Maailmankuvasta, kulttuurista ja opetuksesta

3.9.2020 klo 16.38, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Kurssini Fysiikkaa runoilijoille alkoi tiistaina 1.9.. Kurssilla avataan fysiikan käsitteitä ja maailmankuvallista merkitystä. Aiheisiin kuuluu klassinen mekaniikka, suhteellisuusteoria, kvanttifysiikka, kosmologia sekä yritykset kohti kaiken teoriaa. Lisää kurssista täällä.

Luennot Zoomissa ovat avoimia kaikille ja ne nauhoitetaan. Linkki luentoihin ja nauhoitukset ovat kotisivulla. (Luentoja ei ole suunniteltu myöhemmin katsottavaksi, ja ne toiminevat paremmin livenä.)

Puhun torstaina 10.9. kello 15.02-15.55 Ylen Kulttuuriykkösellä scifielokuvan Tenet fysiikasta ja muustakin.

Mainittakoon, että juttelen torstaina 1.10. (varmaan 15.02-15.55) Ylen Kulttuuriykkösellä kirjailija Jorge Luis Borgesin teoksista, jotka liittyvät ainakin scifiin, saa nähdä tuleeko fysiikkakin esille.

Matemaattisten Aineiden Opettajien Liitto MAOLin jäsenille tiedoksi, että puhun syyskoulutuspäivillä etänä lauantaina 3.10. fysiikan opetuksesta.

Joitakin saattaa kiinnostaa kesällä tullut Ylen Kutsuvieras-ohjelma, jossa olin vieraana. Käsittelin siinä jonkin verran fysiikan tekemistä ja fyysikon polkua, muiden asioiden muassa. Ohjelma on kuunneltavissa 21.7.2021 asti. Tässä artikkeli ohjelmasta.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Myyttisiä lintuja

31.8.2020 klo 11.24, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Luin Richard Baumin ja Willian Sheehanin kirjan In Search of Planet Vulcan: The Ghost in Newton’s Clockwork Universe. Se käsittelee erästä historian suurinta tieteellistä vallankumousta, nimittäin Newtonin gravitaatioteorian korvautumista yleisellä suhteellisuusteorialla. Näkökulma on sikäli kiinnostava, että suhteellisuusteoria on vain pikkujuttu lopussa. Pääosassa on Newtonin teorian kehitys, kukoistus ja lopullinen kaatuminen ongelmaan, jota yritettiin paikata Vulkanus-planeetalla. Baum ja Sheehan käyvät vaiheet läpi keskeisten henkilöiden historian kautta tuoden esille kiinnostavia yksityiskohtia.

Tarina lähtee liikkeelle vuonna 1642 Isaac Newtonista. Hänen äitinsä palvelijoiden mielestä Isaac ”ei kelpaa muualle kuin yliopistoon”, ja sepä hänen kohtalokseen koituikin. Kahdessa vuosikymmenessä 1660-luvulta 1680-luvulle Newton kehitti rakennelman, joka tunnetaan nykyään Newtonin mekaniikkana eli klassisena mekaniikkana. Se oli ensimmäinen fysiikan teoria. Yksi sen keskeinen osa oli Newtonin gravitaatioteoria, jonka mukaan jokainen kappale vetää muita puoleensa voimalla, joka on verrannollinen kappaleen massaan ja kääntäen verrannollinen kappaleiden etäisyyden neliöön.

Newtonin teoria selitti Johannes Keplerin havainnot, joiden mukaan planeetat liikkuvat ellipsin muotoisia ratoja Auringon ympäri. Newton meni Kepleriä pidemmälle selittämällä myös sen, että planeettojen radat poikkeavat ellipseistä, koska niihin vaikuttavat Auringon lisäksi myös muut planeetat.

Säntilliset havainnot olivat fysiikan kehityksen ytimessä, ja fysiikan edistys taasen johti tarkempien havaintolaitteiden kehittämiseen. Uuden teleskoopin avulla William Herschel vuonna 1781 mullisti käsityksen maailmankaikkeudesta löytämällä kokonaisen uuden planeetan, jonka nimeksi tuli Uranus.

Herschel itse ehdotti nimeä Georgium Sidus, suomeksi siis Yrjöjen tähti, kuninkaallisen tukijansa George (eli Yrjö) III:n mukaan. Avaruutta tutkittiin siinä missä tuntemattomia seutuja Maassa ja kunniaa taivaan löydöistä jaettiin kuin siirtomaiden valloitusretkistä. Kolme vuosikymmentä Uranuksen löytämisen jälkeen George III:n hallinnosta kirjoitettiin seuraavasti:

”on totta, että menetimme Amerikan kolmentoista siirtokunnan terra firman [kiinteän maan], mutta meidän tulisi olla tyytyväisiä saatuamme tri Herschelin kenraalintaitojen avulla vastineeksi paljon laajemman terra incognitan in nubibus [tuntemattoman maan pilvissä]”

Planeettojen löytämistä (kuten 1900-luvulla Kuun ”valloitusta”) pidettiin enemmän kansallisen kunnian kuin käytännön kysymyksenä. Tosin jo Kepler oli vuonna 1608 kirjoittanut avaruusmatkailusta, ja planeettoja pidettiin elinkelpoisina, eikä tutkimusmatkojen ulottamista niihin pidetty mahdottomana.

Fysiikan menestyksellä oli valtava ideologinen merkitys. Newtonin teoria alisti aiemmin salaperäiset taivaan ilmiöt väistämättömien lakien avulla ihmisjärjen käsitettäviksi. Sattumanvaraisen tuhon tuojina nähdyt komeetat näyttivät nyt kasvonsa vain Newtonin teorian määrääminä ajankohtina: fysiikka valjasti kaaoksen airuet järjestyksen näytekappaleiksi. Jo protofyysikko Francis Bacon oli vuonna 1620 liittänyt tieteen menneiden kuvitelmien haamujen karkottamisen, järjen voittokulkuun ja maailman hallitsemiseen.

Vanhaa järjestystä vastaan asettuvasta vallankumouksellisesta (ja vallankumouksen jälkeisestä) Ranskasta tuli yksi klassisen mekaniikan johtavia tutkimuskeskuksia. On esitetty, että Newtonin ylenpalttinen ihannointi haittasi Iso-Britanniassa rakentavan kriittistä suhtautumista hänen teoriansa kehittämiseen. Pierre-Simon Laplace, eräs klassisen fysiikan ja taivaan tutkimisen kärkinimiä, ilmaisi ”maailmanjärjestystä” (eli tähtitiedettä) käsittelevän vuoden 1796 kirjansa johdannossa alan merkityksen seuraavasti:

”Tähtitieteiden suurin hyöty on se, että ne ovat häivyttäneet tietämättömyydestä syntyneet väärinkäsitykset todellisista suhteistamme luontoon, väärinkäsitykset, jotka ovat sitä vaarallisempia, kun yhteiskuntajärjestyksen tulee perustua ainoastaan näihin suhteisiin. Totuus ja oikeudenmukaisuus ovat sen järkkymättömiä peruskiviä. Olkoon kaukana meistä se ohjenuora, että voi joskus olla hyödyksi pettää tai orjuutta ihmisiä heidän onnensa paremmaksi varmistamiseksi! Pahat kokemukset ovat kaikkina aikoina todistaneet, että näitä pyhiä lakeja ei ole seurauksitta rikkominen.”

Tähän parlamentin alahuoneelle omistettuun tekstiin on saattanut vaikuttaa Laplacen oma tilanne. Laplace kun oli menettänyt virkansa, koska häneltä katsottiin puuttuvan ”tasavaltalaisia hyveitä ja kuningasvihaa”.

Taivaankappaleiden ratojen yksityiskohtien selvittäminen vaati pitkiä ja monimutkaisia laskuja. Joskus usko petti ja Newtonin gravitaatiolaki haluttiin korvata sellaisella, joka tekisi havaintojen selittämisestä suoraviivaisempaa. Lakien muuttaminen halutun tuloksen saamiseksi (mitä esiintyy fysiikassa halki aikojen) on helppoa, jos voi säätää uuden lain miten tahtoo perusteista välittämättä. Se on usein myös lyhytnäköistä, eikä tässäkään vienyt maaliin. Newton kamppaili pitkään Kuun liikkeiden selittämiseksi, onnistumatta, ja lopulta kesti 60 vuotta, ennen kuin Auringon, Maan ja Kuun tanssin askeleet saatiin laskettua, muun muassa Laplacen oivallusten ansiosta.

Toinen ongelma, jonka ratkaisuksi esitettiin gravitaatiolain muuttamista, oli Uranuksen liikkeet. Oikea tie löytyi taas muualta, yksityiskohtaisten laskujen kautta. Urbaine Le Verrier laski vuonna 1846 millaisen planeetan vetovoima selittäisi erot Uranuksen lasketun radan ja havaintojen välillä. Planeetta löytyikin saman tien vain asteen päästä Le Verrierin ennustamasta paikasta. Tässä, kuten äkillisissä tieteellisissä murroksissa usein, oli mukana ripaus tuuria. Le Verrierin laskuissa oli iso virheraja, eikä löydetty planeetta täysin vastannut Le Verrierin ennustusta. Tämä ei juuri himmentänyt loistoa.

Le Verrier sujautti julkiseen keskusteluun ehdotuksen planeetan nimeämistä itsensä mukaan, mutta lopulta päädyttiin hänen ensin ehdottamaansa nimeen Neptunus. Brittiläinen tähtitieteilijä W.P. Smyth varoittikin siitä, mihin planeettojen nimeäminen löytäjien mukaan voisi johtaa: ajatella jos seuraavan löytäisi saksalainen tai joku ties minkä kansan jäsen.

Uuden planeetan ennustaminen, ”tähden löytäminen kynän kärjellä”, oli läpimurto. Jälleen kerran Newtonin teorian ongelmat ratojen selittämisessä oli käännetty suurenmoiseksi voitoksi. Niinpä seuraavankin ongelman ratkaisuksi ehdotettiin uutta planeettaa.

Merkuriuksen, kuten muidenkaan planeettojen, rata ei ole tarkalleen ellipsin muotoinen. Sen sijaan, että Merkurius palaisi joka kierroksella samaan paikkaan, sen rata kiertyy hieman. Newtonin teoria ennustaa tämän ilmiön, ja siitä voi laskea tismalleen paljonko rata kiertyy. Le Verrier osoitti syyskuussa 1859, että Merkuriuksen rata kiertyy enemmän kuin mitä tunnetut planeetat selittävät. Neptunus-menestyksensä nosteessa hän esitti, että vastuussa on Merkuriuksen ja Auringon välissä oleva uusi planeetta, Vulkanus.

Kuten Neptunus, myös Vulkanus nähtiin hetimiten, saman vuoden joulukuussa. Tosin havaintoihin sopivan planeetan massa oli miljoona kertaa ennustettua pienempi, mutta eipä Neptunuskaan ollut täysin vastannut ennusteita, joten Le Verrieriä juhlittiin silti.

Toisin kuin Neptunuksen kohdalla, havainnon varmentaminen osoittautui kuitenkin ongelmaksi. Epäilyjä oli alusta alkaen. Vulkanusta etsittiin odottamalla sen kulkevan meidän ja Auringon välistä, jolloin planeetta näyttäytyisi Auringon kasvojen halki matkaavana kiekkona. Jotkut raportoivatkin nähneensä planeetan – Auringossahan on kaikenlaisia täpliä. Toiset taas katsoivat osoittaneensa, että planeettaa ei ole, kun mitään ei näkynyt.

Idean tueksi esitetyt havainnot rupesivat olemaan ristiriidassa keskenään, eikä planeetta edes pystynyt selittämään Merkuriuksen radan kiertymistä. Niinpä Vulkanuksen rataa muokattiin ja sille laitettiin seuraksi joukko asteroideja – jolloin tuli uudeksi ongelmaksi se, miksi asteroideista heijastuvaa valoa ei nähdä, vaikka niiden pitäisi olla kirkkaita, lähellä Aurinkoa kun ovat. Tähtitieteilijä C.H.F. Peters nimitti touhua Le Verrierin myyttisten lintujen jahdiksi.

Pariisin observatorion eteen pystytettiin vuonna 1888 Le Verrierin patsas, jonka jalustaan oli kaiverrettu Aurinkokunta, Vulkanus mukaan lukien. Patsas on tallella, mutta Vulkanus on sittemmin hiottu pois. 1800-luvun loppupuolella kamerat korvasivat ihmissilmät Auringon tarkkailussa, eikä mielikuvitukselle jäänyt sijaa Vulkanus-havaintojen siivittämiseen.

Uuden planeetan tyrmääminen jätti jäljelle ongelman Merkuriuksen radan selittämisestä. Kun havainnot oli todettu luotettaviksi, oli vain kaksi vaihtoehtoa: joko on tuntematonta ainetta tai Newtonin gravitaatiolaki ei päde. Yksi yritys jälkimmäiseen suuntaan oli ehdotus, että gravitaatiovoima ei olekaan kääntäen verrannollinen etäisyyden neliöön, vaan etäisyyden potenssiin 2.00000016. Tämä on esimerkki teorian muokkaamisesta sopimaan havaintoihin, eikä kestänyt lähempää tarkastelua. Mutta vaikka reitti ei vienyt kohti ratkaisua, idea siitä, että gravitaatio on lähellä Aurinkoa vahvempi kuin mitä Newtonin teoria ennustaa oli oikea.

Ratkaisu saatiin vasta vuonna 1915, kun Albert Einstein ja David Hilbert löysivät yleisen suhteellisuusteorian. Yleisen suhteellisuusteorian mukaan gravitaatio ei ole voima, vaan aika-avaruuden kaarevuuden ilmentymä. Kun kaarevuus on pieni ja kappaleiden nopeudet ovat vähäisiä, kappaleiden radat ovat suunnilleen samat kuin Newtonin teoriassa. Lähellä Aurinkoa kaarevuus on kuitenkin sen verta isompi kuin muualla, että Merkuriuksen rataan tulee se tarvittu lisäkierre, jonka Le Verrier oli määrittänyt havainnoista 1859 (ja jota oli sittemmin tarkennettu).

Yleistä suhteellisuusteoria ei tarvinnut säätää Merkuriusta varten. Teorian lähtökohdilla ei ollut mitään tekemistä Aurinkokunnan kanssa, mutta se automaattisesti selitti ja ennusti siihen liittyviä havaintoja. Tällainen hedelmällisyys on toimivien teorioiden tunnusmerkki. Nykyään Merkuriuksen radan kiertyminen esitetään, aivan oikein, tärkeänä todistuskappaleena yleisen suhteellisuusteorian puolesta.

Sen sijaan Merkuriuksen radan kiertyminen ei yksinään todistanut Newtonin teorian olevan väärässä. Teorioita ei hylätä vain siksi, että ne eivät sovi havaintoihin, pitää olla jotain parempaa tilalle. Newtonin teoria ei ollut kumottuna 56 vuotta ennen yleisen suhteellisuusteorian löytämistä, vasta poikkeaman selittäminen uuden teorian avulla kumosi Newtonin teorian.

Asiaa valaisee Pioneer-anomalia. 1970-luvulla matkaan lähteneiden luotainten Pioneer 10 ja 11 radat poikkesivat vuosikymmenten ajan yleisen suhteellisuusteorian ennusteista. Lopulta vuonna 2012 ymmärrettiin, että kyse oli vain siitä, että lämmön liikettä luotaimissa ei oltu mallinnettu kunnolla. Mutta jos vastuussa olisikin ollut tarkempi gravitaatioteoria ja se olisi löytynyt, Pioneerit olisivat olleet Merkuriuksen lailla uuden teorian suunnannäyttäjiä.

Vastaavia teorioihin ja muihin havaintoihin sopimattomia havaintoja on jokseenkin aina. Yksi esimerkki, jonka tulkinta on vielä epäselvä, on koe DAMA/Libra. Koeryhmä väittää löytäneensä pimeän aineen, mutta kukaan muu ei ole pystynyt toistamaan tulosta, ja koska kokeet ovat hieman erilaisia, on epäselvää ovatko DAMAn/Libran tulokset pielessä vai onko edessä yllätys.

Mitä planeettajahtiin tulee, se on jatkunut näihin päiviin saakka. Vuonna 1930 havaittiin Pluto, joka oli planeetta aina vuoteen 2006 asti. Sekin löytyi läheltä ennustettua uuden planeetan paikkaa, mikä -hassua kyllä- oli puhdas sattuma, koska mitään uutta planeettaa ei oikeasti tarvittu selittämään havaintoja. Juuri nyt etsitään Aurinkokunnan rajamailta kaukaista planeettaa 9, jolla puolestaan pyritään selittämään Pluton tienoilla ja kauempana olevien kappaleiden liikkeiden poikkeamia odotuksista.

Baum ja Sheehan kertovat Vulkanuksen tarinan elävästi. Se on hyvä esimerkki siitä, miten tieteelliset ideat voivat toimia kerta toisensa jälkeen ja mennä lopulta pieleen, miten vaikeaa ja tärkeää on huolellisten laskujen ja havaintojen yhteispeli, miten hankalaa voi olla nähdä oikeaa suuntaa, ja miten pitkälle jotkut jahtaavat lintuja, joita ei ole.

9 kommenttia “Myyttisiä lintuja”

  1. Lentotaidoton sanoo:

    ”DAMAn kohdalla on toisin: koeryhmä on kerännyt dataa vuodesta 1995 asti, ja signaali on samanlainen vuodesta toiseen. Ryhmän maaliskuussa (2018) julkistamien uusimpien tulosten myötä DAMA on ilmoittanut löytäneensä pimeän aineen hiukkasen nyt jo 99.999999999999999999999999999999999996% todennäköisyydellä.”

