Planetaarinen eliömaantiede
Eliömaantieteen perusasioihin kuuluvat havainnot elonkirjon muuttumisesta yksinkertaisten tekijöiden vaikutuksesta. Välillä puhutaan saarten eliömaantieteestä, koska tärkeitä havaintoja tehtiin ensimmäisenä juuri saaristoissa. Yksi pioneereista oli evoluutioteorian perusteisiin havaintojensa pohjalta päätynyt Alfred Wallace, joka tutki vuosien ajan lajikirjoa Malaijien saaristossa. Lainalaisuudet kuitenkin pätevät muihinkin tilanteisiin, joissa elinympäristöt ovat pirstaleisia ja lajien yksilöt joutuvat siirtymään elinalueelta toiselle vihamielisen ja lajille elinkelvottomien alueiden läpi.
Mitä suurempia elinkelpoiset saarekkeet ovat, sitä enemmän lajikirjoa ne sisältävät ja sitä suurempia populaatioita ne ylläpitävät. Mitä kauempana ne ovat mantereesta, mikä rinnastuu yleisemmässä tapauksessa suureen lajille sopivaa yhtenäiseen ympäristöön, sitä kapeampaa niiden lajikirjo, koska harvemmat lajit ovat onnistuneet muuttamaan perille. Syynä on yksinkertaisesti se, että muutto uudelle elinkelpoiselle alueelle onnistuu sitä todennäköisemmin mitä lähempänä se on.
Maapallo on kokonaisuutena vain yksinäinen saareke avaruudessa. Vastaavia fysikaalisilta ja geokemiallisilta olosuhteiltaan elämälle soveltuvia kappaleita on useita jo Aurinkokunnassa — omassa galaksissamme Linnunradassa niitä on vähintään miljardeja, ehkä jopa satoja miljardeja. Toisin kuin maapallon elinympäristöjen, elinkelpoisten planeettojen ja muiden taivaankappaleiden välillä matkustaminen on kertaluokkia vaikeampaa. Mutta mahdotonta se ei ole. Ei ainakaan mikrobeille.
Maa ei ole suljettu järjestelmä. Planeettamme vaihtaa jatkuvasti ainetta ja energiaa sitä ympäröivän avaruuden kanssa. Sen voi havaita omin silmin hakeutumalla jokin meteorikraaterin reunalle. Avaruuden kappaleet putoavat ajoittain Maan pinnalle dramaattisin ja helposti havaittavin seurauksin.
Liikennettä on myös toiseen suuntaan. Ne valtavat energiat, jotka vapautuvat, kun tähtitieteellisillä nopeuksilla liikkuvat kappaleet törmäävät Maahan, kiihdyttävät helposti ainesta nopeuksiin, jotka ylittävät Maan pakonopeuden. Silloin ainesta karkaa Maapallolta — ja sen mukana on aina mikrobeja, joita esiintyy lukemattomia aivan kaikkialla kilometrien korkeudesta ilmakehässä aina kilometrien syvyyteen kivisen maanpinnan alla. Vaikka maahan osuvien meteorien voimakkaat paineaallot kuumentavat kiviainesta lennättäessään sitä kiertoradalle, kaikki aines ei steriloidu lentäessään pois Maapallolta. Siten Maan elämän siementen kylväminen avaruuteen on aloitettu jo planeetan nuoruudessa, vuosimiljardeja sitten.
Todisteita planeettojen vaihtamasta materiasta ei tarvitse hakea kaukaa. Maahan on pudonnut runsaasti Marsista irronneita kiviä, jotka osoittavat aukottomasti, että kiviaines voi matkata luonnollisten prosessien seurauksena planeetalta toiselle. Ehkäpä kuuluisimman esimerkin tarjoaa luettelonimen ALH84001 saanut marsilainen meteoriitti, joka löytyi Etelämantereelta vuonna 1984. Samankaltaisten kappaleiden mukana, niiden sisäpuolella steriloivalta avaruuden säteilyltä suojattuna, lepotilassa olevat mikrobit voisivat hyvinkin kestää avaruusmatkan rasitukset. Kysymys on vain siitä, millä todennäköisyydellä kivenmurikat päätyvät olosuhteisiin, joissa niiden mukanaan tuoma elämä voisi kukoistaa.
