kuullut vaihtoehtoa. Voisihan sitä tietysti kutsua ihan vain ”heatingiksi”.
En itse ajatellut, että tiedotteesta saisi sitä kuvaa, että ko. mallille olisi aivan erityistä se, että ylipäänsä on mahdollista saada tietoa ajasta ennen alkuräjähdystä eli inflaatiosta. Eihän missään näin väitetä, vaan sanotaan vain, että ko. pimeän aineen mallilla voidaan näin tehdä. Päin vastoin, eksplisiittisesti todetaan, että idea inflaation aikana syntyneestä pimeästä aineesta ei ole uusi.
Kohdasta ”Niinpä se, että pimeä aine on vaikeasti havaittavaa ei kerro siitä, että se olisi syntynyt inflaation aikana. Jos tarkoitetaan ”alkuräjähdyksen jäänteellä” WIMPpejä, niin niiden toki olisi pitänyt jo näkyä. Mutta WIMPit (kuten tiedät) ovat vain pieni osa mahdollisista kandidaateista” olemme samaa mieltä. Tähän viittaa myös lehdistötiedotteen lauseen “If dark matter were truly a remnant of the Big Bang, then in many cases researchers should have seen a direct signal of dark matter in different particle physics experiments already” kohta ”in many cases”. Rajallisessa merkkimäärässä ei voi ihan kaikkea kertoa wimpeistä, siitä mitä ne ovat ja miksi niitä olisi pitänyt näkyä, tai miten asiaa ylipäätään tutkitaan ja mitä epävarmuustekijöitä tähän liittyy.
En sanoisi, että inflaatioon viittaaminen ”alkuräjähdystä edeltävänä aikana” on mitenkään erityisen harvinaista. Esimerkki tästä on esim. https://arxiv.org/abs/0812.3622, jossa käytetään termejä ”hot big bang” ja ”big bang” synonyymeinä toisilleen.
-
Kiitos mielenkiintoisesta, joskin vaikeatajuisesta keskustelusta. Olisiko tämä hyvä hetki kysyä kahdelta kosmologilta kerralla itseäni vaivannutta terminologista asiaa, joka liittyy myös tähän keskusteluun.
”Alkusingulariteetti” kuulostaa maallikosta asialliselta nimeltä jollekin hyvin ”pienelle”, josta emme tiedä käytännössä mitään. Kuitenkin termiä ”singulariteetti” käytetään monessa muussakin merkityksessä niin mustien aukkojen yhteydessä kuin matematiikassa. Mustan aukon singulariteetti vaikuttaa fysikaalisesti täydelliseltä vastakohdalta alkusingulariteetille. Onko järkevää käyttää ainakaan maallikoiden kuullen yhtä ja samaa perustermiä sekä mustan aukon että alkuräjähdyksen yhteydessä? Vai voisiko musta aukko toimia alkuräjähdyksen esiasteena jollekin toiselle maailmankaikkeudelle?
-
Syksy, termi big bang *ei*alun perin viitannut alkusingulariteettiin; Hoyle tarkoitti sillä Gamowin et al hot bing bang. Tässä hengessä ”alkuräjähdys” = (kuuma) hyvin tiheä alkutila. Kysymys singulariteetista on tästä erillinen.
-
Tenkanen: Tarkoitin, että hiusten halkomista on termien ”alkuräjähdys” ja ”kuuma alkuräjähdys” käyttäminen siinä mielessä, että on mielestäni turha käyttää yhtä sanaa ja alkaa sitten lisäkäsitteillä jatkaa sitä tarkoittamaan eri asiaa kun yhtä hyvin toiselle voisi keksiä oman sanansa. Tai sitten käyttää olemassa olevaa ”alkusingulariteettia” ja vielä täsmentää perään, että tällaisesta ei sitten oikeasti ole mitään tietoa, siinä missä (kuuma) alkuräjähdys on pitävä fakta. Vakavasta asiasta on toki kysymys, eikä ketään pidä tietoisesti johtaa harhaan.
