Äärimmäisyyden reunalta
Keskiviikkona Event Horizon Telescope (EHT) -tutkimusryhmän ottama kuva galaksin M87 mustan aukon tapahtumahorisontin liepeiltä levisi kulovalkean tavoin ympäri maailmaa. Tämä oli historiallinen hetki, ensimmäinen kerta kun ihmiskunta on nähnyt valon läheltä yleisen suhteellisuusteorian ennustamaa viimeistä rajaa. Valokuva tuotiin julki sata vuotta sen jälkeen kun ensimmäinen havainto valon taipumisesta varmisti yleisen suhteellisuusteorian. Mustien aukkojen salaperäinen maine ja säväyttävä kuva aiheuttivat samanlaisen innostuksen kuin Higgsin hiukkasen löytäminen vuonna 2012 ja gravitaatioaaltojen suora havaitseminen vuonna 2016.
Kurkistan tässä kuvan taakse ja hahmottelen mitä se meille kertoo. EHT:n tiivistelmäartikkeli löytyy täältä, ja EHT:n suomalaisen jäsenen Tuomas Savolaisen kokemuksesta voi lukea täällä.
EHT-ryhmä teki havainnot ympäri Maapalloa sijaitsevilla teleskoopeilla viime vuoden 2017 huhtikuussa. Kirjoitin aiheesta viime toukokuussa, jolloin arveltiin, että kuva olisi valmis viime vuoden loppuun mennessä. EHT on teleskooppien verkosto, ja jokainen sen teleskooppien pari näkee pienen siivun taivasta. Näiden kuvien puhdistaminen, analysoiminen ja yhdistäminen sekä väliin jäävien alueiden täyttäminen todennäköisimmällä kuvanjatkeella kesti hieman odotettua kauemmin.
Galaksi M87 on 55 miljoonan valovuoden päässä, eli kosmologisesti ajateltuna samassa korttelissa. M87 on lähitienoon massiivisin galaksi, ja sen keskellä mollottava kuuden miljardin Auringon painoinen musta aukko on niin ikään naapuruston isoin. Keskustasta pursuaa 200 000 valovuotta pitkä hiukkassuihku, joka havaittiin ensimmäisen kerran vuonna 1918. Tällaiset valtavat suihkut syntyvät kun aine syöksyy mustaan aukkoon kierteessä kuin vesi kylpyammeen aukkoon. Aineen pyöriessä kehittyy vahvoja magneettikenttiä, jotka kiihdyttävät hiukkasia korkeisiin energioihin. Varhaisessa maailmankaikkeudessa mustiin aukkoihin virtaa ainetta vuolaana koskena. Tämä synnyttää erittäin voimakkaita suihkuja, ja tällaiset mustat aukot tunnetaan nimellä kvasaari. Kvasaareja on mitattu satojatuhansia, mutta ne ovat liian kaukana, jotta kiekoista saisi selvää.
Galaksin M87 hiukkassuihku on hillitympi, mutta sen perusteella odotettiin, että mustaa aukkoa kiertävästä ainekiekosta saataisiin viimein kuva. Tässä ei jouduttu pettymään. Kuvan valodonitsi syntyy elektroneista, jotka kiertävät mustan aukon nielua lähes valonnopeudella miljardin asteen lämpötilassa ennen suistumistaan nieluun. Donitsin paksuus kuvassa johtuu teleskooppien erotuskyvyn rajoituksista: kiekko on huomattavasti ohuempi kuin miltä näyttää. Alapuoli on kirkkaampi, koska siellä elektronit liikkuvat meitä kohti.
Kuvassa näkyvä tumma keskus on nimetty ”mustan aukon varjoksi”. Koska musta aukko ei käytännössä lähetä eikä heijasta säteilyä (Hawkingin säteily on aivan liian heikkoa havaittavaksi), se näyttäytyy tummana alueena kirkkauden keskellä. Toisin kuin miltä kuvasta saattaa näyttää, keskusta ei itse asiassa ole täysin musta, sen kirkkaus on noin 10% kiekon kirkkaudesta. Tämä on odotettavissa ensinnäkin siksi, että musta aukko taivuttaa valoa niin että sen taakse voi nähdä. Toisekseen, mikä tärkeämpää, EHT:n erotuskyky ei aivan riitä keskustan erottamiseen ympäristöstä, joten kiekon kirkkaus tuhraantuu vähän sisemmällekin.