    Todella ihmetyttää ja kummastuttaa. Jos jo 25 vuotta on data näyttänyt (heidän mielestään) että pimeän aineen hiukkanen on jo löytynyt, vieläpä joka vuosi säännöllisesti, ja vielä tuolla typerryttävän suurella todennäköisyydellä, niin MIHIN he vielä tarvitsevat lisäaikaa? Ihme nyhveröintiä. Näytöt esiin ja odottelemaan takuuvarmaa Nobelia.

    Ei. Jokin tässä mättää ja erittäin kovasti. Luulisi rahoittajienkin jo kyllästyvän 25 vuoden vedätykseen.

    1. Syksy Räsänen sanoo:

      Koejärjestelyissä on tehty parannuksia, jotka oletettavasti auttavat sulkemaan pois joitakin systemaattisia virheitä. En kyllä tiedä kuinka merkittävää tämä on. Koeryhmää on arvosteltu datan ja analyysin julkisuuden puutteesta. Lisää dataa ei pelkästään satunnaisten virheiden varalta ei tosiaan enää ole juuri järkeä hankkia.

      1. Lentotaidoton sanoo:

        Niin maailmallahan on kaksi samaa koemateriaalia (natrium jodidi) käyttävää koetta ANAIS ja COSINE-100 mutta eivät ole nähneet toistaiseksi mitään (myös nämä vuosia käytössä, vaikkakin hekin yrittävät projektiaan parantaa). DAMA/Libra koe vihjaa WIMPejä 10 tai 70 GeV:ssä (jopa 13 sigmalla). Vaikeus on siinä, että he eivät ole suostuneet julkisesti näyttämään dataansa. Datan keruu sinänsä on hidasta hommaa koska sitä (huiput) saadaan periaatteessa vain kerran vuodessa.

        1. Syksy Räsänen sanoo:

          Tosiaan. Kutsuimme itse asiassa viime vuonna ANAISin edustajan puhumaan Helsinkiin. Koe on verrattain uusi, ja tarvitsee vielä vähän aikaa saadakseen tarpeeksi havaintoja sulkeakseen pois tai varmistaakseen DAMAn. Heillä on tosin ollut vaikeuksia rahoituksen kanssa (vaikka koe on muistaakseni alle miljoonan, kokeellisessa fysiikassa siis pikkurahoja).

  2. Eusa sanoo:

    Ostin kirjan mm. siksi, että kiinnosti kuinka newtonilaisittain Vulkanin ja sen korjausseuralaisten liikkeet matemaattisesti motivoitiin, kun eihän sellainen ryhmä kovin hyvin käyttäytyisi voimaopillakaan. Toiseksi kiinnosti aikalaisten reaktiot Einsteinin versioon viiveestä ja eksentrisyydestä.

    Petyin odotuksissani, mutta olihan pienten luonteiden historiassa oma viehätyksensä.

  3. Erkki Kolehmainen sanoo:

    ”Laplace kun oli menettänyt virkansa, koska häneltä katsottiin puuttuvan ”tasavaltalaisia hyveitä ja kuningasvihaa”.

    Tällaista sattuu nykyäänkin. Arto Annila menetti virkansa, koska häneltä katsottiin puuttuvan kunnioitus nykyfysiikan ns. standardimallia ja pimeän aineen/energian olemassaolon teoriaa kohtaan.

    1. Syksy Räsänen sanoo:

      Mihin perustat väitteesi?

      1. Erkki Kolehmainen sanoo:

        Se ei ole väite vaan fakta!

        1. Syksy Räsänen sanoo:

          Mihin perustat väitteen siitä, että se on fakta?

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Myös me taas/We too again

25.8.2020 klo 13.39, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

(As the topic, the decision of the University of Turku to hire and then cancel the hire of Christian Ott, has attracted international attention, this post is both in Finnish and English; the English version is below the Finnish text. This is a follow-up to an earlier post called Myös me/Us too.)

(Tämä on jatkoa aiemmalle merkinnälle, jonka otsikko oli Myös me/Us too.)

Helmikuussa 2018 Turun yliopisto perui astrofyysikko Christian Ottin palkkauksen asian saatua julkisuutta. Ott oli vuonna 2017 eronnut Caltechin yliopistosta Yhdysvalloissa sen jälkeen, kun yliopisto oli todennut hänen syyllistyneen sukupuoleen perustuvaan häirintään kahta naispuolista jatko-opiskelijaa kohtaan.

Joukko tutkijoita Suomessa ja kansainvälisesti, mukaan lukien Helsingin yliopiston kollegani Till Sawala ja minä, oli allekirjoittanut lausunnon, jossa tuomittiin häirintä viittaamatta nimenomaisesti Ottin tapaukseen. Lisäksi 19 tähtitieteilijää, astrofyysikkoa ja kosmologia (mukaan lukien me kaksi) oli lähettänyt Turun yliopiston johdolle kirjeen, jossa sitä pyydettiin harkitsemaan Ottin palkkaamista uudelleen. Kirjoitin tapauksesta täällä.

Luulin asian olleen loppuun käsitelty, kunnes huhtikuussa 2019 poliisi soitti ja kertoi suorittavansa esitutkintaa minusta, Tillistä ja Turun yliopiston Jari Kotilaisesta. Christian Ott oli palkannut asianajotoimiston syyttääkseen meitä törkeästä kunnianloukkauksesta ja törkeästä yksityiselämää loukkaavasta tiedon levittämisestä. Ott vaati meille rangaistusta ja itselleen rahallista korvausta.

Tapaukseen liittyy paksu nippu papereita. Lyhyesti sanottuna Ott kutsui itseään uhriksi ja väitti, että minun ja Tillin takia Ottin ”maine ja asema” ”on lopullisesti menetetty”. Turun yliopiston Tuorlan observatorion johtaja Juri Poutanen tuki tätä poliisille antamassaan lausunnossa, ja kertoi minun ja Tillin levittäneen Ottista ”väärää tietoa maailmalla” sekä mustamaalanneen tätä. Poutanen oli toinen kahdesta henkilöstä, olivat pyytäneet yliopistoa palkkaamaan Ottin ja olisi ollut tämän esimies.

Erityisen tuomittavana Ott ja Poutanen esittivät sen, että olimme tuoneet asiaa julki mediassa. (Ott epäili Kotilaistakin tästä.) Tämä näkyi poliisin kuulusteluissa, missä yritettiin selvittää, kuka on ottanut yhteyttä toimittajiin. Twitterin ja #MeToo-hashtagin käyttöä pidettiin myös mahdollisesti raskauttavana. Poliisi esitti minulle muun muassa seuraavan kysymyksen:

”Olette käyttäneet Ottin palkkaamisesta kirjoittaessa, ainakin kuusi kertaa aihetunnistetta #MeToo, jolloin kaikki Twitterissä #MeToo -keskustelua seuraavat ovat voineet nähdä teidän twiitit reaaliajassa. Mitä kommentoitte?”

Kotilaisen osalta käsittely lopetettiin esitutkintaan. Minun ja Tillin tapaus meni syyttäjälle, joka päätti kesäkuun 2020 loppupuolella, että ei nosta syytettä. Syyttäjä totesi, että mitä kunnianloukkaukseen tulee, emme ole sanoneet Ottista mitään valheellista. Mitä yksityiselämää loukkaavaan tiedon levittämiseen tulee, hän totesi meidän kirjoittaneen vain Ottin toiminnasta julkisessa virassa tai vastaavassa tehtävässä. Syyttäjä totesi myös, että tapausta ”on käsitelty erittäin laajasti eri medioissa”. Esille tuomamme seikat olivatkin olleet yleisesti tiedossa jo vuosia, ja niistä olivat kirjoittaneet muun muassa Nature ja Science.

Tarina ei lopu tähän. Ott on nimittäin nostanut kanteen myös Turun yliopistoa ja Tukholman yliopistoa vastaan. Minun ja Tillin tapauksen käsittelyn myötä minulle paljastuikin kyseenalainen järjestely yhteispohjoismaisen Nordita-tutkimuslaitoksen (joka toimii Tukholman yliopistossa) ja Turun yliopiston välillä. (Kiitän Tukholman yliopiston henkilökuntaa pikaisista vastauksista kysymyksiini asian tiimoilta.)

Nordita sopi joulukuussa 2017 palkkaavansa Ottin kahden vuoden tutkijanpaikkaan. Nordita sitten ilmoitti, että ei pidäkään kiinni sopimuksesta. Ott väittää, että Tukholman yliopisto oli huolissaan maineestaan. Norditan silloisen johtajan Thors Hans Hanssonin mukaan hän päätti peruuttaa Ottin palkkauksen konsultoituaan laajasti kollegoita Tukholman yliopistossa ja ulkomailla, koska näillä oli siihen vahva reaktio.

Nordita sitten järjesti, että Ott saakin paikan Turun yliopistosta, missä Nordita maksaisi 75% hänen palkastaan. Kun Turun paikka peruuntui, Ott vaati maksamattomia palkkoja ja korvauksia Tukholmasta. Tuomioistuin määräsi yliopiston maksamaan Ottille 726 000 Ruotsin kruunua (noin 70 000 euroa) palkkoja korkojen kera. Korvauksia yliopiston ei tarvinnut maksaa, koska sen ei katsottu toimineen muuten epäasiallisesti. (Tuomioistuimen päätös ruotsiksi täällä; tässä on Google Translaten käännös englanniksi.) Turun jutun käsittely jatkuu.

Tapauksen käsittely vaikuttaa sekä moraalisesti ongelmalliselta että taloudellisesti lyhytnäköiseltä. Jos Nordita piti Ottin ahdistelijataustaa ongelmana itsessään, miten se olisi vähemmän ongelmallista Turussa? Toisaalta, jos Ottin tausta ei ollut sinällään ongelmallinen, niin hänen sopimuksensa peruminen ilman pätevää syytä olisi epäoikeudenmukaista Ottia kohtaan. Jälkimmäinen pätee myös Turun yliopistoon. Turun yliopiston silloisen rehtorin Kalervo Väänäsen poliisille antaman lausunnon mukaan Ottin palkkauksen perumisen syynä Turussa oli riski yliopiston maineen vauriolle kotimaassa ja kansainvälisesti. Lisäksi paikasta sopiminen ja sen peruminen asian tullessa julki voi johtaa oikeusjuttuihin ja korvauksiin, joilta olisi vältytty, jos eettiset seikat olisi huomioitu alusta alkaen.

Tämä alleviivaa sitä, että on tärkeää tuoda häirintätapaukset ja vastaavat ongelmat julkisuuteen sen lisäksi, että vetoaa yksityisesti johtoon. Se myös näyttää tiedotusvälineiden vastuun asioiden käsittelemisessä ja faktojen tuomisessa julki. Ottin tapauksessa media toimi erinomaisesti, Suomessa siitä kirjoitettiin asiallisesti ja laajasti tiedotusvälineissä. Kansainvälisistä tiedotusvälineistä erityisesti BuzzFeed oli aktiivinen yksityiskohtien tuomisessa esille.

Tapaus on osa isompaa kehitystä. Joulukuun 2019 katsauksessa kuluneeseen 2010-lukuun lehti Physics World nosti yhdeksi vuosikymmenen merkittäväksi muutokseksi kasvavan ymmärryksen siitä, että fyysikoiden yhteisön täytyy tehdä enemmän tasa-arvon ja diversiteetin eteen. (Kirjoitin aiheesta viime vuonna Helsingissä pidetyn NORNDiP-konferenssin tiimoilta.) Se mainitsi esimerkkinä edistyksestä häirintään syyllistyneiden korkean profiilin tutkijoiden erottamiset ja eroamiset. Lehti totesi, että aiemmin tapaukset olisi luultavasti lakaistu maton alle, ja esitti digitaalisen viestinnän tuoneen mukanaan avoimuutta.

Toivottavasti Ottin tapaus antaa häirinnän kohteille voimia tulla julki kokemustensa kanssa, yhteisön jäsenille rohkeutta tukea heitä ja yliopistojen johdolle viisautta ottaa häirintä vakavasti silloinkin, kun se ei ole julkisuuden valokeilassa.

* * *

In February 2018 the University of Turku cancelled the hire of astrophysicist Christian Ott after it received public attention. In 2017, Ott had resigned from Caltech after the university had found him guilty of gender-based harassment of two female PhD students.

A group of researchers in Finland and internationally, including me and my colleague Till Sawala at the University of Helsinki, had signed a statement against harassment, without referring specifically to Ott’s case. In addition, 19 astronomers, astrophysicists and cosmologist (including us two) had sent a letter to the leadership of the University of Turku calling on them to reconsider Ott’s hire. I wrote about the case here.

I thought the matter settled, until in April 2019 the police called to say they were conducting a preliminary investigation of me, Till, and Jari Kotilainen from the University of Turku. Christian Ott had hired an attorney to accuse us of aggravated libel and aggravated spreading of information in a manner that violates privacy. Ott demanded for us to be punished and for him to be awarded damages.

The case file is thick with documents. In short, Ott called himself the victim and claimed that because of me and Till his “position and reputation” “has been irredeemably ruined”. Juri Poutanen, head of Tuorla observatory at the University of Turku, supported this in his statement to the police, and said that me and Till had spread “false information around the world” about Ott and smeared him. Poutanen was one of the two people who had asked the university to hire Ott and would have been his superior.

Ott and Poutanen were particularly scathing about us bringing media attention to the case. (Ott also suspected Kotilainen of this.) This was reflected in the police questioning, which tried to find out who had contacted journalists. The use of Twitter and the #MeToo hashtag was also seen as a potentially aggravating factor. Among other questions, the police asked me the following:

“When writing about the hire of Ott you have at least six times used the hashtag #MeToo, so all who follow #MeToo discussion on Twitter have been able to see your tweets in real time. How do you comment?”

The case against Kotilainen was closed during the preliminary investigation. Mine and Till’s case went to the prosecutor, who in late June 2020 decided not to press charges. The prosecutor wrote that as far as libel is concerned, we have not said anything false about Ott. As regards spreading information in a manner that violates privacy, the prosecutor determined that we have written about Ott only concerning his conduct in public office or in a comparable position. He further noted that the case “has been dealt with extremely widely in various media”. Indeed, the facts we pointed out had been publicly known for years, having been reported by Nature and Science among others.

The story doesn’t end here. Ott has also sued the University of Turku and Stockholm University. The case against me and Till brought to my attention a dubious arrangement between the Nordic research Institute Nordita (hosted by Stockholm University) and the University of Turku. (I thank staff at Stockholm University for prompt answers to my questions on this topic.)

Nordita agreed in December 2017 to hire Ott for a two-year research position. Nordita then said they would not abide by the agreement. Ott claims that Stockholm University was worried about their reputation. According to Thors Hans Hansson, then head of Nordita, he decided to terminate Ott’s appointment after extensively consulting colleagues at Stockholm University and abroad, as they had a strong reaction to it.

Nordita then arranged for Ott to take up a position at the University of Turku instead, with Nordita covering 75% of the salary. When the position at Turku was cancelled, Ott claimed unpaid salaries and damages from Stockholm. The court ordered the university to pay Ott 726 000 Swedish crowns (about 70 000 euros) plus interest in salaries. The university did not have to pay damages, as it was not found to have acted otherwise in an inappropriate manner. (Here is the ruling in Swedish; this is a Google translation to English.) The Turku case continues.

The handling of the case seems both morally problematic and economically shortsighted. On the one hand, if Nordita found Ott’s background of harassment problematic in itself, why would it be less of a problem in Turku? On the other hand, if Ott’s background were not a problem as such, then cancelling his contract without a valid cause would be unjust towards Ott. The latter point also applies to the University of Turku. In his statement to the police, Kalervo Väänänen, the then rector of the University of Turku, says that the reason for cancelling Ott’s hire in Turku was the domestic and international reputational risk. Furthermore, agreeing to a hire and then cancelling it when the case comes to light can lead to lawsuits and damages, which would have been avoided if ethical issues had been taken into account from the beginning.

This highlights the importance of bringing harassment and similar problems to the public eye in addition to private appeals to leadership. It also shows the responsibility of media outlets in reporting on such issues and bringing the facts out. In the case of Ott the work of journalists was excellent, and Finnish media covered the case factually and widely. Of international media, BuzzFeed was particularly active in providing details.

This is part of a trend. In its December 2019 overview of the 2010s, Physics World ranked the growing understanding that the physics community needs to do more to advance equality and diversity as one of the biggest changes of the decade. (I wrote about the topic in an entry on the NORNDiP conference.) As an example, it mentioned the firing and resignation of high profile researchers guilty of harassment. The magazine observed that in earlier years the cases would likely have been swept under the carpet, and pointed to the openness brought by digital media as an agent of change.

Hopefully Ott’s case will give targets of harassment the strength to come forward with their experiences, members of the community the courage to support them, and to university leadership the foresight to take harassment seriously even when it is not in the spotlight.

6 kommenttia “Myös me taas/We too again”

  1. Martti V sanoo:

    Harmillinen tapaus. Vie varmasti energiaa tieteen tekemiseltä.

  2. Lentotaidoton sanoo:

    Yhdyn Martti V:hen. Meillä diletanteilla on se (harhainen?) kuvitelma, että fysiikan teoreetikot ovat ”oma” rotunsa, joita eivät maailman yhteiskunnalliset murheet paljoa hetkauta (eli yläpuolella ”maisten” murheiden). Tietysti olemme lukeneet Räsäsen tasa-arvo ulostuloista aiemminkin ja toki tiedän jo historiasta erinäisten tiedemiesten perin kivikkoisen yhteiskunnallisen tien (alkaen nyt vaikka Galileista ja monesta muusta ja nyt vaikka edellisten vuosikymmenien naisten panoksen epäoikeudenmukaisesta vähättelyn käytännöstä), mutta tavallinen tallaaja ei hevillä miellä suurten ”idoliensa” inhimillistä puolta.

    Meille he ovat ”vain” tiedemiehiä/naisia, fiksuja tai vieläkin fiksumpia, joiden tehtävänä on tehdä ”tiedettä” – paitsi tiedeyhteisön sisällä niin myös meidän muiden diletanttien ylöskasvattamiseksi.

