Superelinkelpoiset planeetat
Tunnemme vain yhden elinkelpoisen planeetan koko näkyvän maailmankaikkeuden alueella. Vaikka jo omassa galaksissamme on joidenkin arvioiden mukaan kuusi miljardia planeettaa, joilla elämää voisi esiintyä, emme ole havainneet ainuttakaan eksoplaneettaa, jonka pinnalta edes voisimme löytää merkkejä elävistä organismeista. Eksoplaneettoja on kuitenkin havaittu jo yli 4000 ja niiden elinkelpoisuutta voi koettaa tarkastella perustuen siihen, mitä tiedämme niiden kiertoradasta, koosta, massasta, koostumuksesta, pintalämpötilasta, säteilyolosuhteista, pyörimisestä ja muista fysikaalisista ja geokemiallisista olosuhteista. Ongelmana tietenkin on, että tiedämme vain niin kovin vähän.
Sen määrittäminen, onko jokin planeetta elinkelpoinen vai ei — puhumattakaan elinkelpoisuuksien kvantitatiivisesta vertailusta — on erittäin vaikeaa. Tarkoitusta varten on kuitenkin kehitetty menetelmiä, kuten erilaiset maankaltaisuusindeksit, jotka kuvaavat planeettojen samankaltaisuutta Maapallon kanssa. Sellaisten menetelmien ongelmat ovat myös välittömästi ilmeisiä. Verratessamme eksoplaneettojen ominaisuuksia Maan ominaisuuksiin, olemme tarkastelemassa niiden maankaltaisuutta, emme niiden elinkelpoisuutta. Siten sivuutame kaikki planeetat, jotka eivät muistuta Maata mutta jotka ovat silti elinkelpoisia. Etsiessämme vain maankaltaisia planeettoja, saatamme jättää runsaasti jopa Maata parempia elämän kehtoja huomiotta. On kuitenkin äärimmäisen vaikeaa etsiä jotakin, jota emme osaa edes määritellä kunnolla.
Tässä mielessä astrobiologit ja eksoplaneettojen metsästäjät ovat vaikean paikan edessä. Jos tarkoituksena on löytää eläviä tai vähintäänkin elinkelpoisia eksoplaneettoja, mistä tunnistamme sellaisen, jos emme voi saada juurikaan tietoa edes pinnan ominaisuuksista tai kaasukehän koostumuksesta puhumattakaan siitä, että havaitsisimme elämää?
Dirk Schulze-Makuch kollegoineen kuitenkin tarttui ennakkoluulottomasti kysymykseen elinkelpoisista planeetoista. He kysyivät rohkeasti voisiko galaksissamme olla planeettoja, jotka olisivat Maata parempia ylläpitämään elämää. Jos sellaisia on, maanulkopuolisen elämän etsinnän kohteiksi kannattaisi valita superelinkelpoisia planeettoja maankaltaisten planeettojen sijaan. Mutta miten määrittelemme planeetan elinkelpoisuuden ja saamme sille numeroarvoja, joita voidaan verrata eri planeettojen välillä?
Schulze-Makuch ryhmineen otti lähtökohdakseen määritellä elämälle soveltuvien fysikaalisten ja geokemiallisten olosuhteiden kirjon tarkkailemalla olosuhteita, joiden rajoissa elämää tiedetään esiintyvän Maapallolla. Maan elämä kykenee esimerkiksi aktiivisuuteen laajalla lämpötilaskaalalla, alkaen noin -18°C lämpötilasta aina 130°C asti. Jotkin mikrobit ja vaikkapa hiivasolut voivat kasvaa ja jakautua -18°C lämpötiloissa ja bakteerien tiedetään kasvavan jopa 130°C kuumuudessa. Monisoluisille eläimille maksimilämpötilaksi on havaittu 105°C. Lämpötilan suhteen äärimmäisiä elinympäristöjä edustavat suolaisen veden taskut jään sisällä, kuumat lähteet ja merenpohjan mustat savuttajat. Aivan samoin, elävät solut menestyvät laajalla skaalalla pH-asteikkoa erittäin happamasta -0.5 lukemasta aina emäksiseen arvoon 13 asti. Monisoluisille organismeille skaala on vaatimatttomammin välillä 0-10 mutta on muistettava, että arvo 0 vastaa elämistä vahvassa happokylvyssä. Elinympäristöjä ovat esimerkiksi merenpohjan mustat savuttajat, kuumat happamat lähteet ja emäksiset järvet.