Olen useasti ilmoittanut olevani fysiikan/kosmologian tavis ja kirjoitan sen mukaisesti. Tenkasen tutkimuksen julkinen tiedottaminen sisälsi kyllä raskasta harhaanjohtamista – (joidenkin osalta ehkä) tietoisesti ja (joidenkin osalta) tiedottomasti.
Big Bang/alkuräjähdys on surkea termi, mutta on valitettavasti jäänyt elämään. Väittäisin, että suuri yleisö yli 99 prosenttisesti liittää automaattisesti Big Bangin ja hypotettisen laskennallisen ”alun” eli singulariteetin toisiinsa (sehän nimenomaan oli Hoylen alkuperäinen ajatus). Tarvitsee vain astua tutkijoiden kammioista ulos huomatakseen tämän. Suomalaiset Enqvist ja Räsänen ovat popularisoidessaan koettaneet oikoa käsityksiä (esim Enqvistin kurvatoniteoria on kirjoissa tullut hyvin esille). Kaikille taviksille ei kyllä viesti ole mennyt perille (ehkä siksi että kosmologia käsitetään liian teoreettiseksi ja matemaattisesksi ja silloin jäävät elämään vain Big Bang/alkuräjähdys –tyyppiset epämääräiset sloganit).
Täällä Tiede-lehden palstoilla meillä on myös omat keskustelusivumme. Varsin yleinen vanhojen uskomusten ”vahvistuminen” jysähti myös Tenkasen tutkimusten tiedottamisesta. Olemme päässeet aikaan ennen alkua eli singulariteettiä!!! Hallelujaa. Itse yritin toppuutella sanomalla (HBBn mukaisesti), että tästä ei nimenomaan ollut kyse Tenkasen(kaan) tutkimuksessa. Eli ei jo vuosikymmeniä sitten Hawkingin ja Penrosen todistamasta suhtiksen singulariteetistä.
Höyrypäille ei pitäisi tarjota tällaisia aterioita.
-
Heikki Poroila: Singulariteetti on matematiikan termi, jolla viitataan pisteeseen, jossa matemaattinen objekti kuten vaikkapa jokin funktio ei ole hyvin määritelty. Sekä mustia aukkoja että aika-avaruutta globaalisti kuvaavat yleisen suhteellisuusteorian kenttäyhtälöiden ratkaisut sisältävät tällaisia pisteitä, joten siksi termillä ”singulariteetti” viitataan välillä mustiin aukkoihin, välillä maailmankaikkeuden (hypoteettiseen) alkuun. Singulariteetin kohdalla teoria ei ole hyvin määritelty, eikä sen pohjalta pystytä siksi sanomaan, millaisia luonnonlait ko. pisteessä ovat. Ei tiedetä, mitä mustan aukon tapahtumahorisontin sisällä on, joten ainoa rehellinen vastaus kysymykseesi siitä, voisiko musta aukko toimia alkuräjähdyksen esiasteena jollekin toiselle maailmankaikkeudelle on ”ehkä”, tai vielä rehellisemmin ”en tiedä”.
Syksy: Kiitos tuosta linkistä! Luen sen läpi heti kun ehdin.
Lentotaidoton: Jos ensin myöntää olevansa ”tavis ja kirjoittavansa sen mukaisesti”, kannattaa ehkä jättää painavien johtopäätösten tekeminen muille. Termin ”alkuräjähdys” käyttö on selvästi hämmentänyt ihmisiä, mutta viittaaminen tietoiseen harhaanjohtamiseen on aika paksua. Nähdäkseni tässä ei ole kysymys muusta kuin siitä, että eri yhteisöt (myös kosmologiayhteisön sisällä) käsittävät termin ja ovat tottuneet käyttämään sitä eri tavalla. Keskustelu siitä, mitä ajankohtaa/tapahtumaa/tapahtumasarjaa termillä ”alkuräjähdys” oikeastaan tarkoitetaan, ei ole mitenkään uutta. Tässä melko tuore esimerkki kolmen vuoden takaa: http://backreaction.blogspot.com/2016/07/can-we-please-agree-what-we-mean-by-big.html
-
Tietysti asia on näin kuin esität tutkijan näkövinkkelistä. Mutta pointti olikin siinä, että suurelle yleisölle tieteestä tiedottamisessa tulee huolellisesti pohtia sitä kenelle ja millä termeillä tiedotetaan. Monet huitaisevat tiedotteen alkulauseet tai pelkän otsikoinnin ja jäävät niiden pariin (ja kaljapäissä öristään sitten että juu juu Tenkanen sanoi niin).