    Hyvä, että yhteiskunnallinen valventuneisuus ja tasa-arvo lisääntyy.

  3. Erkki Kolehmainen sanoo:

    Tiedemiehet ja -naiset ovat ihmisiä ansioineen ja puutteineen kuten ovat heidän oppillaansakin. Yli 30 vuotta yliopistoissa ja lopulta proffanakin toimineena olen nähnyt kaikenlaista enkä usko olevani siinä suhteessa diletantti kuten lentotaidoton. Caltech on tunnetusti eräs ”top ten” ryhmään kuuluva yliopisto, jossa kilpailu on kovaa. Mutta myös naisille on ollut mahdollista nousta sieltä kuuluisuuteen kuten Barbara McClintockin esimerkki osoittaa. Kaiken lukemani perusteella Christian Ottin käytös on ollut sikamaista, mutta eikö hänellä ole mtään ansioita? Ei kukaan ihminen ole täysin puhdas pulmunen eikä täysin kelvoton ryökäle. Miksi Christian Ott valittiin Caltechiin, jos hän on henkisiltä kyvyiltään kelvoton ihminen? Eikö hänen valinnastaan tulisi syyttää myös hänen valitsijoitaan? Minusta #MeToo-vouhotuksessa mentiin joskus liian pitkälle kuten monissa muissakin sosiaalisessa mediassa vellovissa keskusteluissa. Seksuaalisesta häirinnästä voidaan syyttää, jos katsoo opiskelijaa ”sillä silmällä” tai häirinnän so. ohjauksen puutteesta, jos ei osoita riittävää kiinnostusta. Syksyn argumentin ”fyysikoiden yhteisön täytyy tehdä enemmän tasa-arvon ja diversiteetin eteen” suhteen sanon, ettei se ole fyysikoiden ensisijaonen tehtävä vaan fysiikan tekeminen. Miltä se kuulostaa ja mitä se tarkoittaa, jos muusikoiden yhteisön täytyy tehdä enemmän tasa-ervon ja diversitettin eteen, jolloin periaatteessa jokaisesta voisi tulla muusikko. Niin varmaan pitäisi tehdä, mutta Suomen hyvä musiikkioppilaitosjärjestelmä on historiaa eli kysymys on rahoituksesta eli polittisista päätöksistä.

    1. Syksy Räsänen sanoo:

      Etenkin kiistanalaisista asioista keskusteltaessa kannattaa pysyä tosiasioissa.

      Ei ole väitetty, etteikö Ottilla olisi mitään ansioita.

      Ei ole väitetty, että Ott olisi ”henkisiltä kyvyiltään kelvoton ihminen”.

      Ei ole valitettu siitä, että hänet alun perin valittiin Caltechiin.

      Ei ole esitetty, että jokaisesta pitäisi voisi tulla fyysikko.

      Varmasti monet häirinnän puolustajat tai vähättelijät ajattelevat, että musiikkiväen pitäisi keskittyä teatterin eikä puuttua häirintään, tiedeväen keskittyä tieteeseen eikä puuttua häirintään ja niin edelleen.

      Yhteisön ongelmien korjaaminen ja yhteisön kehittäminen on kuitenkin osa yhteisössä toimimista.

      Näitä seikkoja onkin jo käsitelty edellisessä merkinnässä ja sen kommenteissa, kehotan lukemaan ne:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/myos-meus-too/

  4. Erkki Kolehmainen sanoo:

    Minä en vähättele enkä puolustele seksuaalsita häirintää, mutta minusta #MeToo-kampanjassa mentiin usein liian pitkälle. Siellä syytettiin miehiä ilman perusteita ja heidän oli mahdotonsa puolustautua, koska ”häirityn” naisen sana oli painavampi. Ihmisten kanssakäyminen, jota vääjäämättä tarvitaan ja tapahtuu tiedeyhteisöissä, on monimutkainen vyyhti eikä sen motiivit ole aina kunniallisia, vaikka ne yritetään sellaisiksi verhota.

    1. Syksy Räsänen sanoo:

      Kommentissasi vähättelit häirintää mm. seuraavasti:

      ”Seksuaalisesta häirinnästä voidaan syyttää, jos katsoo opiskelijaa ”sillä silmällä” tai häirinnän so. ohjauksen puutteesta, jos ei osoita riittävää kiinnostusta.”

      Tämä riittäköön tästä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Tonni tankissa

30.6.2020 klo 01.31, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Viime viikolla pidettiin CERNissä järjestetty etäkonferenssi Zooming in on Axions. Aiheena oli nimen mukaisesti aksionit, spekulatiiviset hyvin kevyet alkeishiukkaset. Aksionit ovat suosituimpia ehdokkaita pimeäksi aineeksi.

Aksioneja on tutkittu yli 40 vuotta, ja niiden suosio on viime vuosina kasvanut. Ne olivat nyt erityisen ajankohtaisia, koska koeryhmä XENON1T ilmoitti sattumalta konferenssia edeltävällä viikolla kenties havainneensa niitä. Koeryhmän jäsenen Michelle Gallowayn esitys aiheesta päätti konferenssin.

XENON1T on koe, jossa on tonni nestemäistä ksenonia tankissa. Tankki sijaitsee Gran Sasson kaivoksessa Italiassa, samassa paikassa kuin kiistelty pimeän aineen koe DAMA/Libra ja liikoja väittänyt neutriinokoe OPERA.

XENON1T on rakennettu etsimään raskaita pimeän aineen hiukkasia, niin sanottuja nynnyjä ja niiden kaltaisia hiukkasia. Periaate on yksinkertainen. Pimeää ainetta (jos sitä on olemassa) on kaikkialla. Koska Maapallo liikkuu, tankin läpi kulkee koko ajan pimeää ainetta. Jos pimeän aineen hiukkanen törmää tankissa olevan atomin ytimeen, atomista tulee valoa ja irtoaa elektroni, jotka havaitaan.

Koska nynnyjä ei ole näkynyt, koeryhmä on etsinyt myös muita mahdollisia hiukkasia. Jos pimeän aineen hiukkanen on kevyt, se ei anna ytimille isoa tönäisyä, mutta voi silti pystyä potkimaan elektroneja sijoiltaan, koska ne ovat kevyempiä. Koeryhmä löysikin huolellisen tarkastelun jälkeen signaalin: elektroneihin kohdistuu potkuja, joiden alkuperä on tuntematon.

Kiinnostavaa on se, että potkujen energia vastaa aksionimallien ennusteita. Koska aksionit ovat kevyitä, niiden tuottaminen ei vaadi paljon energiaa. Niinpä, jos aksioneja on olemassa, niitä syntyy koko ajan Auringon ytimessä. Koska aksionit vuorovaikuttavat aineen kanssa erittäin heikosti, ne pääsevät Auringosta pakoon. Maan läpi siis kulkee vuo aksioneja, joiden energia vastaa Auringon ytimen lämpötilaa. Kutkuttavasti XENON1T:n havaitsemien potkujen energia on juuri tämä.

XENON1T-ryhmä ei vielä väitä havainneensa aksioneja. Koelaitteiston pitää olla erittäin herkkä, jotta se voisi havaita aksionien heiveröisen signaalin. Tämä tarkoittaa myös sitä, että kaikki ympäristön häiriöt pitää olla hyvin selvillä. On mahdollista, että potkut johtuvat siitä, että laitteistossa on pieniä määriä tritiumia, joka hajoaa radioaktiivisesti. Aksioni tosin sopii havaintoihin paremmin kuin tritium, ja laitteisto on tarkkaan puhdistettu, mutta asiasta ei ole varmuutta.

On myös mahdollista, että kyseessä on sattuma. Sen todennäköisyys on naiivisti arvioiden noin 1:2000. Galloway vertasi tätä siihen, että heittää arpakuutiolla viisi kuutosta peräkkäin (minkä todennäköisyys on itse asiassa noin neljä kertaa pienempi).

Hiukkasfysiikassa tällaista pidetään vain vihjeenä jostain, löydöstä puhutaan vasta kun sattuman todennäköisyys alle noin yksi miljoonasta. Vuonna 2016 eräs LHC-kiihdyttimen kohuttu signaali osoittautui sattumaksi, vaikka naiivi arvio tämän todennäköisyydestä oli alle 1:100 000.

Syynä oli se, että LHC tuottaa valtavasti dataa, josta tehdään satoja analyysejä. Niinpä joskus törmää kohinaan, joka näyttää signaalilta. Jos heittää noppaa tuhat kertaa, ei ole kovin epätodennäköistä, että jossain kohtaa tulee peräkkäin viisi kuutosta.

XENON1T-kokeen tilanne on erilainen. Se, ja muut vastaavat pimeää ainetta etsivät kokeet, tekevät paljon vähemmän erilaisia etsintöjä. Siispä on vähemmän luultavaa, että kyseessä olisi sattuma kuin jos jokin LHC:n koe näkisi signaalin, jonka todennäköisyys olisi naiivisti arvioituna sama.

Tapaus on niin kiinnostava, että se toi hiukkasfyysikko Jesterin takaisin bloginsa satulaan kahden vuoden tauon jälkeen (teknisiä yksityiskohtia voi lukea hänen blogimerkinnästään ja sen kommenteista), mutta epäilyyn on vielä aihetta.

Yksi ongelma on se, että jos signaali johtuu aksioneista, niitä on liikaa. Potkujen määrästä voi päätellä, paljonko Auringossa syntyy aksioneja. Aksionien mukana tähdistä poistuu energiaa, joten ne jäähtyvät nopeammin. Tällaista ylimääräistä jäähtymistä ei ole havaittu, ja kokeen osoittama tahti on niin kova, että se muuttaisi tähtien kehitystä enemmän kuin mitä havainnot sallivat.

Havaintojen ja mallin ristiriitahan ei toki ole teoreetikolle ongelma vaan mahdollisuus. Ensimmäinen tieteellinen artikkeli, jossa tarjottiin havaintoja selittävää mallia, tuli julki kahdeksan tuntia koeryhmän ilmoituksen jälkeen. Puolessatoista viikossa artikkeleita on tullut 40, ja lisää on varmasti uunissa.

Asiaa eivät ratkaise teoreetikot, vaan lisähavainnot. Koeryhmä kasaa par’aikaa koetta XENONnT, joka on kolme kertaa XENON1T:n kokoinen ja jossa taustahäiriöt ovat paljon pienempiä. Se aloittanee toiminnan neljän kuukauden kuluttua. XENON1T:n analyysi perustui 227 päivän dataan, joten XENONnT saa alle muutamassa kuukaudessa kerättyä yhtä paljon dataa. Jos siinä näkyy samanlainen signaali, on järkevän epäilyn ulkopuolella, että kyseessä olisi sattuma. Mikä oleellisempaa, uusi laite pystyy myös erottamaan tritiumin ja aksionit toisistaan, niiden antamat potkut kun ovat hieman erilaisia.

Uusia tuloksia sopii siis odottaa vuoden sisään. Jos teoreetikoiden tahti pitää, siihen mennessä on ilmestynyt yli tuhat vaihtelevan laatuista artikkelia aiheesta.

Jos nynnyjä etsimään lähtenyt XENON1T on todella havainnut aksioneja, siitä tulee mieleen suurta yhtenäisteoriaa ja protonin hajoamista jahdannut Super-Kamiokande, joka löysi sen sijaan neutriinoiden muuttumisen toisikseen, mistä myönnettiin kaksi Nobelin palkintoa. Toisaalta voi muistaa, että mahdollisia pimeän aineen signaaleja on tullut paljon, ja suurin osa niistä on myös mennyt pois (ks. täällä, täällä, täällä, täällä, täällä, täällä, täällä ja täällä).

49 kommenttia “Tonni tankissa”

  1. Lentotaidoton sanoo:

    https://home.cern/science/experiments/cast
    Tässä vähän toisenlaista etsintää, eli LHC on puolestaan omalla panoksellaan mukana. En tosin tiedä onko tämä(kin) huitova vehje vielä kestävän remontin uudistettavana.

    https://atlas.cern/updates/physics-briefing/light-scattering-light-constrains-axion-particles
    Tässä taas ATLAS tutkii ”axion-like” hiukkasia (nämäkin siis jo aiemmin kerättyyn dataan perustuen)

    LHC:hän alkaa tosi toimiin remontin jäljiltä vasta ensi vuoden syyskuussa.

    1. Syksy Räsänen sanoo:

      CAST tosiaan mittaa fotoneiden muuttumista aksioneiksi, eli aksionien ja fotonien kytkentää. XENON1T sen sijaan mittaa lähinnä aksionien ja elektronien kytkentää, vaikka fotonienkin kytkentä on analyysissä mukana.

      Tuosta toisesta analyysistä en tiennytkään. Tuo mahdollinen aksionien massan alue on tosin teoreettiselta kannalta toivottoman korkea, mutta kaikkeahan kannattaa tutkia kun dataa on.

  2. Eusa sanoo:

    Olisiko mahdollista, että matalilla energioilla yleisesti esiin saatava neutriinovuo olisi runsaampaa auringon toiminnasta riippumatta? Onko tästä aiempaa dataa?

    1. Syksy Räsänen sanoo:

      Datassa näkyykin Auringon neutriinoiden aiheuttamia potkuja. Jotta Auringon neutriinot voisivat selittää kaikki potkut, niitä pitäisi olla luultua enemmän (eli Auringon toiminnan pitäisi olla erilaista kuin mitä on luultu) tai niiden pitäisi vuorovaikuttaa luultua voimakkaammin (eli pitäisi olla uutta hiukkasfysiikkaa, joka yhdistää neutriinot elektroneihin).

      Jälkimmäinen vaihtoehto on mahdollinen, epäilen (mutta en tiedä) salliiko data edellistä.

      Mutta tarkoitat ilmeisesti, että olisi jokin muu juuri sopivan energisten neutriinojen lähde kuin Aurinko? Miksei periaatteessa, en tiedä millaisia rajoituksia näillä energioilla sille on.

      1. Eusa sanoo:

        CNB-neutriinoja odotetaan nähtävän mahdollisesti vielä paljon matalimmilla energioilla, mutta pieni todennäköisyys on, että jo tuossa olisi niitä mukana.

        1. Syksy Räsänen sanoo:

          Kosmisen neutriinotaustan neutriinoiden energia on noin miljoona kertaa liian pieni, jotta ne voisivat selittää XENON1T:n havaitsemia potkuja.

  3. Martti V sanoo:

    Kiitos Syksy. Odottelinkin aiheesta postausta. Miten on päätelty, että aksionit olisi juuri auringosta? Jos aksioneita on kaikialla mahdollsesti selittäen pimeän aineen, niin luulisi sen energiaa oleva tarjolla.

    Löydös ilmeisesti muuttaa käsitystä standardimallista? Ennustaako aksioninin olemassaolo jotain mielenkiintoista esim yhtenäisteoriasta?

    1. Syksy Räsänen sanoo:

      Jos pimeä aine koostuu aksioneista, sekä niiden aksionien massa että nopeus ovat pieniä. Niinpä niiden energia ei riitä antamaan nyt havaittuja potkuja.

      Mitäänhän ei ole vielä löydetty. Mutta jos havainnot selittyvät aksioneilla, se opastaa kyllä eteenpäin. Aksionit ovat tosin esimerkki mallista, joka on rakennettu nykyisen tiedon päälle, pohjalta ylös, ei ylhäältä alas. Ei siis ole ihan selvää, mitä aksionien havaitseminen kertoo vaikkapa yhtenäisteoriasta.

      Mutta aksioneihin liittyy kaikenlaisia kiinnostavia mahdollisia ilmiöitä, ja niiden löytäminen auttaisi tarkentamaan tutkailuja. Kirjoitin aksioneista täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/totalitaristinen-periaate-ja-vanhan-ajan-romantiikka/

      1. Syksy Räsänen sanoo:

        Päätelmä siitä, että aksionit olisivat Auringosta, perustuu siis siihen, että se on ainoa tunnettu sopiva aksionien lähde. Ja energia täsmää.

        Mutta datasta ei esimerkiksi pysty erottamaan mitään aikavaihtelua tai suuntaa.

  4. Martti V sanoo:

    Aksionikenttä selittänee vahvan CP symmetrian. Oliko symmetria tavallaa rikki universumin alussa, mutta ”korjaantui” kentän hakeutuessa alimpaan potentiaaliin? Voiko ajatella, että epäsymmetria siirtyi kvarkkien ja antikvarkkien lukumäärään?

    1. Syksy Räsänen sanoo:

      Joo, vahvan vuorovaikutuksen CP-symmetriaa rikkova termi tosiaan asettuu nollaan vasta aksionin painuessa potentiaalinsa minimiin ajan kuluessa.

      CP-symmetrian rikko ei siirry minnekään, se vain korjaantuu. Aksioneilla voi kyllä olla osansa baryogeneesissä (eli kvarkkien ja antikvarkkien lukumäärän erossa), mutta tarina on monimutkaisempi.

      1. Martti V sanoo:

        ”Idea on samankaltainen kuin Higgsin mekanismissa, missä Higgsin kenttä vuorovaikuttaa hiukkasten kanssa siten, että ne käyttäytyvät kuin niillä olisi massa. Aksionien tapauksessa aksionikenttä vuorovaikuttaa gluonien kanssa siten, että ne käyttäytyvät kuin niillä ei olisikaan tuota yhtä vuorovaikutusta. ”
        Voitko avata minkä välistä vuorovaikutusta tuossa lopussa tarkoitat?

        1. Syksy Räsänen sanoo:

          Tuo olikin epämääräisesti kirjoitettu. Asia on matemaattisesti yksinkertainen, mutta en tiedä osaanko selittää sitä yleistajuisesti kovin hyvin.