Samalla periaatteella voidaan määritää elämän esiintymisen fysikaalisia ja geokemiallisia rajoja ottaen huomioon muitakin tekijöitä, kuten paine, happipitoisuus tai sen puute, säteilyolosuhteet ja vaikkapa muut kemiallisesti haastavat olosuhteet. Tämän jälkeen voidaan arvioida planeettojen olosuhteita kaiken olemassaolevan tiedon valossa ja määrittää niiden sopivuutta eläviksi planeetoiksi. Prosessissa tarvitaan tietenkin runsaasti yksinkertaistuksia, oletuksia ja karkeita arvioita mutta sekin on parempi kuin ei mitään.
Ongelmista ilmeisin on, että osaamme määritellä elämälle suotuisia elinympäristöjä vain suhteessa niihin olosuhteisiin, joissa tiedämme Maan elämän selviävän. Kaikki saadut tulokset ovat siten vääristyneet Maapallon elämän vaatimusten mukaisiksi. Vaikka pyrkimystä objektiivisuuteen ja pois maakeskeisestä ajattelusta olisikin, on täysin mahdotonta tietää voisiko jokin elinympäristö olla elinkelpoinen, jos sellaista ei esiinny Maapallolla tai jos Maan elämä ei kykene elämään siinä.
Seuraavana ilmeisenä ongelmana on määrittää mitä tarkoitetaan superelinkelpoisella planeetalla. Ilmeisiä tapoja on laskea sen biomassan tai lajikirjon määrää, jota planeetta kykenee ylläpitämään mutta asiaan vaikuttavat myös evolutiiviset innovaatiot, evoluutiohistoria ja siten puhdas sattuma. Voidaan esimerkiksi kuvitella olosuhteiltaan paljon Maapalloa elinkelpoisempi ja elämälle (joillakin kriteereillä) suotuisampi planeetta, jonka pinnalla esiintyy vain bakteereja, koska mitokondrioksi kutsuttua tehokkaan aineenvaihdunnan mahdollistavaa bakteerien symbioosia ei ole muodostunut ja siten monisoluisuus ja pitkät ravintoketjut eivät ole tulleet mahdollisiksi. Se, täyttääkö planeetta todellisuudessa oman elinkelpoisuuspotentiaalinsa on kuitenkin kaiketi oma kysymyksensä.
Superelinkelpoisuus käytännössä
Superelinkelpoisuuden käsitteen esittelivät Rene Heller ja John Armstrong. Tähtitieteellisten havaintojen ja geofysikaalisten ja -kemiallisten olosuhteiden kontekstissa sen voidaan sanoa tarkoittavan planeettoja, jotka täyttävät seuraavat kriteerit:
- Kiertorata oranssin tähden ympärillä: Oranssit K-spektriluokan kääpiötähdet elävät Aurinkoa kauemmin ja tarjoavat siten Aurinkoa stabiilimman ja pitkäikäisemmän elinkelpoisen vyöhykkeen. Vaikka punaiset kääpiötähdet ovat vielä sitäkin pitkäikäisempiä, niiden elinkelpoiset vyöhykkeet ovat niin lähellä tähtien pintoja, että vuorovesivoimat saavat planeetat näyttämään aina saman puoliskonsa tähdelleen. Se taas aiheuttaa valtavia lämpötilaeroja ja heikentää planeettojen elinkelpoisuutta.
- 5-8 miljardin vuoden ikä: Maapallolla monisoluisen elämän kehittymisessä kesti 4 miljardia vuotta. On siten luultavaa, että aivan nuorella planeetalla elämä ei ole vielä saavuttanut täyttä kukoistustaan biomassan tai -diversiteetin maksimin muodossa. Liian vanhojen planeettojen ytimet taas ovat saattaneet jäähtyä liikaa, jolloin geologinen aktiviteetti hidastuu ja heikentää elinkelpoisuutta. Planeetan todennäköisyys steriloitua valtavan asteroidin törmäyksestä kasvaa myös, kun tarkasteltava aikaväli kasvaa.
- Kooltaan 10%, massaltaan 50% Maata suurempi: Maata suuremmalla planeetalla on enemmän pinta-alaa ylläpitää biosfääriä. Liian suuri planeetta kuitenkin on heikentynyt elinkelpoisuudeltaan paksun kaasukehän ja sen tuottaman voimakkaan kasvihuoneilmiön vuoksi. Liian keveät planeetat taas jäähtyvät nopeasti ja menettävät kaasukehäänsä avaruuteen, mikä heikentää elinkelpoisuutta.