Kun jo etukäteen tiedossa oli että: ”Nähdäkseni tässä ei ole kysymys muusta kuin siitä, että eri yhteisöt (myös kosmologiayhteisön sisällä) käsittävät termin ja ovat tottuneet käyttämään sitä eri tavalla. Keskustelu siitä, mitä ajankohtaa/tapahtumaa/tapahtumasarjaa termillä ”alkuräjähdys” oikeastaan tarkoitetaan, ei ole mitenkään uutta”, niin herranen aika sitä huolellisempi tulisi olla siinä, että selitetään MITÄ terminologiaa tutkija tässä tiedottamisessa käyttää (ja mitä ne termit merkitsevät).
Se, että tutkijat itse tietävät tasan tarkkaan missä mennään on laiha excuse.
”Johtopäätökset” tutkijayhteisössä lienevät ammatinkin puolesta yhteneväisiä, kaikenmaailman tavisyhteisöissä (eli ne joille tiedote oli osoitettu) eivät. Eikö nimenomaan TÄSSÄ olisi ollut oiva tilaisuus oikoa virhekäsityksiä (or is that too much asked)?
-
Lentotaidoton: Tiedotteessa käytetty terminologia on selitetty muun sisällön yhteydessä. Kuten Syksy yllä kirjoitti: ”Sekä tieteellisessä artikkelissa että tiedotteessa kyllä todetaan, että ilmaisulla ”ennen alkuräjähdystä” tarkoitetaan kosmisen inflaation aikaa.”
-
OK. Jotta ei jäisi väärinkäsityksiä niin puolustin kovasti juuri sinun käsitystäsi marssijärjestyksestä Tiede-foorumissa. Kritisoin huonoa tiedotuksen otsikointia.
-
-
-
-
-
Gamow ei tietenkään pohdiskellut 40-luvulla inflaatiota, joka on vakiintunut varteenotettavaksi hypoteesiksi vasta 70-luvulta.
Siten Hoylen heitto big bangista todellakin iskostui useita vuosikymmeniä sisältämään myös kaiken alun.
Hoyle itse totesi haastattelussa v. 1995, että sanat ovat kuin harppuunoja – kun ne ovat johonkin tarttuneet, niitä on hyvin hankala irrottaa. Ehkä olisi syytä uskaliaammin nimetä uniikisti epookkihypoteeseja (tässä esim. ”Inflaation pimeä aine”) sekaannusten välttämiseksi, kunnes/jos idea osoittautuu toimivaksi ja saa harppuunansa (esim. jälleen ansaitun nälvinnän johdosta) kiinni…
-
En halua lisätä bensaa kuuman keskustelun liekkeihin, mutta huomautan kuitenkin seuraavaa:
Kyselin työpaikallani, mitä ”alkuräjähdys” tarkoittaa. Kaikki sanoivat, että siinä joku pieni juttu lähtee (räjähtää) laajenemaan isommaksi.
Kyselyyni vastanneet henkilöt ovat koulutettuja*, keskiluokkaisia aikuisia ihmisiä.
Tämä kannattaa muistaa aina silloin, kun popularisoidaan kosmologiaa: yleiskielessä alkuräjähdys tarkoittaa nimenomaan sitä, että joku pieni juttu (i.e. alkusingulariteetti) lähtee nopeasti laajenemaan.
”Alkusingulariteetti” ja ”kuuma alkuräjähdys” menevät normi-ihmiseltä termeinä kirkkaasti yli hilseen.