          QCD:n symmetria rajoittaa sitä, miten gluonit voivat vuorovaikuttaa keskenään. Yleensä QCD:ssä on vain kaksi perusvuorovaikutusta suoraan gluonien välillä: sellainen, missä kolme gluonia tulee yhteen (esim. gluoni säteilee gluonin) tai sellainen, missä neljä gluonia tulee yhteen (esim. kaksi gluonia törmäävät ja muuttuvat toisiksi kahdeksi gluoniksi).

          Sen lisäksi on olemassa myös toinen mahdollinen yhdistelmä kolmi- ja neligluonivuorovaikutusta. Se on kuitenkin sellainen, että yhdistelmän eri osat kumoavat toisensa, niin että mitään vuorovaikutusta ei tapahdu – ainakaan klassisesti. Kvanttimekaanisesti nämä vuorovaikutusten osat eivät kuitenkaan yleisesti ottaen täysin kumoa toisiaan, ja niillä on fysikaalinen vaikutus.

          Aksioni kytkeytyy tähän vuorovaikutusten yhdistelmään. Kun aksionikenttä asettuu minimiinsä, niin tuon vuorovaikutusten yhdistelmän kertoimeksi tulee nolla, eli se häviää.

          1. Martti V sanoo:

            Kiitos, tämä selvitti riittävästi. Higgs kentän vaikutuksessa eräs symmetria rikkoutuu, kun taas axion kenttä vaikuttaa toiseen symmetriaan. Mielenkiintoista miten kentät ovat alkujaan asettunut sellaisiksi kuin ovat. Onko axion kenttä voinut olla inflaation aikana?

          2. Syksy Räsänen sanoo:

            Aksionikentällä, kuten Higgsillä, on oma symmetriansa, joka rikkoutuu kun kenttä asettuu minimiinsä.

            Aksionikenttä (jos sitä on) on oletettavasti ollut olemassa jo inflaation aikana. Tuo rikkoutuminen on saattanut tapahtua inflaation aikana tai sen jälkeen, ja seuraukset ovat erilaiset.

            Aksioneihin liittyy paljon kiinnostavia ilmiöitä, ne voivat esimerkiksi muodostaa säikeitä ja verkostoja, joiden romahtaminen punoutuminen voi synnyttää gravitaatioaaltoja ja romahtaminen mustia aukkoja.

  5. Erkki Kolehmainen sanoo:

    Eikö XENON10, -100 ja -1T olleet alunperin tarkoitetut WIMP’ien havaitsemiseen? Nyt niistä ei enää puhuta mitään (engl. teksti alla) vaan aksioneista, vaikka Syksy kirjoittaa näin: ”Jos pimeä aine koostuu aksioneista, sekä niiden aksionien massa että nopeus ovat pieniä. Niinpä niiden energia ei riitä antamaan nyt havaittuja potkuja.”

    In June 2020, the XENON1T collaboration reported an excess of electron recoils: 285 events, 53 more than the expected 232.Three explanations were considered: existence of to-date-hypothetical solar axions, a surprisingly large magnetic moment for neutrinos, and tritium contamination in the detector. There is insufficient data to choose among these three, though the XENONnT upgrade should provide this capacity.

    1. Syksy Räsänen sanoo:

      Kirjoitan tekstissä WIMPeistä suomennoksella nynny.

      1. Erkki Kolehmainen sanoo:

        Toki sen ymmärsin. XENON1T ja muut XENONit oli suunniteltu nynnyjen havaitsemiseen eikä niitä löydetty. Niinpä päätettiin etsiä aksoneja, vaikka XENON ei siihen soveltuisikaan. Sama asia kuin risalla ilmapuntarilla alettaisiin mitata painoa, koska se ei sovellu ilmanpaineen mittaamiseen.

        1. Syksy Räsänen sanoo:

          Kuten tekstissä todetaan, XENON1T voi havaita aksioneja, joita syntyy Auringossa.

          Se ei voi havaita niitä aksioneja, jotka ovat olleet jo kauan olemassa ja muodostavat pimeän aineen.

          Näiden kahden ero on sama kuin kosmisen mikroaaltotaustan ja Auringossa syntyvän valon. Edellisen fotonien energia on niin pieni, että niitä ei näe silmällä, mutta Auringon fotonit näkee.

          1. Lentotaidoton sanoo:

            Mielenkiintoista. Siis jos nyt etsitään mahdollisia aksioneja auringosta niin se tarkoittanee, että kosmoksen kaikki miljardit miljardit tähdet tekevät/ovat tehneet samoin. Eli ”kauan olemassa olleet” muodostaisivat historian tähtien ns pimeän aineen mutta että kaikki nykyajan tähdet vielä lisäisivät tuota vuota (vastaavuus mikroaaltotaustan ja Auringon fotonit). Eli että pimeä aine sen kuin jatkaa (historiallista) lisääntymistään? Niinkuin pimeä energiakin.

            Eli ennen tähtien syttymistä pimeää ainetta ei olisi ollut? Vai voiko kuvitella pimeän aineen ennen tähtien syttymistä (jostain muusta syystä syntyneen) ”mikroaaltotaustan”? – koska kirjoitat: ”Aksionikenttä (jos sitä on) on oletettavasti ollut olemassa jo inflaation aikana”.

          2. Syksy Räsänen sanoo:

            Pimeä aine ei kokonaisuutena ole syntynyt tähdissä.

            Tähdissä syntyvien aksionien määrä on mitätön verrattuna pimeän aineen kokonaismäärään.

            Aivan kuten tähdissä syntyvien fotonien määrä on mitätön verrattuna fotonien kokonaismäärään.

            Pimeän aineen energiatiheys on noin viisi kertaa niin iso kuin näkyvän aineen, tähdet ovat vain murto-osa näkyvästä aineesta ja vain murto-osa tähtien energiasta muuttuu aksioneiksi (jos niitä on olemassa).

  6. Lentotaidoton sanoo:

    Kiitos. Niinpä tietysti, en ajatellut kokonaishommaa (olinpa tyhmä). Eli tähtien aksionit (jos niitä on) ovat pimeän aineen kokonaistaloudessa yhtä tyhjän kanssa (mutta hyvä testikohde).

    ”Aksionikentällä, kuten Higgsillä, on oma symmetriansa, joka rikkoutuu kun kenttä asettuu minimiinsä. Aksionikenttä (jos sitä on) on oletettavasti ollut olemassa jo inflaation aikana. Tuo rikkoutuminen on saattanut tapahtua inflaation aikana tai sen jälkeen, ja seuraukset ovat erilaiset.”

    Eli pimeän aineen (mahdollisesti) lähes 100 prosenttisesti muodostavat aksionit ovat syntyneet aksionien oman symmetriarikon aikaan (kentän minimi). Ehdottaako suurin osa teorioista syntyaikaa inflaation aikana? Higgsin kentän minimillä 246 GeV ja aksionikentän minimin välillä siis valtava ero (onhan H-bosoni toiseksi raskain hiukkanen). Jos Higgsin kenttä on mahdollisesti häärännyt inflatonkenttänä, onko aksionikentällä mitään yhtymäkohtia (eli onko joku teorisoinut)?

    1. Syksy Räsänen sanoo:

      Aksionikentän symmetrian rikkoutumisen ja pimeän aineen suhde on monimutkaisempi (esim. aksionikenttä voi muodostaa säikeitä, jotka myöhemmin hajoava aksionihiukkasiksi, jotka ovat pimeää ainetta), mutta ei siitä ehkä enempää tässä.

      Käsittääkseni aksionikentän symmetrian rikkoutumista pidetään yhtä mahdollisena inflaation aikana kuin sen jälkeen.

      Aksionikenttää on itseäänkin ehdotettu inflatoniksi. Ajatuksena on se, että aksioni on kompleksinen kenttä, ja sen vaihe ratkaisee vahvan CP-ongelman ja amplitudi toimii inflatonina. Tämä on mielenkiintoinen rakennelma.

      Aksioneilla ei ole erityistä poikkeavaa roolia kun Higgs on inflatoni.

      1. Lentotaidoton sanoo:

        ”Aksioneilla ei ole erityistä poikkeavaa roolia kun Higgs on inflatoni”.

        Ajattelin tässä esim (Enqvistin) kurvatonia ja Higgsiä, jotka ”pelaavat yhteen” inflaation lopussa. Mutta ilmeisesti siis ei.

        1. Syksy Räsänen sanoo:

          Se voi olla mahdollista – asiaa on varmaan tutkittukin, mutta en ole perehtynyt aksioni-inflaatioon tarpeeksi.

          Jos Higgs ei ole inflatoni, niin se voi joko istua minimissään tai vaeltaa ympäriinsä kvanttifluktuaatioiden myötä, riippuu inflaation skaalasta kumpi toteutuu. Jos inflaation energiaskaala on liian pieni suhteessa Higgsin massaan, se ei tee mitään kiinnostavaa.

  7. Martti V sanoo:

    Onko aksionin massa peräisin higgs kentästä? Mietin, että Higgs symmetria rikko on saattanut siten antaa sysäysen aksion kenttään inflaation lopussa. Toisaalta kevyiden hiukkasten kuten neutriinojen massan syntymiselle on käsittääkseni teorisoitu vaihtoehtoista tuntematonta kenttää.

    1. Syksy Räsänen sanoo:

      Ei, aksionin massa ei liity Higgsin kenttään.

      1. Martti V sanoo:

        Niin epäilinkin.Standardi mallin mukaan, Higgsin lepomassa on standardi lepomassa. Axionin lepomassa linee samoin, ollessan skalaaribosoni ( ei vektori).

        1. Syksy Räsänen sanoo:

          En tiedä mitä tarkoitat ”standardi lepomassalla”? Aksioni on pseudoskalaari, ei skalaari, ja sen massa on pieni koska klassisesti se on massaton, vain pienet kvanttikorjaukset saavat sille aikaan massan. Higgsin massan kohdalla asia ei ole näin.

          1. Martti V sanoo:

            Standardimassaa on käyetty epätieteellisesti tarkoittamaan massaa joka on annettu ilman mitään ihmeempää mekanismia. Tosin Kaplan et al. mallissa axionkenttä on lukinnut higgs bosonin massan, joka oli suurempi sitä ennen. Liittyy vuorovaikutusten hierarkiaongelman rakaisun etsimiseen axionkentällä.

  8. Martti V sanoo:

    Erään teorian mukaan axion oli ilmeisesti massaton inflaation aikana, mutta kvarkkien ja gluonien järjestäytyessä (QCD rikko?), sille syntyi pieni massa. Tästä johtuen kvanttifluktiosta heilahdellut kentän vaihe meni nollaan ja vaihtelut periytyivät kentän energiatiheyden vaihteluiksi. Kyseissä symmetriarikkossa taisi inflaatio päättyä?

    1. Syksy Räsänen sanoo:

      En tunne kyseistä ideaa. Mutta yleensä inflaatio loppuu paljon ennen QCD-transitiota.

  9. Martti V sanoo:

    Idea on kirjasta Physics of the Early Universe vuodelta 1989 . On arveltu myös, että GUT symmetrian rikko olisi aiheuttanut inflaation ja varmasti jokin rikko on aiheuttanut myös päättymisen (viimeistään higgs kentän asettuessa nykyiseesnsä, jossa ehkä axionilla oma osansa ). Voi olla että suositumpia teorioita on jälkeenpäin syntynyt.

  10. Martti V sanoo:

    Onko mahdollisesta axion löydöstä tukea GUT tai säieteoriolle?

    1. Syksy Räsänen sanoo:

      Riippuu siitä minkälaisia aksioneja löydetään. Säieteoria on tosin sen verta kaukana havainnoista, että on vaikea nähdä, että mikään havainto tukisi sitä.

  11. Senioriharrastaja sanoo:

    Blogin kategorianimi on Kosmokseen kirjoitettua – kosmologia. Ymmärrän toki, että hiukkasfysiikka liittyy kosmologiaan, mutta harrastajalle sen tutkimus aksioneineen ynnä muine spekulatiivisine alkeishiukkasineen ei aukea. Jos hiukkasfysiikasta pitää kirjoittaa, niin näkisin mieluummin, että blogissa keskityttäisiin silloin saavutettuihin tuloksiin ja niiden yhteyksiin maailmankaikkeuden syntyyn ja rakenteeseen.

    Vielä mieluummin näkisin, että blogi keskittyisi pääasiassa makrokosmokseen ja silloinkin nimenomaan saavutettuihin tuloksiin.

    1. Syksy Räsänen sanoo:

      Hiukkasfysiikka ja kosmologia ovat tiukasti sidoksissa toisiinsa, kuten aksioneihin liittyvä pimeän aineen ongelma osoittaa.

      Blogissa käsitellään sekä tunnettuja asioita että tutkimuksen etenemistä. Kukin voi toki poimia vain itseä kiinnostavat merkinnät.

  12. Martti V. sanoo:

    Minkälaisia aksiontähdet olisivat? Onko niillä mustanaukon kanssa tekemistä?

    1. Syksy Räsänen sanoo:

      Tarkoitatko mahdollisesti kokonaan aksioneista muodostuvia tähtiä? Ne olisivat oman merkintänsä. Ne eivät ole mustien aukkojen kaltaisia sen enempää kuin tavallisetkaan tähdet.

      1. Martti V. sanoo:

        Aikasemmassa merkinnässä mainitsit aksiontähdistä ja mustista aukoista samassa yhteydessä. Ehkä voi olla pidempi stoori. Mielenkiinnolla odotellaan tuloksia seuraavista aksionkokeista.

        1. Syksy Räsänen sanoo:

          Ahaa, aivan, täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/totalitaristinen-periaate-ja-vanhan-ajan-romantiikka/

          Kyse oli siitä, että jotkut mustien aukkojen avulla selitetyt havainnot selittyisivätkin aksionitähtien avulla.

  13. Hannu Mäkelä sanoo:

    Erittäin kiehtovaa. Pimeän energian etsintä siis on käynnissä näköjään aika kiivaasti.

  14. Napanderi sanoo:

    Hei Räsänen

    Onko mahdollista että pimeä aine
    on olemassa vaikkei sillä olisi hiukkasta
    ollenkaan?

    Esimerkkinä painovoima
    joka ei Einsteinin mukaan tarvise
    hiukkasta ollakseen olemassa
    vaan kyse on aika-avaruuden kaareutumisesta

    Onko tämmöinen ilmiöiden olemassa olo
    auttamattoman vanhanaikainen tapa
    ajatella asiaa?

  15. Napanderi sanoo:

    Korjaan: asioiden olemassa olo
    ilman hiukkasta auttamattoman vanhanaikainen tapa
    ajatella asiaa?

    1. Syksy Räsänen sanoo:

      Termissä ”pimeä aine” esiintyvä sana ”aine” viittaa siihen, että asiaan liittyy hiukkasia.

      Hiukkaset ovat vain kentän tiheyntymiä, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/painon-valittajasta/

      On joitakin pimeän aineen malleja, joissa pimeän aineen vaikutus ei palaudu kokonaan hiukkasiin, vaan myös kentän muunlaisia käytöstä pitää ottaa huomioon.

      On myös mahdollista, että pimeää ainetta ei ole olemassa, vaan kyse on gravitaatiolain muutoksesta, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/luodin-jaljet/

      Toistaiseksi yksinkertaisin ja ennustusvoimaisin selitys on kuitenkin se, että kyse on hiukkasista.

  16. Napanderi sanoo:

    ok. ja kiitos vastauksesta.
    Onko mitään laadukkaita tutkimuksia
    mistä kvarkeista tai kvarkeista + muusta
    pimeä aine voisi muodostua?

  17. Napanderi sanoo:

    taas pitää vähä korjata:
    siis mistä kvarkeista tai kvarkeista + muusta
    pimeä aine kenttä tai sen hiukkanen voisi muodostua

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Maastontuntemuksen merkitys

19.6.2020 klo 16.06, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Populaarit uutiset fysiikasta –ainakin hiukkasfysiikasta ja kosmologiasta– ovat usein niin kehnoja, että niitä luettuaan tietää vähemmän kuin ennen. Olen monasti kirjoittanut tiedeuutisoinnin ongelmista yksityiskohtaisesti, kuten täällä, täällä, täällä, täällä, täällä, täällä, täällä ja täällä.

Tähän surkeaan tilanteeseen on monia syitä. Tutkijoiden (ja heidän yliopistojensa tai tutkimusinstituuttiensa) lehdistötiedotteet ovat usein harhaanjohtavia, mutta toimittajat tuppaavat kohtelemaan niitä vilpittömän puolueettomina yhteenvetoina aiheesta. Lisäksi tiede on laaja kenttä, ja monet aiheet ovat monimutkaisia, minkä takia voi olla vaikea ymmärtää mitä tutkijat sanovat, saati tarkistaa onko se totta.

Yksi toistuva ongelma on se, että uutiseksi nostetaan joku tieteellinen artikkeli irralleen tutkimuskentän viitekehyksestä. Yksittäinen tutkimus on kuitenkin vain puheenvuoro tieteellisessä keskustelussa, ja sen merkitys määrittyy suhteessa muihin tutkimuksiin.

Suurin ongelma ei ole se, tunteeko tutkimuksessa käytettyjä erikoistermejä ja matemaattisia menetelmiä. Niiden osalta asia on yleensä tarvittavilta osin suurelle yleisölle helposti selitettävissä.

Mutta tieteelliseen lukutaitoon kuuluu myös se, että tietää miten tutkimus suhtautuu aiempaan työhön samalta alueelta, millaisia oletuksia tutkimusalueeseen kuuluu ja minne alue sijoittuu tieteen maastossa. Kyse on niin yhteisön kuin tieteen tuntemuksesta, ja tutkijat oppivat hahmottamaan sen toimimalla osana tutkimusyhteisöä. Toimittajilla ei ole juuri muuta mahdollisuutta kuin kysyä asiasta tutkijoilta.