- Maata 5°C korkeampi pintalämpötila: Maapallolla eniten elämää esiintyy trooppisissa sademetsissä. Hiukan Maata lämpimämmällä planeetalla vastaavia olosuhteita voisi esiintyä paljon laajemmalla alueella, vaikka itse päiväntasaaja saattaisikin olla liian kuuma ja siksi aavikoitunut. Vieläkin kuumempien planeettojen pinnalla vain heikosti elämälle soveltuvat aavikot olisivat liian laajoja. Maata kylmemmillä planeetoilla laajat jäätiköt heikentävät elinkelpoisuutta.
- Kostea, happipitoinen kaasukehä: Trooppiset olosuhteet vaativat paljon kosteutta ja reaktiivista happea vaaditaan tehokkaaseen aineenvaihduntaan, joka mahdollistaa pitkät ravintoketjut ja siten korkean biodiversiteetin tason.
- Vaihteleva pinta: Biodiversiteetti on maksimissaan, kun pintaolosuhteet ovat mahdollisimman vaihtelevat. Tämä tarkoittaa paljon matalia meriä ja saaristoja. Tämä perustuu siihen havaintoon Maapallolta, että historiassa biodiversiteetti on ollut rikkainta, kun rantaviivaa on ollut eniten. Mantereiden puolestaan muodostettua Pangaeaksi kutsutun supermantereen, biodiversiteettiä oli vähemmän.
- Suuri kuu: Verrattaen massiivisen kuun olemassaolo stabiloi planeetan pyörimisen ja siten olosuhteet, jotta biodiversiteetti ja -massa ehtii maksimoitua. Kuun aikaansaamat vuorovedet myös lisäävät elinympäristöjen monimuotoisuutta.
- Laattatektoniikka ja geologinen aktiivisuus: Geologinen aktiviteetti aikaansaa mannerten uudistumista ja siten ravinteiden kierrätystä elävien organismien käytettäväksi. Sula magma maan vaipassa ja ytimessä myös tuottaa Maan magneettikentän, joka suojaa pinnalla eläviä organismeja avaruuden suurienergisiltä hiukkasilta ja Auringon hiukkastuulelta.
Lista ei ole kattava mutta se antaa kuvaa superelinkelpoisen planeetan olosuhteista. Vaikka jokaista kohtaa voikin kritisoida varsin hyvin perustein, luettelo tarjoaa ainakin jonkinlaisen lähtökohdan sille, minkälaisia planeettoja kannattaa koettaa havaita, jotta maksimoitaisiin mahdollisuus löytää eläviä planeettoja. Luettelon voimakkaan maakeskeisyyden lisäksi ongelmaksi muodostuu se, mitä eksoplaneettojen ominaisuuksia voidaan havaita. Suureksi osaksi tunnemme vain planeetojen radan ominaisuudet ja niiden koon tai massan — vain harvoin tunnemme molemmat ja voimme arvioida keskitiheyttä ja siten koostumusta. Tunnemme lisäksi tähtien ominaisuudet riittävän tarkasti, jotta voimme laskea planeettojen radallaan kohtaamat säteilyolosuhteet ja arvioida niiden pintalämpötiloja. Koostamalla nämä tiedot yhteen, saadaan arvioita sille, kuinka elinkelpoisia tai jopa superelinkelpoisia planeettoja tunnettujen eksoplaneettojen joukossa esiintyy.
Tarkastelemalla tunnettujen eksoplaneettojen tunnettuja ominaisuuksia ja vertaamalla niitä elinkelpoisuutta maksimoiviin ominaisuuksiin, Schulze-Makuch kollegoineen onnistui tuottamaan luettelon parhaimmista kohteista. Kaikki luetteloon kelpuutetut 24 planeettaa ovat Kepler-avaruusteleskoopin havaitsemia planeettakandidaatteja. Ne ovat lisäksi hyvin kaukaisissa, useiden satojen tai tuhansien valovuosien päässä Aurinkokunnasta sijaitsevissa planeettakunnissa. Tutkijoiden päällimmäisenä tavoitteena ei kuitenkaan ollut luoda luetteloa elinkelpoisimmista planeetoista, vaan vain kiinnittää huomiota siihen, että superelinkelpoisia planeettoja voi hyvinkin olla olemassa ja niitä saattaa olla jopa jo löydettyjen muutaman tuhannen eksoplaneetan joukossa.