Galaksin M87 keskustan musta aukko on noin Aurinkokunnan kokoinen, kuten sarjakuva xkcd havainnollistaa. 55 miljoonan valovuoden etäisyydeltä se näyttää kuitenkin pieneltä kuin soranjyvä Atlantin takana. EHT:n erotuskyky on vähän keskustan mustaa aluetta huonompi. Mustan aukon ympärillä oleva alue, josta valo päätyy aukkoon, on puolestaan noin 2.6 kertaa tapahtumahorisontin kokoinen. On kutkuttavaa päästä näkemään näinkin lähelle tapahtumahorisonttia, ja EHT on tekninen taidonnäyte. Tuhansien kilometrien päässä olevien teleskooppien etäisyys pitää tuntea millimetrin tarkkuudella, ja ne keräsivät dataa samaa tahtia kuin CERNin LHC-kiihdyttimen kaikki kokeet yhteensä, 32 PB (eli 32 miljoonaa gigabittiä) sekunnissa.
Tieteellisesti tästä ensimmäisestä havainnosta ei kuitenkaan opittu paljon. EHT-ryhmä teki 43 kappaletta simulaatioita erilaisista kertymäkiekoista mustan aukon ympärillä, joissa huomioitiin yleisen suhteellisuusteorian kaikki hienoudet, mutta EHT:n erotuskyvyllä ne näyttävät melkein kaikki jokseenkin samalta. Asian voi ilmaista myös niin, että mallit ovat hyvin ennustusvoimaisia: jos havainnot olisivat näyttäneet jotain muuta, sitä olisi ollut vaikea selittää säätämällä kiekon yksityiskohtia. Mutta nyt ei nähty mitään odotuksista poikkeavaa.
Mustien aukkojen tapahtumahorisontin läheisyydestä tehdyillä havainnoilla voi testata yleisen suhteellisuusteorian ennusteita. Tämän ensimmäisen havainnon antamat rajat ovat kuitenkin hyvin heikkoja. Toistaiseksi voidaan sanoa vain, että mustan aukon pyörimisestä aiheutuva gravitaatiokentän poikkeama pallosymmetriasta voi olla korkeintaan neljä kertaa niin iso kuin mitä suhteellisuusteoria ennustaa. Näillä havainnoilla ei voida sulkea pois moniakaan vaihtoehtoja mustille aukoille.
Vaikka EHT-ryhmä summaa muuttaneensa tapahtumahorisontin ”matemaattisesta käsitteestä fyysiseksi olioksi jota voi tutkia toistuvilla tähtitieteellisillä havainnoilla”, mustien aukkojen törmäyksistä syntyneiden gravitaatioaaltojen havaitseminen on jo antanut tarkempia rajoja mustien aukkojen ominaisuuksille. Ryhmä on kuitenkin oikeassa siinä, että se on avannut mahdollisuuden tutkia samoja mustia aukkoja useampia kertoja yhä tarkemmin, siinä missä gravitaatioaallot kiitävät ohi valonnopeudella.
Lähitulevaisuudessa sopii odottaa tietoa kiekon valon polarisaatiosta, nyt julkaistiin vasta data valon kirkkaudesta. Polarisaatio kertoo kiekon magneettikentästä. Lisäksi on luvassa kuva EHT:n toisesta kohteesta, Linnunradan keskustan mustasta aukosta. Se on vaikeampi nähdä, koska Linnunradan keskustassa ja matkalle sinne on kaikenlaista roskaa. Lisäksi Linnunradan mustan aukon ympäristö muuttuu nopeammin kuin galaksin M87 mustan aukon ja on siksi vaikeammin kuvattava.
