Riisuttu kiertolainen
Olemme tottuneet siihen, että planeetat näyttävät aina samoilta. Aikojen saatossa ne eivät muutu, kuten eivät muutkaan tähtitaivaan kohteet. Planeetat tosin siirtyvät hitaasti taivaalla kiertäessään Maan tavoin Aurinkoa. Siihen viittaa jo sanan ’planeetta’ etymologia — sana tulee antiikin Kreikasta ja on alkujaan tarkoittanut taivaan vaeltajaa. Tuhansien vuosien ajan planeettojen liike olikin likimain ainoa muutos, jota taivaalla kyettiin havaitsemaan muutamaa paljain silmin näkynyttä poikkeuksellista komeettaa ja supernovaa lukuunottamatta.
Mutta planeetat ja planeettakunnat eivät ole muuttumattomia. Sen havaitsi jo Galileo Galilei, tarkkaillessaan yhdellä maailmanhistorian ensimmäisistä kaukoputkista Jupiteria. Galilein löytö oli kokonainen Jupiteria kiertävien kuiden kokoelma, jonka näkeminen ei ollut mahdollista ilman optisia laitteita. Nykyään tiedämme, että Jupiter paimentaa omaa moninaista ja värikästä kuiden ja renkaiden järjestelmäänsä, joka on kuin planeettakunta pienoiskoossa. Itse Jupiterin kaasukehäkin on dynaaminen, kaoottinen järjestelmä, joka on ainaisessa muutoksessa, vaikka yksi sen huomattavimpia piirteitä, suureksi punaiseksi täpläksi kutsuttu valtaisa pyörremyrsky, onkin ainakin satoja vuosia vanha pitkäikäinen muodostelma.
Planeetat elävät myös radikaalimmilla tavoilla. Mars on ollut vetinen, pohjoiselta puoliskoltaan valtameren peittämä maailma, joka muistutti Maapalloa ja tarjosi luultavasti jopa elämän syntyyn vaadittavat olosuhteet. Mars on kuitenkin kooltaan pieni, vain noin puolet maasta. Siksi planeetan ydin viileni, geologinen aktiviteetti, tektoninen toiminta, jos sitä oli, ja magneetttikenttä hiipuivat ja valtaosa kaasukehästä haihtui avaruuteen planeetan kuivuessa ja jäähtyessä karuksi ja kylmäksi kappaleeksi. Nykyisellään Marsin vesi on routana maaperässä ja kaasukehä on pelkkä ohut hiilidioksidivaippa planeetan ympärillä.
Maa itse on muuttunut vuosimiljardien saatossa ehkäpä vieläkin radikaalimmin. Vaikka laattatektoniikka ja eroosio uudistavat ja muokkaavat jatkuvasti Maapallon pintaa ja pitävät sen verrattaen nuorena, Maan ilmakehä on kokenut radikaaleja muutoksia. Merkittävimmän muutoksen aiheutti elämä, joka sopeutuessaan planeetan olosuhteisiin ryhtyi tuottamaan rakennusaineita ja energiaa varastoiden Auringon energiaa kemialliseksi energiaksi. Fotosynteesin kehittymisen myötä varhaiset sinilevät ryhtyivät pumppaamaan yhteyttämisessä syntyvää kuona-ainetta, vapaata happea, kaasukehään kyllästäen sen happimolekyyleillä. Happi muutti kaasukehämme ja planeettamme.
Ilmakehän hapettumisen aiheuttama muutos oli valtava. Runsaat kaksi miljardia vuotta sitten käynnistynyt suuri hapettumistapahtuma vaikutti koko planeetamme geokemiaan vapaan hapen sitoutuessa meriin liuenneeseen rautaan ja saostuessa ruosteena merten pohjiin malminakin louhittaviksi rautakerrostumiksi. Myös elämä koki valtavia muutoksia myrkyllisen vapaan hapen tuotettua hapettomiin olosuhteisiin tottuneelle pelkistä mikrobeista koostuneelle biosfäärille valtavia ongelmia. Juuri hapen aiheuttaman stressin ja evolutiivisen valintapaineen myötä syntyivät luultavasti myös eukaryooteiksi kutsutut bakteerien ja arkeonien hybridisolut, jotka oppivat käyttämään ilmakehän vapaata happea reagenssina aineenvaihdunnassaan, mikä puolestaan mahdollisti tehokasta energiantuotantoa vaativan monisoluisen elämän sekä pitkät ravintoketjut ja siten koko nykyisen biodiversiteetin.
Vaikka suuren hapettumistapahtuman kaltaiset muutokset voitaisiin havaita jopa eksoplaneetoilla, jos niiden koostumusta päästäisiin tutkimaan suoran kuvaamisen avulla, Aurinkokunnan planeetat ovat muuttuneet ulkonäöltään vieläkin rajummin historian saatossa.