Koska tarkasteltavana on vain neljä parametria, joista saadaan havaitsemalla tietoa, elinkelpoisuutta voidaan arvioida vain suhteessa niihin. Ne ovat listattujen ominaisuuksien kohdat 1-4, joita määrittävät karkeasti tähden massa ja ikä sekä planeetan kiertorata ja koko. Luettelossa on kaksi kohdetta, jotka ovat superelinkelpoisia kolmen ominaisuuden suhteen, mikään tunnetuista planeetoista ei yllä superelinkelpoiseksi kaikkien neljän suhteen. Kohde KOI 5554.01 on muutoin optimaalinen — suunnilleen Maan kokoinen, hiukan Maata vanhempi ja aavistuksen lämpimämpi — mutta se kiertää auringonkaltaista tähteä, joten sen olosuhteet tuskin pysyvät stabiileina ja elämälle otollisina Maata kauempaa. Toinen kandidaatti, KOI 5715.01, kiertää Aurinkoa pitkäikäisempä oranssia kääpiötähteä, on miljardin vuoden verran Maata vanhempi ja pinnaltaan Maata lämpimämpi, jos planeetan kaasukehä tarjoaa hiukankaan lämmitystä kasvihuoneilmiön muodossa. Ongelmana on, että KOI 5715.01 on noin kaksi kertaa Maata suurempi, ja sen elinkelpoisuus saattaa sen vuoksi olla heikentynyt — kaksi kertaa Maan kokoinen planeetta on luultavasti 6-10 maanmassainen kappale ja siten aivan liian paksun kaasukehän peitossa ja liian kuuma ollakseen elinkelpoinen.
Emme tiedä havaittujen planeettojen ominaisuuksista tarpeeksi voidaksemme arvioida niiden elinkelpoisuutta mutta se ei ole oikeastaan edes tärkeää tässä vaiheessa. Tärkeämpää on kyetä arvioimaan minkälaisia planeettoja kannattaa tulevaisuudessa tarkkailla tiiviimmin elämän merkkien etsimiseksi. Siinä mielessä superelinkelpoiset planeetat ovat jopa parempia kohteita kuin maankaltaiset kohteet (Kuva 1.). Kepler-avaruusteleskoopin havaitsemat maailmat eivät ole riittävän lähellä, jotta niistä saataisiin merkittävästi tarkempaa tietoa edes suuremmilla ja paremmilla lähitulevaisuudessa käyttöön otettavilla teleskoopeilla. Mutta superelinkelpoisuuden käsitettä ja mittareita voidaan soveltaa aivan mainiosti myös lähitähtien planeettakuntiin.
Lähin tähtemme, alpha Kentauri B, tarjoaa oranssina kääpiötähtenä potentiaalisen superelinkelpoisten maailmojen järjestelmän. Sen kiertoradalta ei tunneta planeettoja mutta Maata vain hiukan suurempien kappaleiden havaitseminen ei ole vielä ollut edes mahdollista. Ehkäpä superelinkelpoisia planettoja on kaikkialla, kunhan vain opimme etsimään niitä. Sitä tähtitieteilijät ainakin ovat kiivaasti opettelemassa.
Elämää eksoplaneetoilta mahdollisesti löydettävissä kunhan ihmisten tietotaito
siihen yltää. Todennäköisyys kuitenkin täysin Maan kaltaiseen happi, ilmanpaine
jne. tuntemaamme elämään lienee löydettävistä alle 50% / raja-arvolla kun niitä
elämään suotuisia seossuhteita vaihteluineen löytynee…
Happi Maassakin muodostunee vasta elollisten kasvien kautta yhteyttämällä
Auringosta tulevaa säteilyä ja sen seossuhteita muihin kaasuihin monen tekijän
yhteisvaikutuksin…
Sekin mahdollista, että mikäli jossain olisi ihmisiä kehittyneempää elämää niin
ne eivät Maan kaltaisessa ympäristössä hyvin kykenisi olemaan ja päin vastoin.
Lähiaikoina elämää tehokkaammin kyetään etsimään Aurinkokunnasta,
jos sitä olisi tai ollut Maan lisäksi ja eksoplaneettojen elämän etsintäkin sitä
kautta vähitellen edistyy.
Vuoden 2021 alkupuolelta Mars saanee mm. Nasan lähettämän uuden
laskeutujan, joka entistä tehokkaammin elämän mahdollisuuksiakin sieltä
kykenisin havaitsemaan. Myöhemmin Venuksen kaasuseoksiakin
paremmin tutkitaan uusilla hankkeilla ja muualtakin, elämän mahdollisuuksista…