*) Heillä on korkeakoulutason koulutusta joko humanistisella tai yhteiskuntatieteellisellä alalla; yhdelläkään ei ole yliopistotason opintoja matemaattisesta luonnontieteestä.
-
Jyri T:n kommentti on tärkeä. Kun ”yleis”kielessä (Jyri T) yleisesti käsitetään ”alkuräjähdys” yhdestä pisteestä ”räjähtäneenä” tarkoittaen singulariteettiä, niin tämä on poikinut kasoittain myös (ainakin minun mielestäni) ei-tieteellisiä näkemyksiä ja kannanottoja. Viittaan uskontoihin ja kaikenkarvaisiin New Age –oppeihin. Sekä maitokauppakosmologiaan. Solipsismi rulaa ja kovaa.
Ja tämä poikiminen johtaa tuhansiin ja taas tuhansiin hedelmättömiin ”keskusteluihin” (eli suomeksi räävittömiin kinasteluihin). Jonkun tai joidenkuiden tulisi tiedeyhteisössä tehdä SELVÄ ja tarpeeksi räväkkä julkinen ulostulo ja terminologiayhteenveto siitä, mitä näillä termeillä nykykosmologiassa tarkoitetaan (se, että se on kaivettavissa jostain tutkijan/tutkimuksen syövereistä, ei taida jaksaa jokapoikaa kiinnostaa).
Se, että singulariteettiä ei tiedetä tieteelliseksi muuta kuin hypoteesinä ja suhtiksen pätevyysalueen loppuna, tulisi (nöyrästi) tunnustaa ja tuoda ilmi (jo toimittajien otsikoissa). Tämän ymmärtämisestä on sitten ehkä turvallisempaa lähteä seuraamaan teoriapolkuja YLI standarditeorian. Nyt standarditeoria ja sen ylitykset menevät herttisen sekaisin. Ja niin menee keskustelukin.
-
-
Seurasin aikanaan Kari Enqvistin luentoa Tieteidentalolla. Jos muistan oikein, hän sanoi big bangista, ettei maailmankaikkeus saanut alkuaan yhdestä pisteestä, vaan se syntyi kaikkialla samaan aikaan. Hän myös totesi ainakin minua hämäävästi, että alussa maailmankaikkeus oli noin metrin kokoinen äärettömän kuuma ja tiheä plasmapallo. Mitenkähän näihin keskenään ristiriitaisiin tietoihin pitäisi suhtautua?
-
Tenkasen linkki: It might seem counterintuitive, because the way MOST PEOPLE (isot kirjaimet minun) conceive of the Big Bang is as a singular point of infinite density. If you say the Universe is expanding and cooling today, then you can extrapolate it back to a state where all the matter and energy was compressed into a single point in space: a singularity. This corresponds to an initial start time for our Universe — the beginning of our Universe — and that’s the Big Bang.
Vaikka asia kyllä selitetään jatkossa niin tässä(kin) selvästi myönnetään mikä on useimpien ihmisten käsitys Big Bangistä.
-
Wiki sanoo
Kosminen inflaatio on kosmologian teoria, jonka mukaan maailmankaikkeus koki alkuräjähdystä seuraavien sekunnin murto-osien aikana tyhjiöenergian aiheuttaman eksponentiaalisen laajenemisen vaiheen.
Huom. SEURAAVIEN -
Paluuviite: Kosmokseen kirjoitettua | Paikan täyttäminen
Vastaa käyttäjälle Lentotaidoton Peruuta vastaus
Kun kuplat kohtaavat
Yksi kosmologian keskeisiä kysymyksiä on se, miksi ainetta on olemassa. Onnistunein selitys on, että kaikki nykyinen aine syntyi ensimmäisen sekunnin pienen murto-osan aikana, kun kosminen inflaatio (eli avaruuden kiihtyvä laajeneminen) loppui ja sitä ajanut kenttä hajosi hiukkasiksi. Tästä seuraa yksi jatkokysymys: miksi kaikki näkemämme planeetat, galaksit ja muut rakenteet koostuvat aineesta, eivät antiaineesta?