Kuten ensimmäinen suora havainto gravitaatioaalloista, ensimmäinen valokuva mustasta aukosta on enemmän lupaus tulevasta kuin itsessään mullistava löytö.
Päivitys (16/04/19): Havaintojen vuosi korjattu.
Onko tämä kuva nyt sitten (täysin) kiistaton todiste mustan aukon olemassaolosta?
Ei. Kuten tekstissä kirjoitan: ”Näillä havainnoilla ei voida sulkea pois moniakaan vaihtoehtoja mustille aukoille.”
Virkkeessä linkatussa merkinnässä on yksi esimerkki vaihtoehdoista: https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/rajapintojen_kosketuksia
Onko maapallolta nähtävissä yhtäkään mustaksi aukoksi arveltua kohdetta, josta olisi edes teoriassa mahdollista saada vastaavaa kuvaa näkyvän valon aallonpituuksilla? Ilmeisesti ei, tai muuten sitä olisi varmaan jo yritetty?
En ole varma, ei käsittääkseni nykyisellä teknologialla.
En tunne teleskooppeja juurikaan, näkyvillä aallonpituuksilla on enemmän ongelmia ilmakehän kanssa, mutta interferometriaa (eli eri teleskooppien kuvien yhdistämistä) tehdään kyllä niilläkin.
M87:n keskustasta en ole varma, mutta Linnunradassa asiaan vaikuttaa myös se, että galaksimme on läpinäkyvämpi radioaalloille kuin nökyvälle valolle, etenkin keskustan tienoilla.
EHT:n aallonpituus oli 1.3mm ja efektiivinen halkaisija sama kuin Maan. Optisella aallonpituudella 500nm vastaavan kulmaresoluution omaavan teleskoopin halkaisijan pitäisi olla niinkin iso kuin 5 km. Ei taida olla ihan lähitulevaisuuden juttu, tosin avaruusteleskooppien muodostelmalennolla se saattaisi onnistua, ja tarkkaa muodostelmalentoa kehitetään Lisa-gravitaatioaaltoteleskooppia varten. Avaruusinterferometrejä (Darwin, TPF) suunniteltiin 10-15 vuotta sitten, mutta jossain vaiheessa ne karsittiin pois.
Mieleen tulee vanha sanonta: ”suomalainen ei usko ennenkuin näkee”. Mustaan aukkoonkaan ei ilmeisesti voi uskoa, ennenkuin saadaan todisteet näkyvän valon aallonpituusalueella.
Aallonpituudella ei ole tässä asiassa merkitystä, vaan sillä miten mustista aukoista poikkeavien mallien ennusteita pystytään rajoittamaan.
Eikös EHT:n havainnot tehty 2017 huhtikuussa? Tuo tekstin alussa olevan EHT:n tiivistelmäartikkelin linkkikään ei näyttäisi toimivan.
Voitko Syksy vielä vastata muutamaan kysymykseen singulariteeteistä, vaikkeivat ne varsinaisesti tämän tekstin aiheena olleetkaan?
Onko alkuräjähdyksen- ja mustan aukon singulariteetti samankaltainen? Tiedätkö ovatko tutkijat pohtineet voivatko nämä olla jotenkin yhteydessä toisiinsa esim. siten, että mustan aukon singulariteetti olisi alku uudelle universumille? Huomioiden myös, että mustia aukkoja on eri kokoisia (tähdenmassaiset ja galaksiyhtimissä olevat), voisiko meidän universumimme olla vielä suurempi musta aukko, jonka sisällä olemme?
Tosiaan, mitähän olenkin löpertänyt. Kiitos, korjasin.
Mustan aukon ja maailmankaikkeuden alun singulariteetit ovat erilaisia, ja nykynäkökulmasta singulariteetit ovat osoituksia yleisen suhteellisuusteorian pätevyysalueen ylittymisestä. Ideoita siitä, että olisimme mustan aukon sisällä on toki esitetty, mutta ne ovat hyvin spekulatiivisia.