Aurinkokuntakaan ei ole suljettu järjestelmä. Auringon lähinaapuruston tähdistä lähin on Proxima Kentauri mutta se on vain tämän hetken satunnainen tilanne. Tähdet eivät pysy paikallaan. Ne liikkuvat radoillaan galaksimme painovoimakentässä. Aikojen kuluessa useat tähdet tulevat Aurinkokunnan lähettyville ja poistuvat taas kauemmaksi Auringon kiertäessä radallaan Linnunradan keskustaa. Ajoittain lähiohitukset häiritsevät tähtiä ympäröivissä Oortin pilvissä vaeltavien komeettojen ratoja, jolloin komeetat ja muut pienemmät kappaleet saattavat siirtyä uuteen tähtijärjestelmään. Materian siirtymisestä tähtijärjestelmien välillä on ehkäpä parhaana osoituksena tähtienvälinen matkaaja, komeetta ’Oumuamua. Aurinkokunnassa on kuitenkin mitä luultavimmin runsaasti kappaleita, jotka ovat peräisin muista tähtijärjestelmistä.
Aikojen kuluessa mikrobit voisivat valloittaa vaikka koko Linnunradan. Tällä alkujaan Svante Arrheniuksen muotoilemalla panspermiahypoteesilla on runsaasti viitteellistä tukea — ei kuitenkaan minkäänlaista konkreettista todistusaineistoa, koska emme ole havainneet ainuttakaan esimerkkiä planeettojen välillä levinneestä elämästä.
Elinkelpoiset planeetat ja kuut ovat kuin eliömaantieteessä kuvatut saarekkeet. Ilmeisesti yksinkertaiset mikrobit kykenevät siirtymään avaruuden halki planeetalta toiselle — ainakaan sille ei ole esitetty olevan mitään konkreettisia esteitä. Silloin Aurinkokunnan planeetoista Maa ja Mars ovat vain kaksi saariston saarta, joiden välillä elävät solut ajoittain matkaavat. Miljardeja vuosia sitten, kun Mars oli Maan tavoin vetinen kivenmurikka, mikrobit olisivat voineet helposti saada jalansijan sen pinnalla tai pinnan alla, merissä, järvissä tai virtaavissa vesissä. Samoin olisi voinut käydä marsilaisille mikro-organismeille Maassa.
Ulommassa Aurinkokunnassa on lisää pieniä saarekkeita, joissa elämä voisi kukoistaa. Ainakin jättiläisplaneettojen kuista Europa, Ganymede, Enceladus, Titania ja Oberon ovat potentiaalisesti elämää ylläpitämään kykeneviä kappaleita. Niistä jokaisen pinnalla on jäinen kuori, jonka alla velloo kymmeniä kilometrejä paksu valtameri. Sellaisissa olosuhteissa elämä voisi helposti tulla toimeen, monimuotoistua ja kukoistaa. Ulkoplaneettojen kuihin on tietenkin pidempi matka kuin Marsiin mutta se tarkoittaa eliömaantieteen lainalaisuuksien mukaisesti vain sitä, että mikrobeilla kestää keskimäärin kauemmin onnistua matkanteossa. Silloin harvempi mikrobi selviää matkasta hengissä mutta miljoonien vuosien kuluessa voidaan ajatella ainakin joidenkin onnistuvan.
Tiiviimmin pakatuissa planeettakunnissa planeettojenvälinen panspermia voi olla huomattavasti helpompaa, jopa väistämätöntä. Esimerkin sellaisesta järjestelmästä tarjoaa lähitähti nimeltään TRAPPIST-1 — luettelonimellä 2MASS J23062928-0502285 tunnetun tähden kutsumanimi on annettu poikkeuksellisesti mutta ymmärrettävästi sen ympäriltä planeettoja ensimmäisenä löytäneen TRAPPIST-teleskoopin mukaan.