Jos hiukkasella on sähkövaraus (tai johonkin muuhun vuorovaikutukseen liittyvä varaus), on olemassa antihiukkanen, joka on muuten samanlainen, paitsi että sen varaus on vastakkainen. Esimerkiksi negatiivisesti varattua elektronia vastaa positiivisesti varattu positroni. Kun hiukkanen ja antihiukkanen kohtaavat, ne tuhoutuvat eli muuttuvat toisiksi hiukkasiksi, usein enimmäkseen fotoneiksi ja neutriinoiksi.
Suurin osa maailmankaikkeuden aineesta on näkymätöntä eli pimeää ainetta. Ei tiedetä, millaisista hiukkasista pimeä aine koostuu, mutta suosituimmissa malleissa pimeää ainetta ja antiainetta on yhtä paljon. Niinpä hiukkaset ja antihiukkaset varhaisina aikoina tuhoavat toisiaan kiivaasti, kunnes maailmankaikkeuden laajenemisen takia ne eivät enää törmää toisiinsa, ja jäljelle jäänyt pieni osa alkuperäisistä hiukkasista muodostaa nykyisen pimeän aineen. Paikoissa, mihin gravitaation takia kertyy paljon ainetta, kuten galaksien keskustoissa, tuhoutumista voi kuitenkin vielä tapahtua, ja tämän voisi periaatteessa nähdä niistä hohkaavana valona. Kiistattomia havaintoja tästä ei toistaiseksi ole.
Näkyvän aineen kohdalla on toisin. Näkyvä aine koostuu elektroneista, protoneista ja neutroneista. Jos olisi aluksi yhtä paljon elektroneja ja positroneja (sekä protoneita yhtä paljon kuin antiprotoneita, ja neutroneita yhtä paljon kuin antineutroneita), niin näkyvää ainetta olisi jäänyt jäljelle miljardi kertaa vähemmän kuin mitä sitä nyt on. Ero pimeään aineeseen johtuu siitä, että näkyvä aine vuorovaikuttaa voimakkaammin: protonit ja antiprotonit vetävät toisiaan enemmän puoleensa kuin pimeän aineen hiukkaset ja antihiukkaset, joten ne myös tuhoavat toisensa tehokkaammin.
Niinpä jonkin varhaisen maailmankaikkeuden tapahtuman pitää saada aikaan enemmän näkyvää ainetta kuin antiainetta. Kun antiprotonit on kulutettu loppuun, pitää jäädä protoneita yli. Tälle tapahtumalle on annettu nimi baryogeneesi, baryonisen aineen synty. Baryoninen aine tarkoittaa ainetta, joka koostuu kvarkeista, kuten protonit ja neutronit. (Elektronit ovat yleensä sivustakatsojia tässä touhussa.)
Maailmankaikkeuden historiassa tunnetaan yksi tapahtuma, jossa aineen ja antiaineen välinen tasapaino voi järkkyä, nimittäin sähköheikko symmetriarikko. Siinä on kyse Higgsin kentän olomuodon muutoksesta.
Higgsin kenttä täyttää avaruuden ja antaa tunnetuille hiukkasille (paitsi ehkä neutriinoille) massat. Kuten vedessä on raskaampaa kävellä kuin ilmassa, Higgsin kentän läpi on raskasta matkata. Kun maailmankaikkeuden lämpötila on tarpeeksi korkea (miljoona miljardia astetta), Higgsin kenttä kuitenkin sulaa, eikä enää haittaa hiukkasten liikettä. Tai jos tarkastellaan asioita oikein päin ajassa, niin varhaisina aikoina Higgsin kenttä on sula ja sitten jäätyy.