Tiede ei ole pino tietoa johon uudet tutkimukset lisätään päällimmäiseksi, vaan toisistaan riippuvien päättelyiden ja havaintojen verkko. Osa verkon säikeistä tukee pienen tai suuren alueen kasvua aikansa, jotkut luovat yhteyksiä eri alueiden välille, toiset paikkaavat taakse jääneitä aukkoja, monet eivät vie mihinkään.

Tieteen ytimessä on lähestymistapa, jossa kartoitetaan yhtä lailla epävarmuuksia kuin oivalluksia. Luonnontieteissä tämä on tarpeen, koska tutkitaan arkijärjelle vieraita asioita. Inhimillisemmillä aloilla syy on päinvastainen: tutkimuksen kohteista voi olla virheellisiä ennakkokäsityksiä.

Kosmologiassa ja hiukkasfysiikassa tiedeuutisoinnilla on vaikutusta siihen, miten hyvin tutkijoiden saavuttama ymmärrys maailmankaikkeuden perimmäisestä luonteesta välittyy alan ulkopuolisille, sekä varmaankin rahoitukseen.

Ilmastotieteessä panokset ovat korkeammat, koska kansalaisten käsitys aiheesta vaikuttaa poliittisiin päätöksiin, joilla on suuri vaikutus ihmisten elämään. Nyt pandemian aikana sama näkyy lääketieteen kohdalla. Ulkopuolisena on vaikea arvioida miten hyvin uutiset välittävät tutkimuksen kenttää, mutta ei ole harvinaista, että näiltäkin aloilta valikoidaan yksittäisiä artikkeleita tai tutkijoiden puheenvuoroja antamatta tarvittavia tietoja niiden asettamiseen paikalleen.

Yksi ohjenuora tilanteen korjaamiseen olisi se, että toimittajien pitäisi ymmärtää asia, josta he kirjoittavat – ja mikä tärkeämpää, ymmärtää mitä he eivät tiedä, jotta osaavat kysyä. Asiaa auttaa se, jos on jo valmiiksi jonkinlainen käsitys aiheesta, josta on kirjoittamassa. Jos ei ole koskaan ennen tutustunut vaikka kosmologiaan tai epidemiologiaan, ei ole mitään valmiuksia arvioida ja mielekkäästi välittää alan uusia tutkimustuloksia. Tausta tieteessä olisi hyödyksi, mutta hyvään popularisointiinkin tutustumalla pääsee pitkälle.

Esimerkkinä erinomaisesta tiedejournalismista, jossa palikat ovat kohdallaan, voi matematiikan ja luonnontieteiden alalta mainita lehden Quanta.

Tieteen alojen määrä ja merkitys kasvaa koko ajan, ja on syytä tunnustaa, että niistä kirjoittaminen järkevästi vaatii perehtymistä. Tämä tarkoittaa myös sitä, että toimituksen pitää antaa artikkeleiden tekemiseen tarpeeksi aikaa, sen sijaan että toimittajien odotetaan toistavan muiden lehtien juttuja tai yliopistojen tiedotteita ymmärtämättä mistä on kyse.

7 kommenttia “Maastontuntemuksen merkitys”

  1. Jernau Gurgeh sanoo:

    Saitko yllykkeen tämän kirjoittamiseen Ylen uutisesta, jossa kerrottiin mahdollisesta aksionin löytymisestä?

    1. Syksy Räsänen sanoo:

      En, se oli ihan OK juttu.

  2. Kari Pennanen sanoo:

    Täsmälleen noin. Alkaa kyllästyttää toimittajien tietämättömyys ja se että asiat irrotetaan kontekstista kirjoittajan mielen mukaan. Haastavaa medialukutaitoa ellei ole itsellä kokonaiskäsitystä ja useimmilla ei ole.
    Mitenkähän asian ratkaisisi?

    1. Syksy Räsänen sanoo:

      Merkinnässä mainittujen asioiden lisäksi voisi auttaa, jos yliopisto järjestäisi tieteellisen lukutaidon kurssin toimittajille. Tämä kuitenkin ratkaisisi vain osan ongelmaa: jos toimittajille ei anneta aikaa perehtyä asiaan, vaan odotetaan kopioivan muiden lehtien uutisia, on heidän vaikea kirjoittaa hyviä juttuja, vaikka valmiudet olisivat hyvät.

      1. Lentotaidoton sanoo:

        Sehän se. Jollet kirjoita asiasta samana päivänä kuin jokin muu (usein kansainvälinen) taho, niin olet auttamattomasti ”jälkijunassa” (tämähän on jo ”ikivanha”, viimeviikkoinen juttu !!!). Helpointa on kääntää juttu suomeksi ja vain linkittää johonkin ulkomaiseen uutiseen (plus provokatiivinen otsikko). Ja se tiedetään, että se joka kovimmin ja usein epäilyttävän ja hätkähdyttävän kritiikittömästi huutaa, saa lukijakuntaa. Kosmologiakin/hiukkasfysiikkakin alkaa olla parin päivän kestävää market-tarjouskamaa. Tarjousjauheliha on härskiintynyttä jo seuraavana päivänä.

        Itse olen ottanut opiksi periaatteesta: kyselepä mitä sille ja sille ”uutiselle” kuuluu vuoden päästä. Ja useinmiten ei niin yhtikäns mitään.

  3. Martti V sanoo:

    Nyt oli taas oikaistu kirjoitus peilikuvauniversumista CPT symmetriaan perustuen. Vaikka aika kulkee taaksepäin, syy-seuraussuhde eikä entropian luonne eroa meidän kokemasta. Symmetria ennustaisi myös oikeakätiset neutriinot.

  4. Kokemukseni mukaan ihan tavalliset rivitoimittajat kirjoittavat usein yllättävän hyvän jutun: he kysyvät kaiken tutkijalta, koska tietävät että eivät itse tiedä asiasta mitään. Ammattimaiset tiedetoimittajat ovat myös toisinaan hyviä, mutta saattavat tehdä kardinaalimokiakin, jos luottavat liikaa itseensä eivätkä tarkista asiaa tutkijalta.

    Tiedeuutisten seuraamisessa, jos uutinen kiinnostaa, pyrin kaivamaan esiin artikkelin tiivistelmän, koska se on mielestäni lähtökohtaisesti luotettavampi kuin lehdistötiedote. Abstraktihan on lähes aina saatavilla vaikka itse artikkeli olisikin maksumuurin takana.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

On the road to diversity

2.6.2020 klo 17.35, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

My article On the Road to Diversity about the second conference of NORNDiP (Nordic Network for Diversity in Physics) and related equality and diversity topics has been published in the physics and mathematics magazine Arkhimedes 1/2020 (page 16).

Kirjoitin aiheesta suomeksi aiemmin täällä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Etäisiä otoksia

31.5.2020 klo 23.20, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Tällä viikolla Durhamin yliopiston hiukkasfysiikan instituutti IPPP järjesti etäkonferenssin RECONNECT (REmote COnference on NEw Concepts in particle Theory). Järjestäjät sanoivat haluavansa vastata kahden c:n (climate change ja corona, ilmastonmuutos ja koronavirus) haasteeseen ja auttaa ylläpitämään hiukkasfysiikan yhteisöä tilanteessa, jossa yhteistyön tekeminen on vaikeutunut.

Etäkonferensseissa on etunsa. Kuten järjestäjät totesivat, osallistumista eivät rajoita rahalliset, poliittiset (kasvava ongelma erityisesti Yhdysvalloissa) tai henkilökohtaisista syistä johtuvat esteet matkustamiselle.

Lisäksi puhujiksi on mahdollista saada tutkijoita laajemmalta alueelta kuin yleensä. Normaalisti esityksen valmistelun ja pitämisen lisäksi puhujalla menee ainakin pari päivää matkustamiseen. Tämän takia konferenssiin ei välttämättä viitsi lähteä elleivät muiden puheet kiinnosta tarpeeksi. Etätapaamisessa puheen voi pitää omassa nojatuolissa, joten RECONNECTiin oli saatu kerättyä laaja kirjo hiukkasfysiikan eri alojen kärkinimiä.

Haittapuoli on se, että etäpuheisiin on vaikeampi keskittyä. Tämän takia ohjelma oli tavallista konferenssia väljempi, tunnin pituisia puheita oli kolme tai neljä päivässä. Esitykset oli ajoitettu siten, että ainakin jotkut ovat sopivaan aikaan riippumatta siitä, missä päin maailmaa on.

Puheiden seuraaminen yhdessä kollegoiden kanssa, jotka ovat eri vuorokaudenajoissa eri puolilla samaa palloa korostaa sekä yhteyttä että etäisyyttä. Hiukkasfysiikassa seremoniaan kuuluu taputtaa puheen loputtua ja uudelleen kysymysten jälkeen, ja tuntuu oudolta niin olla taputtamatta kuin taputtaa yksin.

Yleensä konferensseissa kuuntelen kaikki puheet (paitsi jos niitä on useita samaan aikaan), nyt poimin vain ne, joita pidin erityisen kiinnostavina. Mainitsen tässä vain muutaman otoksen.

Hitoshi Murayama puhui pimeän aineen malleista, joissa pimeän aineen hiukkanen on osa kokonaisuutta, joka on hyvin samankaltainen kuin kvarkkeihin liittyvä värivuorovaikutus. Tämä on vähän samanlainen kuin tekniväri, mutta pienemmillä massoilla, teknivärin hiukkasia kun ei ole kiihdyttimissä näkynyt.

Murayama teki kiinnostavan huomion hiukkasfysiikan ”sosiologiasta”, kuten hiukkasfyysikot tutkimukseen vaikuttavia yhteisöllisiä tekijöitä kutsuvat.

Sen jälkeen, kun hiukkasfysiikan Standardimalli saatiin 1970-luvulla valmiiksi, hiukkasfysiikka kääntyi ratkaisemaan sisäisiä ongelmia. Yritettiin selittää esimerkiksi sitä, miksi Standardimallin energiaskaala on niin paljon pienempi kuin kvanttigravitaation, tai miksi Standardimallista puuttuu yksi mahdollinen vuorovaikutus.

Havainnot toivat pimeän aineen mukaan kuvioihin 70-80-luvun vaihteessa, mutta sitä pidettiin pitkään toissijaisena. Jos malli sisälsi muun muassa pimeää aineen hiukkasen, se oli ehkä mukava pieni lisä. Tutkimusta ajoivat suuret ideat huipulta alas, kuten supersymmetria ja ylimääräiset ulottuvuudet.

Näille ideoille ei ole hiukkaskiihdyttimissä eikä muissa kokeissa löytynyt tukea, eikä pitkään suosituinta pimeän aineen ehdokasta, nynnyä, ole odotuksista huolimatta löytynyt. Toisaalta kosmologiassa on piisannut uusia havaintoja, joita pimeä aine selittää. Niinpä on kysyntää (tai ainakin tarjontaa) uusille pimeän aineen ehdokkaille. Näin pimeä aine on noussut hiukkasfysiikan keskeiseksi kysymykseksi. Nyt pidetään tärkeänä, että mallissa on havaintoihin sopiva pimeän aineen hiukkanen; jos malli liittyy aiemmin tärkeinä pidettyihin teoreettisiin kysymyksiin, niin se voi olla kiva lisä.

Kosmologian ja astrofysiikan vahva asema näkyy siinäkin, että Juan Maldacena, joka tunnetaan parhaiten uraauurtavista teoreettisista oivalluksista gravitaation ja hiukkasfysiikan suhteesta säieteoriassa, puhui mustista aukoista, joilla on magneettinen varaus. Vaikka Maldacena käsitteli mustia aukkoja teoreettisesti, hän korosti niiden mitattavia ominaisuuksia ja pohjusti sen selvittämistä, olisiko niitä todella olemassa ja miten niitä voisi havaita.

Gerardus ’t Hooftin puhe oli spekulatiivisemmasta ja perustavanlaatuisemmasta päästä. ’t Hooft on omaperäinen ajattelija ja hän oli keskeinen hahmo hiukkasfysiikan Standardimallin kehittämisessä. Yhdessä väitöskirjaohjaajansa Martinus Veltmanin kanssa hän osoitti vuonna 1971, että Standardimalli on matemaattisesti ristiriidaton. Kaksikolle myönnettiin työstä Nobelin palkinto vuonna 1999.

’t Hooftista kertoo jotain se, että hän todisti seuraavana vuonna, että värivuorovaikutuksen voimakkuus menee nollaan pienillä etäisyyksillä, mutta piti asiaa niin vähäpätöisenä, että ei viitsinyt julkaista työtään. Tuloksen vuotta myöhemmin julkaisseet David Gross, Frank Wilczek ja David Politzer palkittiin siitä vuonna 2004 Nobelin palkinnolla. ’t Hooft ei ole välittänyt seurata muotia eikä antanut muiden mielenkiinnon määrätä tutkimusaiheitaan. Jotkut hänen ideansa ovat olleet mullistavia, toisten kohtalo on vielä epäselvä.

’t Hooft puhui siitä, miten kvanttimekaniikan taustalla voisi olla deterministinen teoria. Hän on työskennellyt aiheen parissa vuosia, ja on löytänyt kiinnostavia samankaltaisuuksia yksinkertaisten determinististen teorioiden ja kvanttimekaniikan rakenteen välillä. Kvanttimekaniikan kaikkien piirteiden selittäminen ei kuitenkaan ole onnistunut. Tällaisten perusteisiin pureutuvien läpimurtokysymysten pohtimista vaikeuttaa läpimurtoja janoava lyhytjänteinen rahoitusympäristö, eikä moni ’t Hooftin lisäksi asiaa mieti.

Konferenssipuheista saa usein selkeämmän käsityksen siitä, mistä on kyse ja mitä ideoita työn taustalla on kuin tieteellisistä artikkeleista. Tämä toimii myös etäpuheissa, vaikka vuorovaikutus onkin kömpelömpää. Konferenssien sosiaalinen anti on tärkeä, ja kytkeytyy vahvasti tieteeseen. Usein tutkimushankkeet lähtevät liikkeelle puheista kimmokkeensa saaneista epämuodollisista keskusteluista ja väittelyistä. Tämä etätapaamisista puuttuu. Ne ovat kokoelma konferenssin palasia, joiden välistä puuttuu oleellisia osia. Etäkonferensseja on lähiaikoina luvassa lisää, joten näemme miten niiden vahvuuksia opitaan paremmin hyödyntämään ja heikkouksia lieventämään.

5 kommenttia “Etäisiä otoksia”

  1. Eusa sanoo:

    Olen keskustellut t’Hooftin kanssa satunnaistulkinnan korvaamisesta soluautomaattisin tms. keinoin. On yritetty viritellä laajempaa näkökulmakeskustelua perustavasta fysiikasta kvanttilogiikassa, mutta huonolla menestyksellä – aihe tosiaankin kiinnostaa vain erittäin harvoja…

  2. Erkki Kolehmainen sanoo:

    ”’t Hooft puhui siitä, miten kvanttimekaniikan taustalla voisi olla deterministinen teoria.”

    Mielenkiintoinen hypoteesi, koska se käsittääkseni haastaa kavnttiteorian kööpenhaminalaisen tulkinnan, jota Einsteinkaan ei ymmärtänyt.

  3. Lentotaidoton sanoo:

    ”’t Hooft puhui siitä, miten kvanttimekaniikan taustalla voisi olla deterministinen teoria. Hän on työskennellyt aiheen parissa vuosia, ja on löytänyt kiinnostavia samankaltaisuuksia yksinkertaisten determinististen teorioiden ja kvanttimekaniikan rakenteen välillä. Kvanttimekaniikan kaikkien piirteiden selittäminen ei kuitenkaan ole onnistunut. Tällaisten perusteisiin pureutuvien läpimurtokysymysten pohtimista vaikeuttaa läpimurtoja janoava lyhytjänteinen rahoitusympäristö, eikä moni ’t Hooftin lisäksi asiaa mieti”.

    Monet ammattilaisetkin pitävät ’t Hooftia yhtenä maapallomme fiksuimmista ihmisistä. Kuva on muodotunut järjen jättiläisestä joka ei kuitenkaan paljon itseään mainostele (voi tietysti olettaa että ei nobelisti paljon yleisön kehuja muutenkaan kaipaile).

    Uskoisin monien näitäkin blokisivuja seuraavien kuitenkin pyörittelevän omissa vaatimattomissa aivoympyröissään nimenomaan tätäkin problematiikkaa. Kun fysiikka tuntuu junnaavan paikallaan (kvanttigravitaatiosta ei ole haisuakaan – yritelmät Loop Quantum Gravity ja säieteoriat eivät millään vakuuta vuosikymmenien pyörittelystä huolimatta ja Standarditeoriasta ei yleensäkään näytä olevan selvää tietä eteenpäin) niin voitko mitenkään edes ylimalkaisesti kuvailla ’t Hooftin ideoita.

    Luin myös tuon viitauksesi aiempaan. Mihin nimenomaan ’t Hooftin (uusi?) tulkinta/idea näyttäisi kompastuvan – jos se sen tekee. Köpistulkinta, vaikka puutteineenkin, lienee kuitenkin suosituin lähestymistapa ammattilaispiireissä. Kadun jokajätkähän on ilman muuta sitä mieltä että maailma on deterministinen.

    1. Syksy Räsänen sanoo:

      Olen viimeksi lukenut ’t Hooftin artikkeleita aiheesta varmaan yli 15 vuotta sitten, pitäisi palauttaa yksityiskohtia mieleen. En tosin ole varma, onko tämä sopiva blogimerkinnän aihe. Katsotaan.