Tähteä kiertää peräti seitsemän kiviplaneetan joukko (Kuva 3.). Järjestelmän planeetat kiertävät radoillaan punaista kääpiötähteä aivan vierekkäin, niin lähellä toisiaan, että panspermia niiden välillä on jopa väistämätöntä. Jos jollakin TRAPPIST-1 -järjestelmän planeetoista esiintyy elämää, sitä esiintyy niistä muillakin, jos vain fysikaaliset olosuhteet ovat soveltuvia – ainakin kolme planeetoista on pintalämpötiloiltaan sellaisia, että niiden pinnoilla voi esiintyä nestemäistä vettä ja siten elämää tuntemassamme muodossa. Kyseessä on järjestelmä, josta elämää ei tuhoaisi edes valtaisa planeetan steriloiva asteroidin törmäys. Elämä jatkaisi aina kukoistamistaan muilla järjestelmän planeetoilla ja palaisi lopulta takaisin myös steriloidun kappaleen pinnalle.
Lähitähdet ovat kaukaisia, Aurinkokunnasta erillisiä, potentiaalisia elinkelpoisten tilkkujen saaristoja. Matkat niiden tuntumaan ovat vielä hurjasti pidempiä ja epätodennäköisempiä kuin yksittäisen planeettakunnan sisällä mutta jotkin mikrobit voivat selvitä niistäkin. On jopa mahdollista, että Maapallolla syntynyttä elämää esiintyy jo nyt muissakin tähtijärjestelmissä tai että oma geneettinen linjamme on peräisin Aurinkokunnan ulkopuolelta. Nämä ovat tietellisiä hypoteeseja, joita voidaan tarkastella, jos elämää joskus havaitaan jotakin toista tähteä kiertävän kappaleen pinnalta.
On kuitenkin myös se kaikkein hurjin mahdollisuus, että elämää esiintyy vain Maapallolla ja olemme yksin maailmankaikkeudessa. Kyseessä on kuitenkin mielestäni pelkkä epätieteellinen yleistys siitä yksittäisestä, vain toistaiseksi voimassa olevasta anekdootista, että emme vielä ole sattuneet havaitsemaan merkkejä elämästä muualla.
Olisi ihme, ellei muuallakin maailmankaikkeudessa esiintyisi jonkinlaista elämää. En kuitenkaan jaksa uskoa, että elämä olisi yhtä monimuotoista ja pitkälle kehittynyttä kuin täällä Maassa. Siteeraan tähän Kirsi Lehdon astrobiologia-blokiin aikanaan kirjoittamani kommentin hiukan stilisoituna:
”Happea tuottavat monimutkaiset molekyylikoneistot yhdessä ilmakehän ja magneettikentän luoman säteilysuojan kanssa, unohtamatta vuodenaikojen vaihtelua ja sopivaa lämpötilaa sekä sopivassa suhteessa esiintyvää maata ja vettä, tekee Maasta ainutlaatuisen planeetan. Vaikka Linnunradan planeettojen määrä on valtava – koko universumin jopa ihmisjärjelle käsittämätön – en millään usko, että ÄLYLLISTÄ elämää on voinut syntyä mihinkään muualle.
Elämä tarvitsee energiaa. Sitä saa syömällä. Olennaista pidtemmälle kehittyneelle elämälle on uusiutuvasta energialähteestä (maapallolla kasveista) lähtöisin oleva ravintoketju ja evoluution muovaama huikea monimuotoisuus. Skifielokuvista tuttu punaisen auringon valaisema autio hiekkainen planeetta oudon näköisine korkean teknologian hallitsevine olioineen ei mielestäni ole loppuun asti pohdittu vaihtoehto. Mistä ne siellä ravintonsa saavat.”