Jäätyminen alkaa eri paikoissa eri hetkinä, joten avaruuteen syntyy kuplia, joiden sisällä kenttä on jäässä ja ulkopuolella se on vielä sula. Kuplat kasvavat ja hiukkaset törmäilevät niiden seiniin. Koska hiukkaset vuorovaikuttavat eri tavalla jäätyneen ja sulan Higgsin kentän kanssa, kuplien seinien tienoilla antiainetta muuttuu aineeksi. Lopulta kuplat kattavat koko avaruuden, eli Higgsin kenttä on jäätynyt kaikkialla, ja jäljelle jää enemmän ainetta kuin antiainetta.
Ideassa on pieni ongelma: jos on olemassa vain tunnetut hiukkaset, Higgsin kentän olomuodon muutoksessa ei synny kuplia. Tapahtuma on silloin kuin kuuman veden tasainen muutos kaasuksi, ilman suurta eroa kahden olomuodon välillä. Asian voi ilmaista myös niin, että jos Higgs on vastuussa aineen ja antiaineen epäsuhdasta, on olemassa uusia hiukkasia, jotka tekevät muutoksesta jyrkemmän. Niiden massat eivät saa olla kovin paljon Higgsin massaa isompia, koska muuten ne eivät merkittävästi vaikuta sen olomuodon muutokseen.
Juuri tällaisten hiukkasten etsiminen on yksi CERNin hiukkaskiihdytin LHC:n pääasiallisia tehtäviä. Toistaiseksi mitään ei ole näkynyt tarkasta syynistä huolimatta. Tämän takia katseet ovat kääntyneet taivaalle.
Kuplien törmäykset eivät vain sekoita aineen ja antiaineen suhdetta, ne myös synnyttävät gravitaatioaaltoja. Kuplien seinissä on paljon energiaa. Niinpä niiden törmäykset ravistelevat avaruutta kovalla kädellä, kuten mustien aukkojen törmäykset nykyään.
Helsingin yliopistolla kollegani Mark Hindmarsh ja David Weir ovat kunnostautuneet näiden törmäysten tarkassa tutkimisessa. He ovat ensimmäisinä maailmassa laskeneet, millaisia gravitaatioaaltoja jyrkässä olomuodon muutoksessa kasvavien kuplien törmäyksissä syntyy. Muutkin kuin fyysikot voivat nauttia heidän elokuvistaan, jotka havainnollistavat laskujen tuloksia. Alla olevassa videossa näkyy kuplien synty, törmäykset ja yhtyminen.
Alla olevassa videossa näytetään, miten kuplien törmäykset synnyttävät gravitaatioaaltoja.
Elokuvasta näkee, että gravitaatioaaltoja syntyy vielä kuplien katoamisen jälkeen aineen velloessa väkivaltaisesti ympäriinsä.
Satelliittikolmikko LISA, joka nousee Aurinkoa kiertävälle radalle 2030-luvun puolivälissä, voi havaita Higgsin kuplista syntyneitä gravitaatioaaltoja. Joku voisi sanoa, että motivaatio niiden etsimiselle on heikko koska LHC ei ole nähnyt mitään. Toisaalta voi ajatella, että juuri siksi gravitaatioaallot ovat tärkeitä: jos Higgsin kuplien synnyttämiä aaltoja nähdään, ne ovat varma ja ainutlaatuinen merkki uusista hiukkasista ja vuorovaikutuksista.
On myös jännite onnistuneen baryogeneesin ja gravitaatioaaltojen näkemisen välillä. Gravitaatioaallot ovat sitä vahvempia, mitä rajumpia kuplien törmäykset ovat, eli mitä nopeammin niiden seinät liikkuvat. Toisaalta antiaineen ja aineen epäsuhdan kehittyminen vie oman aikansa, joten sen kannalta on parempi, jos seinät liikkuvat hitaasti.
Mutta LISA-koe on rakennettu pääasiassa galaksien keskustoissa lymyävien mustien aukkojen muodostumista ja muita myöhäisen maailmankaikkeuden tapahtumia silmällä pitäen, Higgsin kentän mahdollisia kuplia tulee etsittyä samaan hintaan.