      ’t Hooft ei yritä toistaa kvanttimekaniikkaa (kuten esim. David Bohmin teoria), vaan lähtee syvemmältä. Teorian rakenteessa on samanlaisia piirteitä kuin kvanttimekaniikassa, mutta toistaiseksi siitä ei saa kvanttimekaniikan kaikkia ominaisuuksia oikein. Ei ole selvää, miten vuorovaikutuksia pitäisi kuvata. Näennäinen epädeterminismi ja epämääräisyys selittyy, mutta ei esimerkiksi sitä, miksi Bellin epäyhtälö näyttää rikkoutuvan tismalleen kuten kvanttimekaniikka ennustaa.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Seitsemän ennustusta menneisyydestä

16.5.2020 klo 16.37, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kosminen inflaatio on paras selitys sille, miksi maailmankaikkeus näyttää isossa mittakaavassa samanlaiselta kaikkialla ja mikä on rakenteiden, kuten galaksien, planeettojen ja kissojen, alkuperä. Inflaation mukaan varhaisina aikoina avaruuden laajeneminen kiihtyi ja kvanttivärähtelyt jäätyivät rakenteen siemeniksi.

Olen maininnut, että inflaatio on ainoa fysiikan alue, jossa kvanttifysiikka ja yleinen suhteellisuusteoria on yhdistetty siten, että on tehty ennusteita joita on onnistuneesti testattu. Inflaatio on siis toistaiseksi ainoa kokeellinen kosketuksemme kvanttigravitaatioon. Avainasemassa ovat havainnot galaksien jakaumasta ja kosmisesta mikroaaltotaustasta. Yksi tärkeimpiä havaintolaitteita on ollut Euroopan avaruusjärjestö ESAn Planck-satelliitti.

Inflaatio tapahtui kenties ensimmäisen sekunnin miljardisosan miljardisosan miljardisosan miljardisosan tienoilla. Saattaa tuntua uskomattomalta, että noin varhaisista ajoista voidaan saada mitään tietoa. Selvennän tässä asiaa käymällä läpi inflaation seitsemän ennustusta.

1. Avaruus on tasainen

Inflaatio ennustaa, että avaruus on keskimäärin hyvin laakea (sen sijaan että se olisi kaareva), eivätkä yhdensuuntaiset viivat kohtaa.

Avaruuden kiihtyvä laajeneminen on kuin suurennuslasi: se venyttää avaruuden osia isommiksi. Jos jotain kaarevaa katsoo tarpeeksi läheltä, se näyttää tasaiselta. Pala Maapalloakin näyttää tasaiselta kun pläntti on tarpeeksi pieni, vaikka Helsingin kokoinen.

Avaruuden tasoittaminen oli yksi alkuperäinen motivaatio inflaatiolle 1980-luvun alussa. Tuolloin havainnot avaruuden kaarevuudesta olivat hyvin epätarkkoja. Nykyisten havaintojen mukaan (ainakin niiden yksinkertaisimmassa tulkinnassa) avaruuden kaarevuus on nolla tuhannesosan tarkkuudella.

Tasaisuus ei ole kovin monimutkainen ennuste: se kertoo vain, että yksi maailmankaikkeutta kuvaava luku on nolla. Inflaation tärkeimmät ennusteet koskevat aineen ja aika-avaruuden epätasaisuuksia, joissa on enemmän yksityiskohtia.

2. Epätasaisuudet ovat lähes samanlaisia kaikissa mittakaavoissa

Kiihtyvä laajeneminen pyyhkii pöydän tyhjäksi aiemmista epätasaisuuksista. Sen aikaiset kvanttivärähtelyt taasen selittävät, miksi näkemämme maailmankaikkeus ei ole aivan tasainen, vailla mitään rakenteita.

Aineessa ja aika-avaruudessa on koko ajan kvanttivärähtelyitä. Inflaation aikana nämä häiriöt venyvät hiukkasfysiikan piperryksestä kosmisiin mittoihin ja niiden värähtely hidastuu lähes olemattomiin. Samalla ne muuttuvat kvanttivärähtelyistä tavallisiksi epätasaisuuksiksi. (Tarkemmin tässä merkinnässä.)

Jäätyneet aallot vain venyvät muotonsa säilyttäen. Samalla koko ajan syntyy, venyy ja jäätyy pienempiä aaltoja. Mitä varhaisemmin aalto syntyy, sitä enemmän se ehtii venyä.

Jos olosuhteet olisivat samat koko inflaation ajan, aaltojen korkeus olisi samanlainen kaikille aallonpituuksille. Inflaation aikana aika-avaruuden kaarevuus kuitenkin vähän laskee. Tämän takia myöhemmin syntyvät (eli lyhyemmät) aallot ovat heikompia, eli niiden korkeus on pienempi.

Aallot pysyvät jäissä kunnes inflaatio loppuu. Sitten ne alkavat hiljalleen värähdellä yksi toisensa jälkeen, pienimmistä alkaen. Kosmisessa mikroaaltotaustassa, joka on valokuva maailmankaikkeudesta 380 000 vuoden ikäisenä, näkyy niin jäätyneitä kuin värähteleviä aaltoja. Siitä on mitattu, että lyhyemmät aallot ovat tosiaan vähän matalampia kuin pitkät, ja suhde vastaa inflaation ennustetta.

Koska kyse on kvanttifysiikasta, jokaisen aallon korkeus itse asiassa määräytyy sattumanvaraisesti, ja on siksi erilainen. Tässä on siis kyse aaltojen tyypillisestä korkeudesta. Mutta inflaatio ennustaa myös sen, millainen aallonkorkeuksien todennäköisyysjakauma on.

3. Epätasaisuuksien jakauma on gaussinen

Kvanttifysiikka kertoo, että inflaatiossa todennäköisyys kunkin aallon korkeudelle on muista aalloista riippumaton ja että todennäköisyysjakauma korkeudelle on kellokäyrän muotoinen. Tällaisia epätasaisuuksia sanotaan gaussisiksi.

Tämä on inflaation parhaiten testattu ennustus: havaitut epätasaisuudet kosmisessa mikroaaltotaustassa ovat gaussisia sadastuhannesosan tarkkuudella.

4. Epätasaisuudet ovat kaikkialla samanlaisia

Kvanttivärähtelyjen kehitys määräytyy niiden ympäristöstä. Koska inflaatio pyyhkii pois kaikki aiemmat epätasaisuudet, avaruus on samanlainen kaikkialla, joten kvanttivärähtelyt ovat samanlaisia joka paikassa ja suunnassa.

Niinpä kvanttivärähtelyistä myöhemmin syntyvät kosminen mikroaaltotausta ja galaksit ovat tilastollisesti samanlaisia kaikkialla. Yksittäiset galaksit ja niiden ryppäät ovat erilaisia, mutta kun katsotaan kuutiota, jonka sivu on vähintään 500 miljoonaa valovuotta, sen sisällä olevat rakenteet ovat keskimäärin samanlaisia olipa kuutio missä tahansa paikassa tai asennossa.

Pienemmässä mittakaavassa gravitaatiosta johtuva klimppiytyminen on piilottanut tämän alkuperäisen samankaltaisuuden. Inflaatio ennustaa myös sen, millaista tämä gravitaatio on.

5. Gravitaatio näyttää samanlaiselta kuin Newtonin teoriassa

Aineen liike gravitaation alla liittyy aika-avaruuden epätasaisuuksiin. Tämä on helppo ymmärtää: jos joka suunnassa olisi samanlaista, ei gravitaatio voisi vetää mihinkään päin. Yleisessä suhteellisuusteoriassa on kolmenlaisia gravitaatiokenttiä, jotka ovat aika-avaruuden kaarevuuden erilaisia ilmentymiä.

Ensinnäkin on samanlainen gravitaatiokenttä kuin Newtonian teoriassa. Mitä isompi on energian tihentymä, sitä isompi on kentän arvo. Tämä kenttä vetää kappaleita toisiaan kohti.

Toisekseen on gravitaatiokenttä, joka syntyy aineen liikkeestä, ja osoittaa aineen nopeuden suuntaan. Tämä kenttä kiertää kappaleita ratoja, sen sijaan että vetäisi niitä kohti massakeskittymiä.

Kolmannekseen on gravitaatioaaltoja, jotka matkaavat valonnopeudella ympäriinsä ja muuttavat etäisyyksiä läpi kulkiessaan.

Inflaatio ennustaa, että gravitaatiokenttä on enimmäkseen samanlainen kuin Newtonin teoriassa ja että liikkeen synnyttämä kenttä on mitättömän pieni. Gravitaatioaaltojen voimakkuus on inflaation mukaan pienempi kuin tavallisen gravitaatiokentän. Tarkka suhde riippuu siitä, miten inflaatio on tarkalleen tapahtunut.

Yksinkertaisimmissa inflaatiomalleissa gravitaatioaaltojen voimakkuus on noin puolet tavallisen gravitaatiokentän voimakkuudesta. Mutta näin voimakkaiden aaltojen vaikutus olisi jo nähty kosmisessa mikroaaltotaustassa. Koeryhmä BICEP2 väittikin vuonna 2014 havainneensa ne, mutta oli väärässä. Joissakin inflaatiomalleissa aallot ovat niin heikkoja, että niitä ei tulla havaitsemaan nähtävissä olevassa tulevaisuudessa.

6. Rakenteen siemeniä syntyy vain varhaisina aikoina

Inflaation mukaan epätasaisuudet ovat syntyneet hyvin varhaisina aikoina, ensimmäisen sekunnin murto-osan aikana. Sen jälkeen ne ovat vain kehittyneet gravitaation myötä. Tämä vastaa havaintoja.

1980-luvulla inflaation kanssa kilpaili idea, jonka mukaan epätasaisuudet syntyvät kosmisten säikeiden liikkuessa ainepuuron läpi. Säikeet synnyttäisivät epätasaisuuksia jatkuvasti, mikä on ristiriidassa havaintojen kanssa.

7. Epätasaisuudet ovat samanlaisia eri hiukkasille

Kun inflaatio loppuu, sitä ajanut kenttä (ehkä Higgsin kenttä) hajoaa hiukkasiksi. Paikkoihin, missä kenttä on voimakkaampi, syntyy enemmän hiukkasia. Jos kaikki aine on peräisin tästä samasta kentästä, niin näihin paikkoihin syntyy siis enemmän jokaista hiukkaslajia: tavallista ainetta, pimeää ainetta, fotoneita ja neutriinoita.

Tämä koskee varhaista maailmankaikkeutta. Kun tavallinen aine ja pimeä aine myöhemmin tihentyvät gravitaation takia, tilanne muuttuu, koska neutriinot kasautuvat paljon myöhemmin ja valo ei lainkaan.

Havaintojen perusteella varhaisessa maailmankaikkeudessa eri hiukkaslajien kummut ja laaksot todella olivat samoissa kohdissa, noin prosentin tarkkuudella.

Kosmiset säikeet ennustivat päinvastaista. Ne saavat aikaan epätasaisuuksia sekoittamalla eri hiukkaslajeja keskenään, niin että yhden kummussa on toisen laakso.

Inflaatio ei ole teoria eikä malli, vaan tieteellinen idea, josta on olemassa erilaisia toteutuksia. On satoja inflaatiomalleja, joissa on erilaisia kenttiä ja erilaisia gravitaatioteorioita, ja ne ennustavat erilaisia asioita. Lähes kaikkia yllä mainittuja ennusteita voi muuttaa kun tarpeeksi säätää: avaruuden kiihtyvällä laajenemisella voi olla erityinen suunta, aaltojen korkeus voi pienentyä aallonpituuden myötä sen sijaan että se kasvaisi, ja niin edelleen.

Tarkkaan ottaen ei siis pitäisi puhua inflaation ennusteista, ainoastaan inflaatiomallien ennusteista. Tämän takia jotkut ovat arvostelleet inflaatiota epätieteelliseksi. Mutta on tavallista, että onnistuneista ideoista esitetään kaikenlaisia versioita. Yksinkertaisten inflaatiomallien ennusteiden on havaittu pitävän kutinsa kerta toisensa jälkeen, mikä on lisännyt luottamusta ideaan. Inflaatiossa syntyneiden gravitaatioaaltojen löytäminen olisi kirsikka kakun päälle.

Päivitys (18/05/20): Korjattu korkeat-> pitkät.

42 kommenttia “Seitsemän ennustusta menneisyydestä”

  1. Heikki Poroila sanoo:

    Itselleni oli uutta tietoa, että erilaisia inflaatiomalleja on noin paljon. Siitä nousi itselleni seuraava kysymys. Onko kosmologien keskuudessa yleistä näkemystä siitä, käynnistyikö inflaatioksi kutsuttu tapahtumasarja nykyisin tuntemiemme fysiikan lakien olosuhteissa vai saimmeko maailmankaikkeutemme myötä myös ikiomat fysiikan peruslait? Lähinnä ajattelen sitä, vihjaavatko erilaiset inflaatiomallit mahdollisesti jompaankumpaan suuntaan, kuten voisi päätellä ilmaisusta inflaatiota ”ajaneesta kentästä”?

    Samalla kysyisin näkemystäsi siitä, onko termi ”inflaatio” suomalaisittain semanttisesti osuva. Itseäni on aina häirinnyt se, että kosmisesta suurtapahtumasta käytetään samaa termiä kuin mitättömästä rahan laskennallisen arvon vähenemisestä. Onko tämä vain suomalainen ongelma tai ”ongelma”?

    1. Syksy Räsänen sanoo:

      Jokaisessa inflaatiomallissa, jossa on muita kenttiä kuin tuntemamme Higgsin kenttä, tai jossa gravitaatio on erilainen yleisen suhteellisuusteorian vaniljaversio, on määritelmän mukaisesti uusia fysiikan lakeja, joita emme tunne.

      Inflaatio on paremmasta päästä fysiikan erikoistermejä. Se viittaa nopeaan (hintojen tai avaruuden) kasvuun.

    2. Erkki Kolehmainen sanoo:

      Arvostan Heikki Poroilaa siitä, että hän uskaltaa kirjoittaa täällä omalla nimellään. Nimimerkin takaa on helppo solvata ja kertoa muunneltua totuutta, kun siitä eii joudu vastuuseen. Inflaatiosta tiedetään niin vähän, että ihmettelen, miksei inflaatiomalleja ole enemmän. Niitä voisi olla jopa seitsemän miljardia . jokaiselle ikioma.

  2. Lentotaidoton sanoo:

    Räsänen: BICEP2 väittikin vuonna 2014 havainneensa ne, mutta oli väärässä. Joissakin inflaatiomalleissa aallot ovat niin heikkoja, että niitä ei tulla havaitsemaan nähtävissä olevassa tulevaisuudessa.

    Niin muistamme tuon aikoinaan suuria odotuksia herättäneen BICEP2 (hätäisen?) ulostulon. Etelämantereella ei ole kuitenkaan noloina lyöty pillejä pussiin, vaan siellä BICEP ja Keck ovat lyöneet hynttyyt yhteen ja uudet havainnoinnit (parannetuilla vehkeillä) aloitettaneen tänä vuonna (kuudella eri aallonpituudella). Kun ns tensor-to-scalar power ratio 2014 oli 0,15 – 0,27 niin Planckin jälkeen tuo asetettiin teoreettisesti vähintään 0,06:ksi tai vielä selvästi alle sen (uusi BICEP IGW amplitudi 0,005). Tällöin meidän pitäisi saada vihonviimeinen testi inflaation hitaan vierimisen (slow-roll) malleille.

    Lisänä B-mode kilpailuun BICEP/Keck tiimille tulee South Pole Telescope sekä vielä suunnitteluvaiheessa oleva CMB-S4 (next generation CMB Experiment, yli puoli miljoonaa detectoria) myös Etelänavalla.

  3. Erkki Tietäväinen sanoo:

    Sanot kirjoituksesi alussa:”Inflaatio tapahtui kenties ensimmäisen sekunnin miljardisosan miljardisosan miljardisosan miljardisosan tienoilla”.

    Mitä tarkoitat sanomalla ”tapahtui”? Tarkoitatko sillä inflaation alkamishetkeä ? Vai ehkä sen kestoa, koska käytät termiä ”tienoilla”? Jos tarkoitat alkamishetkeä, niin kuin oletan voitko kertoa, miten pitkään kosmisen inflaation, siis valoa nopeamman eksponentiaalisen laajenemisen, on arveltu kestäneen.

    Voitko myös kertoa (ilman viittausta johonkin linkin takana olevaan), mistä oli kulunut tuo ”sekunnin miljardisosan miljardisosan miljardisosan miljardisosa”.

    1. Syksy Räsänen sanoo:

      Inflaation tarkkaa ajankohtaa eikä kestoa ei tiedetä. Jos havaitaan inflaatiossa syntyneet gravitaatioaallot, niiden korkeus kertoo suoraan kuinka iso oli aika-avaruuden kaarevuus niiden syntyhetkellä, mistä voi päätellä maailmankaikkeuden iän.

      Inflaatio loppuu joskus noin 10^(-38) s ja 10^(-13 s) välillä, luultavasti paljon lähempänä alkupuolta.

      Inflaation kesto riippuu mallista. Tyypillisesti sen pitää olla alkanut vähintään tekijä 50 ennen loppuhetkeä. Jos inflaatio loppuu hetkellä 5*10^(-38) s, sen on siis pitänyt alkaa vähintään hetkellä 10^(-39 s). Mutta inflaatio voi olla kestänyt vaikka 10^8 kertaa pidempään, tai ikuisesti.

      Kellon nollakohta asetetaan tässä yleisen suhteellisuusteorian ennustamaan ajan ja avaruuden alkuun. Koska emme tiedä mitä on tapahtunut ennen inflaatiota eikä yleinen suhteellisuusteoria päde hyvin varhaisina aikoina, emme tiedä onko sellaista alkua todella ollut olemassa.

  4. Erkki Tietäväinen sanoo:

    Kiitos vastauksestasi. Inflaatio on siis kosmologeillekin monella tavalla varsin epämääräinen ilmiö. Siitä huolimatta sen nimeen vannotaan. Sinäkin sanot: ”Kosminen inflaatio on paras selitys sille, miksi maailmankaikkeus näyttää isossa mittakaavassa samanlaiselta kaikkialla ja mikä on rakenteiden, kuten galaksien, planeettojen ja kissojen, alkuperä”.