Havaittaessa Saturnusta eri aikoina, näyttää kuin sen renkaat ajoittain katoaisivat kokonaan näkyvistä. Syynä on se, että renkaat ovat paksuudeltaan keskimäärin vain 20 metriä ja renkaiden ollessa kohtisuoraan taivaan tasoa vastaan, niiden havaitseminen ei ole mahdollista. Se on kuitenkin vain näennäinen muutos — itse renkaat ovat vain alle 100 miljoonaa vuotta vanhoja, joten ne ovat nuori piirre vanhan planeetan kiertoradalla. Saturnuksen koko ulkonäkö on siis muuttunut hyvinkin radikaalisti aivan tähtitieteellisessä lähihistoriassa.
Eksoplaneettoihin ajatus planeettojen muuttumattomuudesta sopii tietyin reunaehdoin. Koska eksoplaneettojen havainnointi paljastaa nykyisellään vain hyvin vähän niiden ominaisuuksista, on järkevä yksinkertaistus luottaa siihen oletukseen, että niiden ominaisuudet eivät muutu havaittavissa määrin kuukausien tai korkeintaan parin vuosikymmenen havaintojakson aikana. Vaikka joissakin planeettakunnissa kappaleiden keskinäiset vetovoimat muuttavat planeettojen ratoja aavistuksen, joskus jopa havaittavasti, eivät planeettojen fysikaaliset ominaisuudet muutu havaintojen aikaskaalassa. Nekään eivät kuitenkaan aina pysy vakioina.
Vuosimiljoonien ja -miljardien saatossa planeettojen radat muuttuvat. Lähes jokainen planeettakunta, Aurinkokunta mukaan lukien, on pohjimmiltaan kaoottisessa tilassa, jossa pienilläkin muutoksilla planeettojen paikoissa ja nopeuksissa voi olla valtavia seurauksia tulevaisuudessa. Aurinkokunta ja muut planeettakunnat eivät ole hajoamassa kaoottisuuteensa lähitulevaisuudessa mutta miljardien vuosien aikana niiden planeettojen ratoihin tulee valtaviakin muutoksia johtaen aina planeettojen lähiohituksiin ja törmäyksiin, sekä niiden sinkoutumiseen pois tähtensä vetovoiman piiristä.
Muutokset radassa vaikuttavat aina planeettojen fysikaalisiin ominaisuuksiin, koska etäisyys tähdestä määrittää planeetan pinnalle saapuvan tähden säteilyn määrän ja siten planeettojen pintalämpötilat. Radan soikeus puolestaan vaikuttaa voimakkaasti vuodenaikaisvaihteluiden suuruuteen. Joidenkin planeettojen radat ovat muuttuneet niiden historian saatossa äärimmäisillä tavoilla.
Ensimmäiset auringonkaltaisia tähtiä kiertävät eksoplaneetat yllättivät kaikki. Ne olivat massiivisia kaasujättiläisiä mutta kiersivät tähtensä hyvin nopeasti, vain muutamassa päivässä, tähden pintaa viistäen. Aurinkokuntaan suhteutettuna, sellaiset planeetat olisivat kiertoradalla, joka on Merkuriuksen radan sisäpuolella ja ne kylpisivät Auringon voimakkaassa säteilyssä, joka kuumentaisi niiden pinnat tuhansien asteiden lämpötiloihin.
Ensimmäisen tunnetun esimerkin 51 Pegasi b mukaan, näitä kuumia Jupitereita kutsutaan joskus pegasilaisiksi planeetoiksi. Uuden planeettaluokan löytöä vain varjosti se pieni ongelma, että niitä ei pitänyt olla lainkaan olemassa. Kun planeetat syntyvät tähteä ympäröivästä kaasua ja pölyä sisältävästä kertymäkiekosta, niiden ytimet kasvavat ja hehittyvät lopulliseen muotoonsa keräämällä aluksi itseensä metalleista, silikaateista ja jäistä koostuvaa pölyä. Myöhemmin, saavutettuaan muutaman Maapallon suuruisen massan, planeetta ryhtyy vetämään gravitaationsa avulla itseensä kaasua muodostuen lopulta kaasujättiläiseksi. Mutta aivan lähellä tähteä ei voi olla riittävästi materiaa, jotta kaasujättiläiset voisivat syntyä. On siis vain yksi tapa selittää niiden olemassaolo. Ne ovat syntyneet kauempana ja muuttaneet.