Jos Higgs on vastuussa siitä, että ainetta on enemmän kuin antiainetta, se olisi sille yksi tehtävä lisää, hiukkasten massojen ja ehkä kosmisen inflaation lisäksi. Jos Higgs ei pysty hommaa hoitamaan, niin hiukkaskosmologit ovat keksineet muitakin keinoja, kuten steriilien neutriinoiden muuttumisen toisikseen, josta ehkä toiste enemmän. Se, että gravitaatioaallot saattavat kertoa asian laidan osoittaa, miten hiukkasfysiikka ja kosmologia ovat toisiinsa kietoutuneita.
Päivitys (20/09/19): Lisätty sanat ”kolmiulotteisilla simulaatioilla”.
21 kommenttia “Kun kuplat kohtaavat”
-
Ovatko nämä kuplat meidän maailmankaikkeudessamme vai edustavatko nämä rinnakkaismaailmankaikkeuksien kuplia?
-
”Koska hiukkaset vuorovaikuttavat eri tavalla jäätyneen ja sulan Higgsin kentän kanssa, kuplien seinien tienoilla antiainetta muuttuu aineeksi.” Ymmärsinkö oikein, että tämän mukaan siis kuplien seinien tienoilla osa antiaineesta olisi muuttunut aineeksi ja tästä syystä ainetta on lopulta enemmän kuin antiainetta?
Voisiko tästä lausua jokusen sanan lisää, miten ja miksi tämä oikein tahtuu?
Tapahtuuko näin myös pimeälle aineelle?
-
”Jos olisi aluksi yhtä paljon elektroneja ja positroneja (sekä protoneita yhtä paljon kuin antiprotoneita, ja neutroneita yhtä paljon kuin antineutroneita), niin näkyvää ainetta olisi jäänyt jäljelle miljardi kertaa vähemmän kuin mitä sitä nyt on.”
Olisiko antaa tälle väitteelle tutkimusviite?
-
Onko noissa tutkimusrahaa nuoleskelevissa videoissa havaittavissa aaltojen interferenssiä? Ja jos on, niin mitä tarkoittaisi gravitaatioaaltojen annihilaatio energian säilymisen kannalta?
-
Merkitseekö tämä että avaruuden suuren mittakaavan tihentymissä ”härmistyminen” hidasti tavallista ainetta nopeammin kuin anti ainetta. Eli on olemassa kenttä – ”UUDET HIUKKASET”, joka faasimuutostilassa esti annihiloitumista protonien osalta. Ovatko nämä oletetun ”jyrkkyysmuutoksen” aiheuttajat,uudet hiukkaset, siis skalaaribosoneja kuten HIGGS?
-
”Niinpä jonkin varhaisen maailmankaikkeuden tapahtuman pitää saada aikaan enemmän näkyvää ainetta kuin antiainetta. Kun antiprotonit on kulutettu loppuun, pitää jäädä protoneita yli. Tälle tapahtumalle on annettu nimi baryogeneesi, baryonisen aineen synty.
Jos hiukkasia ja antihiukkasia on yhtä paljon, näitä siirtymiä tapahtuu yhtä paljon kumpaakiin suuntaan, eli baryoneita syntyy yhtä paljon kuin antibaryoneita. Mutta seinämän aikaansaaman epäsuhdan takia baryoneja syntyy ja jää jäljelle enemmän.”Standardimallihan sisältää myös ns Sakharovin ehdot baryogeneesiin. Mutta hyvin heikosti (esim sähköheikko symmetriarikko joka selittää vain pienen osan epätasapainosta). Aikanaan tähän selitykseksi ehdotettiin erilaisia GUT-teorioita. Nyt jahdataan esim mahdollista protonin hajoamista (GUTin ennustaman X-bosonin kautta).
Näillä mainitsemillasi kuplilla ja GUTeilla ei ilmeisesti ole mitään yhtymäkohtaa baryogeneesin selityksenä (eli liikumme eri energiaskaaloissa)?
-
”GUT-skaalan majorana-neutriinoiden hajoamisella ei ole mitään tekemistä sphaleronien kanssa.”