    Minusta on alkanut näyttää yhä vahvemmin siltä että tämä ihmeellinen Sampo, kosminen inflaatio, on varta vasten kehitelty selittämään maailmankaikkeuden nykytila eikä päin vastoin. Kyllä johtopäätösten tekemiseen näin keskeisessä asiassa tarvitaan monin verroin tarkempaa tietoa (ei siis teoriaa), kuin mitä nykykosmologialla on inflaatioTEORIAN muodossa tarjottavana. Muussa tapauksessa alan kutsua tätä tieteen alaa kosmetologiaksi.

    1. Syksy Räsänen sanoo:

      Kyse ei ole epämääräisyydestä, vaan siitä, että asian yksityiskohtia ei tunneta. Mutta tiedämme selvästi mitä tiedämme ja emme ja miksi.

      Inflaatio (tai inflaation suoraviivaisimmat versiot) on ennustanut (ei vain selittänyt) useita asioita onnistuneesti, kuten merkinnässä käydään läpi.

  5. Martti V sanoo:

    Miksei inflaatio olisi voinut alkaa hetkestä nolla? Nykyiset arviot antavat kuvan, että aivan kuin olisi sitä ennen ollut jokin jakso.
    Onko malleissa esitetty miten aika käyttäytyi inflaation aikana? Onko inflaatio voinut kestää pidempää tai tapahtua jopa nopeammin, jos havainnointi olisi tehty inflaation aikana? Lähes singulariteettiin verrannolissa tilassa aika kuluisi hitaasti.
    Onko plankin yksiköt olleet reunaehtoina malleissa vai onko edes relevanttia olettaa sellaisia olleen?

    1. Syksy Räsänen sanoo:

      Alkuhetkestä, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/seitseman-ennustusta-menneisyydesta/#comment-7597

      Inflaatiomalleissa aika-avaruuden käyttäytyminen on keskeisellä sijalla. Ei ole mitään absoluuttista aikaa tai kestoa, ajan kuluminen riippuu siitä, miten aika valitaan. (Vähän niin kuin kaksiulotteisella tasolla kappaleella ei ole absoluuttista pituutta x-suunnassa, vaan se riippuu siitä, mikä valitaan x-suunnaksi.)

      Inflaation yksi hyve on se, että kiihtyvä laajeneminen pyyhkii pois tiedon edeltävistä ajoista. Niinpä mahdollinen singulariteetti ajan mahdollisessa alussa tai se mitä tapahtuu Planckin skaalalla ei ole oleellista inflaation kannalta. (Luultavasti: tähän liittyy yksityiskohtia, joita on paljon tutkittu.)

  6. Santeri sanoo:

    ”lyhyemmät aallot ovat tosiaan vähän matalampia kuin korkeat”

    Pitäisikö tässä lukea: ”lyhyemmät aallot ovat tosiaan vähän matalampia kuin _pitkät_” ?

    1. Syksy Räsänen sanoo:

      Tosiaan. Kiitos, korjasin.

  7. Jari Toivanen sanoo:

    Jos universumi, taikka jokin rinnakkaissellainen, olisi sykkivä, niin tapahtuisiko Suuren Kasaanromahduksen yhteydessä inflaatiota vastaten äkillinen deflaatio?

    1. Syksy Räsänen sanoo:

      Inflaatio tarkoittaa sitä, että laajeneminen kiihtyy. Ja tarkemmin sillä yleensä viitataan varhaisessa maailmankaikkeudessa tapahtuneeseen kiihtyvään laajenemiseen, ei nykyiseen kiihtyvään laajenemiseen.

      Inflaation vastakohta on siis se, että laajeneminen hidastuu, kuten se on tehnyt inflaation jälkeisestä ajasta noin 8 miljardin vuoden ikään asti; viimeiset noin 6 miljardia vuotta laajeneminen on taas kiihtynyt.

      On pohdittu erilaisia syklisiä maailmankaikkeuksia, joissa romahdus tapahtuu eri tavalla.

  8. Martti V sanoo:

    Inflaatiolla tarkoitetaan yleisesti univesumin alkuhetkien kiihtyvää laajenemista, jonka aiheutti jokin kenttä. Voiko nykyinen kiihtyvä laajeneminen olla saman kentän aiheuttamaa inflaatiota? Välillä on syntynyt massaa ja gravitaatio, jotka ovat vain hidastaneet inflaatiota. Mikä on itseasiassa inflaation lopun paras määritelmä?

    1. Syksy Räsänen sanoo:

      Tätä vaihtoehtoa on tutkittu, ja onhan se mahdollista. Se ei tosin ole erityisen luonteva tai suosittu vaihtoehto, mikä ei tarkoita sitä, etteikö se voisi olla totta.

      Inflaatio tarkoittaa kiihtyvää laajenemista. Se loppui ensimmäisen sekunnin perukoilla, ei vain hidastunut.

      Massa ja gravitaatio eivät ole syntyneet inflaation jälkeen (oikeastaan ”massan syntyminen” ei ole hyvin määritelty termi – pitäisi määritellä, minkä massasta on kyse). Inflaation aikana maailmankaikkeuden energiatiheys oli isompi kuin nyt. Laajeneminen kiihtyi, koska paine oli myös iso ja negatiivinen, ei siksi, että ainetta olisi ollut vähän.

      1. Martti V sanoo:

        Kiitos vastauksesta.

        ”Kun inflaatio loppuu, sitä ajanut kenttä (ehkä Higgsin kenttä) hajoaa hiukkasiksi. ”

        Sain käsityksen, että inflaation aikana ei ollut massallisia hiukkasia (ehkä korkeintaan kevyitä välittäjähiukkasia). Oliko yhteismassa kuitenkin sopivan pieni, ettei universumi romahtanut mustaksi aukoksi inflaation lopussa? Oliko kvarkkeja ja vahva vuorovaikutus erottunut inflaation aikana?

        1. Syksy Räsänen sanoo:

          Hiukkaslajeja oli kyllä olemassa, mutta avaruudessa ei ollut juuri muuta ainetta kuin inflaatiota ajanut kenttä (ja mahdollisesti muut kentät).

          En oikein tiedä, mitä tarkoitat yhteismassalla. Alue romahtaa mustaksi aukoksi, jos siellä on tietty määrä massaa pakkautuneena tietyn säteen sisälle. Oleellista ei siis ole massan määrä eikä edes tiheys, vaan massa/säde.

          Viimeistä lausetta en ymmärrä. Erottunut mistä?

          1. Martti V sanoo:

            Jostain lähteestä olen käsittänyt että inflaation lopussa oli äärimmäinen tiheys eli koko universumin energia alle metein säteellä. Eli tiheämpää kuin mikään musta-aukko.

            Yksinkertaisemmin oliko tuolloin vahvaa vuorovaikutusta? Eräissä lähteissä on kuvattu sen erkanneen 10^-35s kohdalla sähköheikosta.

          2. Syksy Räsänen sanoo:

            Kuten mainittu, mustan aukon syntymisen kriteeri ei ole tiheys (eli massa/tilavuus), vaan massa/säde.

            Maailmankaikkeuden laajenemisen takia mustia aukkoja ei kuitenkaan muodostu, jos tämä säde on isompi kuin se alue, joka voi viestiä keskenään. Tämä pituus oli varhaisina aikoina paljon nykyistä pienempi, koska inflaation jälkeinen ikä on äärellinen ja valonnopeus on äärellinen.

            Niinpä mustia aukkoja syntyy vain, jos aine on jossain poikkeuksellisen tiheään pakkautunut. Yksinkertaisimmissa inflaatiomalleissa syntyvät tiheysvaihtelut eivät ole tähän tarpeeksi isoja (ennen tähtien syttymistä ja kuolemaa).

            Maailmankaikkeuden laajenemisesta ja tiheyden muutoksista lisää: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/sormustimen-verran/

            Mahdollisten varhain syntyvien mustien aukkojen roolista lisää: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/konservatiivisuuden-nokareet/

            On esitetty, että vahva ja sähköheikko vuorovaikutus yhtyvät suurilla energioilla, mutta ei tiedetä onko näin.

  9. Jyri T. sanoo:

    Kiitos Syksylle (jälleen kerran) valaisevasta kirjoituksesta!

  10. Martti V. sanoo:

    Kiitos Syksy tajuntaa laajentavista vastauksista. Tuo Schwarzschildin säde toisiaan on kääntäen verrannollinen valonnopeuden neliöön (liekö edes pädennyt inflaation aikana).

    1. Syksy Räsänen sanoo:

      Valonnopeuden neliö Schwarzschildin säteessä ei tässä ole oleellinen tekijä.

      Ja valonnopeus ei tosiaan kerro, miten nopeasti signaalit etenevät laajenevassa maailmankaikkeudessa. Valonnopeudesta tarkemmin: https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/luonnottomia_lokeroita

  11. Martti V sanoo:

    Jäi vielä kiusaamaan kysymys. Minkä kokoinen universumi oli säteeltään heti inflaation päätyttyä?

    Olettaen että inflaation loputtua laajeneminen rajoittui valonnopeuteen, universumin säde oli massaansa vastaavaa Schwarzschildin sädettä suurempi.

    Jos massa oli jo silloin nykyisen havaitun maailmankaikkeuden kokoluokkaa Schwarzschildin säde olisi ollut 10^10 valovuotta.

    1. Syksy Räsänen sanoo:

      Maailmankaikkeuden laajenemisesta ja tiheyden muutoksista: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/sormustimen-verran/

      Maailmankaikkeuden laajenemisen tahtia ei mitata nopeuden yksiköissä. Tarkemmin, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/lahella-ja-kaukana/

      Kuten yllä mainitsin, näkyvän maailmankaikkeuden säteen ei tarvitse olla isompi kuin sen massaa vastaava Schwarzscildin säde (eikä se olekaan).

      1. Martti V. sanoo:

        ”Kun aine syntyi inflaation lopussa, alueen säde oli noin senttimetrin verran … 380 000 vuoden iässä, nyt näkemämme alueen säde oli 50 miljoonaa valovuotta”. Tästä päätelleen laajeneminen ei tosiaan rajoittunut valonnopeuteen inflaation jälkeenkään, mikä ilmeisesti esti romahtamisen. Laajenemisen voima yksinkertaisesti voitti gravitaation.

        1. Syksy Räsänen sanoo:

          Kuten sanoin, maailmankaikkeuden laajenemisen tahtia ei mitata nopeuden yksiköissä. Ei siis voi sanoa, että maailmankaikkeus laajenisi valoa nopeammin tai hitaammin tai valonnopeudella.

          1. Martti V sanoo:

            Ei yleensä mitata nopeudella mutta, mutta jollain nopeusprofiililla säde on kasvanut oli se sitten epätasaista tai ei tai sitten ei ole mielekästä puhua säteestä. Oletettavasti yhdestä pisteestä laajeneminen on tapahtunut kolmeen tilasimesioon, jolloin voidaan säteestä toki puhua.

          2. Syksy Räsänen sanoo:

            Maailmankaikkeuden laajenemistahti on eri asia kuin se nopeus, jolla meille näkyvän alueen koko kasvaa (joka on eri asia kuin se, kuinka nopeasti kohteet etääntyvät meistä). Sen kannalta, romahtaako näkemämme maailmankaikkeuden osa mustaksi aukoksi, sillä miten nopeasti näkemämme alueen koko kasvaa ei ole oleellista.

            Tämä riittäköön tästä, kun on sivussa merkinnän aiheesta.

  12. Helena Othman sanoo:

    saisinko kysyä (vähän OT?) eräästä muistaakseni Nature Briefingin artikkelista jonka mukaan *mahdollisesti* universumin laajeneminen ei olisikaan tasaista, siis sen nopeus vaihtelee eri paikoissa. Onko sinulla jokin kommentti tähän?

    1. Syksy Räsänen sanoo:

      Avaruus tosiaan laajenee eri tavalla eri kohdissa. (Tämä oli pitkään pääasiallinen tutkimuskohteeni.) Varhaisina aikoina paikalliset vaihtelut olivat pieniä, sadastuhannesosan luokkaa, mutta nyt ne ovat suurimmillaan 100%.

      Galaksit ja muut gravitaation sitomat kohteet eivät laajene ollenkaan, ja harvemmat alueet, joissa on vähemmän ainetta, laajenevat keskivertoa nopeammin.

  13. Helena Othman sanoo:

    kiitos, jollain tavalla tosi mielenkiintoista…

    1. Syksy Räsänen sanoo:

      Hyvin mielenkiintoista tosiaan.

  14. Helena Othman sanoo:

    Saisinko esittää vielä täydennyskysymyksen (toivottavasti osaan muotoilla sen..)
    Siis, onko kyseessä jokin tuntematon vaikuttaja x erilaisiin laajenemisvauhteihin, vai onko laajenemistahti aina sama esimekriksi alueilla joissa on keskimäärin saman verran ainetta?

    1. Syksy Räsänen sanoo:

      Laajenemisnopeus määräytyy aineen jakaumasta. Karkeasti sanottuna laajeneminen hidastuu sitä enemmän, mitä isompi aineen tiheys on (koska aineen osaset vetävät toisiaan puoleensa). Kun aine kasautuu klimpeiksi ja suurin osa tilavuudesta jää harvoiksi onkaloiksi, laajenemisnopeus eri alueissa muodostuu hyvin erilaiseksi.

  15. Helena Othman sanoo:

    Hm, oliko inflaation alkutilanne siis olematon pieni klimppi kvanttifluktuaatiota ja gravitaatio (jossain muodossa)? Mutta sen kauemmas taaksepäin on vaikea tietää?
    Eli onko gravitaatio kuitenkin aika-avaruuden ominaisuus? Entä kvanttifluktuaatio? Voiko tyhjiöenergia olla olemassa ’ennen alkuräjähdystä’?

    1. Syksy Räsänen sanoo:

      Ei tiedetä mitä tapahtui ennen inflaatiota tai miten inflaatio sai alkunsa.

      Gravitaatiossa on on kyse aika-avaruuden kaarevuudesta: http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/kaareuden_kietoutumista

      Ilmaisusta ”ennen alkuräjähdystä”, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/takaisin-alkuun/

      1. Helena Othman sanoo:

        Kiitos taas, tuo keskustelu big bang versus alkusingulariteetti – käsitteistä oli valaiseva!

  16. Martti V sanoo:

    Onko hologramisen universumin teoriat vaihtoehtoisia inflaatiolle?

    1. Syksy Räsänen sanoo:

      Eivät varsinaisesti. Holografia on laajempi idea, jota on sovellettu erilaisissa yhteyksissä.

  17. Helena Othman sanoo:

    Saako kysyä vielä yhden ootee kysymyksen; kun tila kaareutuu, kaareutuuko tila vai sen sisältö? Sehän on hiukan, noh metafyysiista jos tila itsessään kaareutuu.(Olen kysynyt tätä random foorumeilta ilman oikein tyydyttävää vastausta, heh).

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Jälleen fysiikkaa runoilijoille

12.5.2020 klo 16.18, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Luennoin taas kurssin Fysiikkaa runoilijoille, alkaen 1. syyskuuta. Ilmoittautuminen opiskelijoille aukeaa kesäkuun lopulla, mutta kurssille ovat tervetulleita myös Helsingin yliopiston ulkopuoliset.

Kurssin tarkoituksena on avata fysiikan käsitteitä ja maailmankuvallista merkitystä. Käsittelytapa on kvalitatiivinen ja keskusteleva. Aiheisiin kuuluu Newtonin klassinen mekaniikka, suppea suhteellisuusteoria, yleinen suhteellisuusteoria, kvanttimekaniikka, kvanttikenttäteoria ja hiukkasfysiikka, kosmologia sekä yritykset kohti kaiken teoriaa. Tieteen historiaa ja filosofiaa käsitellään vähän.

Olen aiemmin luennoinut kurssin vuosina 2016 ja 2019. Lisäsin kurssin sivuille kurssin käyneiden antamia neuvoja tuleville kurssilaisille, niistä näkyy hieman miten opiskelijat kurssin kokivat. Kirjoitin vuoden 2016 kurssin palautteesta laajemmin täällä.

4 kommenttia “Jälleen fysiikkaa runoilijoille”

  1. Erkki Kolehmainen sanoo:

    Kävin lukemassa nuo edellisen kurssin opiskelijoiden kommentit, Siellä oli mm. tämä: ”Tieteelliseen maailmankuvaan on vähitellen siis tarttumassa ajatus siitä, että ihmisen havaintokyvyn ulkopuolella olevat asiat selittävät todellisuutta parhaiten.”

    Siis esim. transkendenttinen jumala selittää fysiikkaa paremmin kuin kokeet? Eikö parempi nimi kurssille olisi Fysiikkaa mystikoille tai metafyysikoille.

    1. Syksy Räsänen sanoo:

      Jumalan kanssa tällä ei ole mitään tekemistä. Jatkossa en enää julkaise jumalatrollailukommenttejasi.

      Siirtymä ihmisen havaintokyvyn tuonpuoleisten asioiden rationaaliseen ja empiiriseen käsittelyyn tapahtui 1600-luvulla, ks. esim. tämä kirjoitus.

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/lyijya-ja-painoja/

      1. Erkki Kolehmainen sanoo:

        Kuten jo aiemmin huomautin, en ole anonyymi trolli. Jos tuo mainitsemasi siirtymä on tapahtunut, miksi esim. pimeän aineen hiukkasista etsitään edelleen kokeellisia havaintoja? Minä puolestani väitän, ettei tuota siirtymää ole koskaan tapahtunut. Kaikki fysiikan tutkimuslaitteet mm. LHC on rakennettu sen vuoksi, että se tuottaisi dataa ihmisen havaintokyvyn alueelle hiukkasista, jotka ovat liian pieniä nähtäviksi. Fyysikko katselee kiihdyttimen antamaa törmäysdataa silmillään. Tai hän voi analysoida sitä tietokoneella, mutta viime kädessä senkin tuloksen analyysi perustuu visuaaliseen havaintoon. Teoreettinen fysiikka vailla mitään yhtymäkohtaa havaintomaailmaan on saman arvoinen kuin tuhannen ja yhden yön tarut.