Kaasuplaneetta voi muuttaa sen radan kutistuessa radikaalisti vaikkapa kertymäkiekon kaasun kitkavoimien vaikutuksesta. Aurinkokunnassa Jupiterin ja Saturnuksen radat ovat muuttuneet selvästi tällaisen prosessin seurauksena mutta ne eivät meidän onneksemme ehtineet lähelle Aurinkoa, sisempään Aurinkokuntaan, ennen kuin nuoren Auringon hiukkastuuli siivosi planeettakuntamme ylimääräisestä kaasusta. Kaasun ja samalla kitkavoimien haihduttua, planeetat jäivät nykyisille paikoilleen. Mutta kun jättiläisplaneetta muuttaa aurinkokunnan sisäosiin, koko järjestelmä kokee mullistuksen. Muuttava jättiläinen heilauttaa aggressiivisesti kaikkia sisempiä planeettoja radoiltaan, syösten valtaosan joko törmäyskurssille itsensä tai tähden kanssa tai ikuiselle matkalle planeettakunnan ulkopuolelle. Planeettakuntien alkuajat voivat olla äärimmäisen väkivaltaisia aikoja.
Asetuttuaan lähelle tähteä kuumaksi Jupiteriksi, kaasuplaneetat muuttuvat. Tähden voimakas säteily voi saada ne kiehumaan ja menettämään massaa, kun kaasua karkaa niiden vetovoimakentästä planeettojenväliseen avaruuteen ja pois planeettakunnasta tähtituulen mukana. Räikeimmissä tapauksissa valtaosa planeetan kaasuvaipasta voi karata lopulta avaruuteen, jättäen jälkeensä vain korvennetun ytimen, supermaan kokoisen metallien ja silikaattien muodostaman planeetan.
Useat suunnilleen jupiterinkokoiset planeetat, kuten 51 Pegasi b, pysyvät stabiileina lähellä tähteään ja niitä voidaankin havaita runsaasti. Neptunuksilla on toisin — näyttää siltä, että neptunuksenkokoisia planeettoja ei esiinny tähtien lähikiertolaisina. Sen sijaan, kuumat supermaapallot ja suunnilleen maapallonkokoiset planeetat ovat erittäin yleisiä lähitähtien kiertolaisina. Missä ovat kuumat Neptunukset?
Kuumat Neptunukset ovat muuttuneet. Kun neptunuksenkokoinen planeetta muuttaa ja sen rata kutistuu, planeetta joutuu aina vain lähemmäs tähteään ja kuumenee tähden säteilyn korventaessa planeetan pintakerroksia. Lopulta se on niin lähellä, että tähden intensiivinen säteily riittää haihduttamaan planeetan kaasukehää hiljalleen avaruuteen. Neptunusten vetovoima ei riitä pitämään kiinni kaasuvaipastaan ja lopputuloksena niistä jäävät jäljelle vain riisutut, paljaat metallien ja silikaattien muodostamat ytimet. Kuumat supermaapallot voivat syntyä neptunuksenkaltaisina paksun kaasuvaipan omaavina planeettoina mutta tähden säteily riisuu ne paljaiksi kiviplaneetoiksi aikojen saatossa.
Sen suurempaa muutosta mikään planeetta tuskin voi kokea tuhoutumatta muutosprosessissa kokonaan ja jättäen jälkiä, joita tähtitieteilijät voisivat havaita. Siksi kuumien Neptunusten havaitseminen on erittäin kiinnostavaa. Niitä tarkastelemalla voidaan tutkia planeettoja, jotka ovat käymässä läpi yhtä universumin voimakkaimmista planetaarisista muodonmuutoksista, mikä antaa runsaasti tietoa sekä planeettojen koostumuksesta että niiden muodostumisesta ja kehityksestä.
Kuumat Neptunukset rajatapauksina, jotka kadonneet tähtien läheltä. Maapallon vesi myös rajatapauksena, joka sopivalla aurinkoetäisyydellä säilynyt ilmakehässä ja vesistöissä.
Tieteen Kuvalehti 14/2020 kerrotusta täydennettynä:
Neptunus kiertää Auringon ympäri noin 165 vuodessa ja tunnistettiin vuonna 1846 –
174 vuotta sitten, josta 2×165=330+4=334 vuotta aikaisemmin 1512 Galilei tunnisti Neptunuksen himmeänä tähtenä Jupiterin lähellä.
Voyager 2 -luotain ohitti Neptunuksen vuonna 1989 noin 5000 km etäisyydeltä.
Nasan suunnitelma luotaimista Uranukseen ja Neptunukseen
laukaistavaksi 13.02.2031, peilikuvapäiväys torstai – tavoiteaika USA:n kellotukseen
ja Neptunus -luotain saapuisi Neptunuksen kiertoradalle vuonna 2044,
josta tietoja noin 25 vuoden jälkeen olisi…
Liki sama 25 vuoden aika eksoplaneettoja nyttemmin tutkittuna,
joiden tieto myös 25 seuraavan vuoden kertyessä tarkentuu…