Baryonigeneesiä vastaava prosessi leptoneille on nimeltään leptonigeneesi, ja se on esitetty olevan baryonigeneesin alkusyy. Leptoniepäsymmetria voi nimittäin niin sanotun Sphaleron-ilmiön seurauksena muuttua baryoniepäsymmetriaksi.
Baryoniepäsymmetria muodostuu leptonigeneesin kautta kahdessa vaiheessa. Ensimmäisessä vaiheessa leptoniluvun 4 säilymistä rikkovat raskaiden Majorana-neutriinojen hajoamiset synnyttävät leptoniepäsymmetrian. Toisessa vaiheessa, sähköheikon vaiheen aikana, sphaleronvuorovaikutukset muuntavat osan syntyneestä leptoniepäsymmetriasta baryoniepäsymmetriaksi.
Lopulta M + 4N-lukua rikkovat sphaleron-vuorovaikutukset muuttivat osan leptoniepäsymmetriasta maailmankaikkeudessa nykyään havaituksi baryoniepäsymmetriaksi
https://jyx.jyu.fi/bitstream/handle/123456789/41303/URN:NBN:fi:jyu-201305031552.pdf?sequence=1Eli Sphaleron vuorovaikutukset vasta sähköheikon vaiheen aikana? Näinkö? Älä hermostu, yritän vain tehdä asian itselleni selväksi.
Odotamme innolla sitä luvattua jatkoa.
-
Tai toisinpäin L(4) ja B(4N). Noista pdf:istä maalatessa ja kopioidessa saa olla tarkkana ja lukea aina siirretty teksti vielä kunnolla. Lähde kun oli mainittu, pystyi tarkistamaan.
-
Sitä onko neutriino oikeakätinen steriili Majorana-hiukkanen (eli oma antihiukkasensa) voidaan tutkia neutriinottomalla kaksoisbetahajoamisella. Esim seesaw-mekanismissa neuriino on Majorana fermioni. CP-symmetrian rikkoutuminen ja oleminen pois termisestä tasapainosta täyttävät Saharovin ehdot (kaksi niistä ja tämä edellyttää Majorana hiukkasta). Myös LHC:ssä tutkittu. Toistaiseksi ei havaittu.
Se on itse asiassa ihan vain ”Kosmologiakurssi”, ”la” viittaa lauantaihin. 🙂
Luentani eipä ollutkaan typäkkä. Kiitos, korjasin.
Toivottavasti kurssi järjestetään uudestaan esimerkiksi syksyllä (pun intended) tai seuraavana keväänä, kiinnostusta olisi epäilemättä!
Kurssin tulevaisuus riippuu siitä, millaisia muita opetusvelvollisuuksia minulla on. Jos minulla on sen luennoimiseen aikaa muilta kursseilta, niin varmaan luennnoin kurssin vielä.
Miten keskustelevaan sävyyn tuota kurssia tullaan käymään? Saattaa nimittäin olla, että Suomen johtavat crackpot-fyysikot ilmaantuvat sankoin joukoin paikalle 🙂
Yleisön kysymykset ovat tärkeä osa niin ammatillisia kuin populaareja luentoja fysiikasta.
Olisiko se mahdollista striimata?
Kysyy nimimerkki Epätietoinen Lapista
Tuota täytyy kysyä Ursalta.
Käytkö luennoimassa ”beyond the border of wolves”?
Olen luennoinut mm. seuraavissa paikoissa Suomessa (järjestys sattumanvarainen): Luopioinen, Utsjoki, Rovaniemi, Oulu, Turku, Tampere, Kajaani, Mikkeli, Kuopio, Mänttä, Joensuu, Lappeenranta, Pori, Porvoo, ja muuallakin, kaikkia en muista.
Hei,
Olisiko mahdollista järjestää/siirtää luento isompaan saliin, jotta me ulkopuolelle jääneet saisimme mahdollisuuden osallistua?
Sari
Minulla ei ole järjestelyihin osaa eikä arpaa, tällaiset kysymykset sopii suunnata Ursalle.