        1. Syksy Räsänen sanoo:

          Tässä oli kyse asioista, joita ihminen ei voi itse aisteillaan suoraan havaita. Kuten tuosta merkinnästäkin käy ilmi.

          Tämä riittäköön tästä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Huippujen laskeminen

29.4.2020 klo 16.06, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Oikeakätinen neutriino on kenties yksinkertaisin ehdokas pimeän aineen hiukkaseksi. Viime kuussa kirjoitin oikeakätisen neutriinon yhteydestä siihen kysymykseen, miksi maailmankaikkeudessa on enemmän ainetta kuin antiainetta. Tulin kommenteissa maininneeksi, että oikeakätisen neutriinon massalle on yläraja siitä, että se voi hajota tavalliseksi neutriinoksi ja röntgensäteeksi, eikä tällaista säteilyä ole nähty.

Kommenttini sattuikin olemaan sikäli ajankohtainen, että Science-lehdessä julkaistiin viisi päivää sen jälkeen artikkeli (tässä ilmainen versio), jonka pääsisältö on juurikin se, että tuota neutriinoiden hajoamissäteilyä ei ole havaittu. Kaksi ja puoli viikkoa myöhemmin puolestaan julkistettiin kaksi sitä arvostelevaa artikkelia. Selvitän tässä tilannetta, mutta tiivistettynä vastaus kysymykseen siitä, onko pimeän aineen säteilyä havaittu on ”ehkä”.

Jos pimeän aineen hiukkanen voi hajota, siitä syntyvää säteilyä pitäisi tulla joka puolelta, koska pimeää ainetta on kaikkialla. Säteilyä pitäisi tulla sitä enemmän, mitä isompi pimeän aineen tiheys on. Niinpä kirkkaimmin pimeydestä hohtaisivat sellaiset paikat kuin Linnunradan keskusta ja galaksiryppäät.

Valitettavasti siellä, missä on eniten pimeää ainetta on myös eniten tavallista ainetta. Suurin pulma on pimeän aineen säteilyn erottaminen tavallisen aineen säteilyn seasta. Tämä ongelma on riivannut myös muiden pimeän aineen hiukkasiksi tarjottujen ehdokkaiden annihilaatiossa syntyvän signaalin etsimistä.

Syynäämistä helpottaa se, että hajoamisessa tai annihilaatiossa syntyvillä hiukkasilla on aina sama energia. Jos oikeakätinen neutriino hajoaa neutriinoksi ja fotoniksi, kummankin energia vastaa puolta neutriinon massasta. Niinpä taivaalla näkyvän säteilyn energiajakaumassa pitäisi näkyä terävä piikki.

Useimpien tähtitieteellisten kappaleiden ja ilmiöiden –vaikkapa neutronitähtien törmäysten– lähettämän säteilyn kirkkaus riippuu melko tasaisesti energiasta kuin nouseva tai laskeva mäki, siinä ei ole kapeita piikkejä eikä kuoppia. Poikkeuksena ovat yksittäiset atomit, joiden energia on kvantittunut, eli ne lähettävät valoa vain tietyillä energioilla.

Oikeakätisten neutriinojen etsimiseen taivaalta on siis periaatteessa yksinkertainen resepti: mitataan röntgensäteitä, siivotaan pois tasaisesti energiasta riippuva tausta ja atomien tunnetut energiapiikit. Jos jäljelle jää energiapiikki, on löydetty pimeää ainetta. Säteilyn energia kerrottuna kahdella kertoo sitten pimeän aineen hiukkasen massan. Säteilyn kirkkaudesta voi puolestaan päätellä hiukkasen eliniän, jos tietää pimeän aineen tiheyden. Mitä lyhytikäisempi hiukkanen, sitä useammin niitä hajoaa, joten sitä enemmän säteilyä tulee.

Reseptin seuraaminen ei käytännössä ole aivan helppoa. Viime viikkoina esille nousseen kiistan juuret ovat vuoden 2014 havainnoissa. Silloin kaksi ryhmää kävi läpi galaksiryppäistä ja Andromedan galaksista tehtyjä röntgensädehavaintoja. Eri kohteissa näkyi energiahuippu, joka ei vastaa mitään atomien lähettämää valoa ja sopii hyvin oikeakätisen neutriinon odotettuun massaan. Lisäksi eri teleskooppien havainnot olivat yhteensopivia. Säteilyn kirkkaus vieläpä sopi pimeän aineen odotettuun tiheyteen ja oikeakätisen neutriinon mahdolliseen elinikään. Havaintojen mukaan oikeakätisen neutriinon elinikä olisi 10^27 sekuntia, eli kymmenen miljardia kertaa pidempi kuin maailmankaikkeuden ikä. (Koska hiukkasia on paljon, osa niistä silti hajoaa koko ajan.)

Signaali oli kuitenkin heikko, kirkkaus oli huipussaan vain prosentin taustaa korkeammalla. Lisäksi esitettiin erilaisia tähtitieteellisiä selityksiä huipun alkuperälle. Tulkintaa vaikeutti se, että röntgenteleskoopit eivät pystyneet mittaamaan energiaa tarpeeksi tarkkaan tehdäkseen eroa terävän piikin ja vähän leveämmän huipun välillä. Niinpä jäätiin odottamaan uusia havaintoja, jotka voisivat varmistaa tai kumota piikin olemassaolon ja alkuperän.

Nyt maaliskuussa julkaistussa Science-lehden artikkelissa onkin kokonaisen vuoden verran uusia röntgenhavaintoja Linnunradasta. Tutkijat katsoivat Linnunradan sellaisia suuntia, joissa taivas on mahdollisimman tyhjä, jotta tavallisesta aineesta syntyvää säteilyä olisi mahdollisimman vähän. He eivät löytäneet mitään energiapiikkiä. Tästä he päättelivät, että pimeä aine ei ole oikea selitys aiemmille havainnoille galaksiryppäistä ja Andromedasta, koska silloin myös näissä Linnunradan havainnoissa olisi pitänyt näkyä huippu.

Tässä vaiheessa mainittakoon, että vaikka Science ja Nature ovat maailman arvostetuimpia tiedelehtiä, kosmologiassa niille vähän naureskellaan. Näihin lehtiin halutaan erityisen tärkeitä tuloksia ja läpimurtoja, mikä johtaa (ainakin kosmologiassa) siihen, että niissä julkaistaan suureelliseen kuosiin puettua vakiotavaraa sekä liian kauas kurottavia ja siksi virheellisiä tuloksia.

Niin ilmeisesti nytkin. Kaksi ja puoli viikkoa Sciencen artikkelin ilmestymisen jälkeen (se oli sitä ennen ollut yli vuoden saatavilla arXiv-nettiarkistossa) jälkeen kahdessa kommentissa huomautettiin vakavista puutteista.

Science-artikkelin kirjoittajat vertasivat analyysissään kahta vaihtoehtoa: onko energiajakauma tasainen vai onko tasaisen jakauman päällä yksi huippu? Näistä tasainen jakauma ilman huippua sopii havaintoihin paremmin. Havaitulla energia-alueella on kuitenkin kaksi tunnettua atomeista syntyvää energiahuippua. On siis mielekkäämpää verrata seuraavaa kahta vaihtoehtoa: tasainen jakauma plus kaksi huippua vai tasainen energiajakauma plus kolme huippua?

Käyrä, jossa on kolme huippua sopii havaintoihin selvästi paremmin kuin sellainen, jossa on vain kaksi huippua tai ei yhtään. Science-artikkelin kirjoittajat eivät siis onnistuneet löytämään taivaalta tarpeeksi tyhjää aluetta, etteikö siellä hehkuvia atomeita lymyäisi. Sitten he olivat luulleet kolmea matalaa vierekkäin olevaa huippua tasaiseksi käyräksi.

Kolmannen huipun paikka ja korkeus sopii hyvin yhteen aiempien havaintojen kanssa. Havaintojen tarkkuus ei kuitenkaan vieläkään riitä pimeän aineen selityksen varmistamiseen tai kumoamiseen. Tarvitaan parempia laitteita.

Japanin avaruusjärjestö JAXA laukaisi helmikuussa 2016 Hitomi-satelliitin, jonka laitteiden joukossa oli erittäin tarkka röntgenteleskooppi. Hitomin odotettiin ratkaisevan ongelman hyvin nopeasti. Ohjelmisto- ja laiteongelmien takia satelliitti kuitenkin tuhoutui kiertoradalla maaliskuussa 2016 ennen mittausten aloittamista. JAXA lähettää yhdessä Yhdysvaltojen avaruusjärjestö NASAn ja Euroopan avaruusjärjestö ESAn kanssa lähivuosina taivaalle XRISM-teleskoopin, joka korvaa Hitomin. Tuloksia odotetaan suurella mielenkiinnolla.

Oikeakätisten neutriinojen metsästykseen suunnitellaan myös hiukkaskiihdytinkokeita. Jos jotain löytyy taivaalta tai maan päältä, toisella saralla voidaan varmistaa ensimmäinen havainto täysin riippumattomasti – tai osoittaa, että jotain on taas tulkittu väärin.

22 kommenttia “Huippujen laskeminen”

  1. Eusa sanoo:

    Entäpä vasenkätinen antineutriino? Eikös silloin uskota siihenkin, jos oikeakätiseen neutriinoon?

    Tällä haavaa kai näyttää siltä, että oikeakätisyys ja antineutriinous voivat olla kytkennällinen välttämättömyys, vai kuinka?

    Kaikki todentamaton on uskonvaraista.

    1. Syksy Räsänen sanoo:

      Jos on olemassa oikeakätisiä neutriinoita, on tosiaan olemassa myös vasenkätisiä antineutriinoita.

  2. Lentotaidoton sanoo:

    Räsänen: Science-artikkelin kirjoittajat eivät siis onnistuneet löytämään taivaalta tarpeeksi tyhjää aluetta, etteikö siellä hehkuvia atomeita lymyäisi.

    Tulee mieleen taannoinen (2014) kohu-uutinen siitä että BICEP2-tutkimus väitti löytäneensä mikroaaltotaustasta varhaisen kosmoksen gravitaatioaaltojen polarisaatiokuvion. No kuvio oli totta, mutta se tuli Linnunradan pölystä.

    Tällöinkin tutkimuksessa etsittiin nimenomaan tarpeeksi ”tyhjää” aluetta Linnunradasta. Planckin karttaa Linnunradasta oli esikatseltu ei-riittävän huolellisesti.

    1. Syksy Räsänen sanoo:

      Vähän samanlainen tarina tosiaan, vaikka tässä tapauksessa itse datan suhteen oltiin huolellisempia.

      BICEP2:n tapauksessahan alue valittiin Planckin ryhmän jäsenen pitämässä esitelmässä näyttäneestä kuvasta otetun valokuvan perusteella, ymmärtämättä oikein mitä kuvassa oli.

      1. Syksy Räsänen sanoo:

        Sanottakoon, että jo vuoden 2014 havainnoissa käytettiin dataa taivaan keskivertoa tyhjemmistä alueista. Silloin niillä tuettiin sitä, että uusi piikki ei ole laitteeseen liittyvä virhe (koska sitä ei näkynyt taivaan tyhjemmässä osuudessa, toisin kuin Andromedan ja galaksiryppäiden suunnassa). Mutta nyt dataa oli enemmän, niin että siinä näkyi piikki.

        1. Kari O sanoo:

          Eikös ole niin, että jos taivaalla on ns. tyhjä alue, siellä on myös vähemmän pimeää ainetta?

          Tältä pohjalta koko esitetty periaate näyttää hiukan oudolta.

          Tietääkseni on niin, että esim. galaksit syntyvät, pysyvät koossa ja pyörivät tasaisesti juuri sen takia, että ne ovat syntyneet pimeän aineen massakeskittymiin.

          1. Syksy Räsänen sanoo:

            Pimeän aineen ja tavallisen aineen jakauma Linnunradassa on erilainen. Pimeä aine on mallien mukaan jakautunut pallomaisesti, näkyvässä aineessa on paljon isompia klimppejä ja enemmän rakennetta, esimerkiksi haarat.

            Kirjoitin merkinnässä kyllä näin: ”siellä, missä on eniten pimeää ainetta on myös eniten tavallista ainetta”. Tämä pitää paikkansa: tavallisen aineen tiheys on isoin Linnunradan keskustassa, kuten myös pimeän aineen tiheys. Tämä ei ole ristiriidassa sen kanssa, että taivaalla on suuntia (poispäin keskustasta ja haaroista), joissa tavallisen aineen ja pimeän aineen suhde on keskivertoa pienempi.

  3. Matti sanoo:

    Tässä tuli mieleen aihetta vain vähän sivuava kysymys:
    Olettamukset:
    1. Pimeä aine vuorovaikuttaa huonosti tavallisen materiaalin kanssa
    2. Pimeä aine noudattaa gravitaatiolakeja
    Näistä seuraa, että
    3. Pimeä aine putoaa massakeskittymiin, esim. tähtiin, mutta poistuu samalla nopeudella kuin saapuikin
    4. Kysymys: Entä mitä tapahtuu kun pimeä aine putoaa mustaan aukkoon?

    1. Syksy Räsänen sanoo:

      Kohdat 1-3 menevät tosiaan noin. Tosin se, että pimeä aine joskus vuorovaikuttaa tavallisen aineen kanssa johtaa siihen, että osa siitä törmäilee tähtien aineen kanssa, menettää energiaa ja jää niihin vangiksi. Tähdissä saattaa siis olla pimeän aineen ydin, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/pimea-sydan/

      Jos pimeää ainetta putooa mustaan aukkoon, sille käy samalla tavalla kuin tavalliselle aineelle.

      1. Matti sanoo:

        Ilmeisesti pimeä aine ei lähetä säteilyä kertymäkiekosta?
        Luulisi että sitä on tutkittu?

        1. Syksy Räsänen sanoo:

          Mustaa aukkoa kiertävä ainekiekko vaikuttaa ehkä huonoimmalta mahdolliselta paikalta etsiä pimeän aineen säteilyä, kun sieltä tulee monenlaista tavallisen aineen säteilyä paljon, ja aine liikkuu eri nopeuksilla, niin että spektriviivoja on vaikea erottaa.

  4. Martti V sanoo:

    Ilmeisesti steriilit neutriinot eivät vaikuta materiaan edes heikon vuorovaikutuksen kautta, mutta pystyvät törmäämään ja menettämään energiaa. Eikö tähän tarvita jotain vuorovakutusta? Onko oletettavaa, että vastaavia antihiukkasia esiintyy pimeässä aineessa ? Voitaisiinko annihilaatio havaita?

    1. Syksy Räsänen sanoo:

      Steriilien neutriinojen ainoat vuorovaikutukset (gravitaatiota lisäksi) on se, että ne voivat muuttua toisiksi neutriinoksi sekä hajota neutriinoksi ja fotoniksi.

      Ne eivät siis törmäile. Pimeän aineen jakauma galakseissa onkin erilainen kuin tavalliseen aineen juuri siksi, että pimeä aine ei pysty törmäilemään ja siten menettämään energiaa.

      Oikeakätisillä neutriinoilla ei ole annihilaatiosignaalia. Karkeasti sanottuna tämä johtuu siitä, että ne ovat omia antihiukkasiaan, kuten fotonit. (Oikeasti selitys on vähän monimutkaisempi.)

      1. Martti V sanoo:

        Eli steriliinin neutronin tapauksessa pimeitä tähtiä ei syntyisi, mutta kasvattavattavat mustia aukkoja. Muutenkaan ne eivät ilmeisesti kasaannu keskenään.

        1. Syksy Räsänen sanoo:

          Aivan. Kasaantuvat vain sen verran, minkä gravitaatio vetää. Eli niistä muodostuu isoja ja harvoja tihentymiä, kuten se, missä Linnunrata istuu. Galaksien sisällä on myös pienikokoisempia tihentymiä, mutta ei mitään tähtiin verrattavaa.

  5. Lentotaidoton sanoo:

    Tässä Suomen kielellä: Neutriinojen sekoitusmatriisin Majorana-vaiheet Hannu Hakalahti 2013
    https://jyx.jyu.fi/bitstream/handle/123456789/41303/URN:NBN:fi:jyu-201305031552.pdf?sequence=1

    1. Syksy Räsänen sanoo:

      Tuossahan on mukava historiaosuuskin.

  6. Jyri T. sanoo:

    Kiitos Lentsikka hyvästä vinkistä!

  7. Martti V sanoo:

    Tenkanen esitti viime vuoden puolella, että hiukkasfysiikan kokeissa olisi pitänyt jo näkyä merkkejä pimeästä aineesta, mikäli se olisi jäännettä alkuräjähdyksestä. Onko myös steriilistä neutriinosta odotettu tuloksia kokeissa?

    1. Syksy Räsänen sanoo:

      Siitä, mitä Tenkanen esitti, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/takaisin-alkuun/

      Tämä merkintä (sekä edellinen https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/vasemmalta-oikealle/) käsittelee juurikin sitä, millaisia merkkejä steriilistä neutriinosta odotataan kokeissa.

      1. Martti V sanoo:

        Tenkasen teksti oli hyvin perattuna.

        ”Suunnitteilla on useita kokeita, jotka yrittävät mitata näiden hiukkasten heiveröisiä signaaleja, esimerkiksi CERNin SHiP.”

        Lähinnä hain mitä signaaleja voisi löytyä, jos hajoaminen on ainoa vuorovaikutus ja onko niitä odotettu näkyvänkään.

        1. Syksy Räsänen sanoo:

          Tässä ja aiemmassa merkinnässä mainitut röntgensäteet esimerkiksi.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *