Planeettakunta tasapainon reunalla

10.2.2022 klo 10.00, kirjoittaja
Kategoriat: Eksoplaneetat , Elinkelpoisuus , Koostumus , Synty ja kehitys

Planeettakunnista voidaan saada tietoa yllättävilläkin tavoilla. Yksi niistä on stabiilisuuden tarkastelu tutkimalla kuinka lähellä planeettojen radat ovat kaoottista järjestelmää, joka johtaisi kappaleiden välisiin törmäyksiin tai yhden tai useamman kiertolaisen sinkautumiseen järjestelmän ulkopuolelle. Tutkijat yksinkertaisesti heilauttavat planeettojen ratoja hiukan ja katsovat voiko muokattu järjestelmä pysyä kasassa käyttämällä tietokonesimulaatioita planeettojen radoista pitkälle tulevaisuuteen. Kyseessä on yksi tavoista tehdä tutkimusta pelkällä tietokoneella mutta se onnistuu, koska gravitaatiovoima on niin tarkkaan tunnettu, että sen toimintaa voidaan mainiosti ennustaa pitkissäkin tietokonesimulaatioissa — ainoana vaikeutena on gravitaatiota kokevien monimutkaisten järjestelmien laskennallinen kompleksisuus, joka tekee niiden käyttäytymisen ennustamisesta laskennallisesti raskasta, supertietokoneita vaativaa puuhaa.

Jos pienikin muutos planeettojen radoissa aiheuttaa kaoottista käyttäytymistä, voidaan vetää se johtopäätös, että planeettakunta on stabiilisuuden rajalla, vain hiuksenhienosti katastrofin välttäneenä järjestelmänä. Toisin ei tietenkään edes voi olla — on äärimmäisen epätodennäköistä havaita planeettakunta juuri, kun se on hajoamassa omaan dynaamiseen mahdottomuuteensa. Epästabiilit planeettakunnat ovat luonnollisesti hajonneet jo kauan sitten ja siksi ainuttakaan sellaista ei tunneta.

Yksi mielenkiintoisimmista järjestelmistä on läheinen TRAPPIST-1 -tähden planeettakunta, josta on saatu runsaasti tietoa viime vuosien kuluessa. Sen seitsemän kiviplaneettaa muodostavat mielenkiintoisen, tiukkaan pakatuilla harmonisilla radoilla tähteään kiertävien planeettojen järjestelmän. Tiedämme, että planeetat ovat tiheydeltään Maata pienempiä. Silloin niiden rauta-nikkeli ytimet ovat suhteelliselta kooltaan Maan ydintä pienempiä tai planeettojen koostumuksesta suurempi osa on keveämpää ainesta. Yksi mahdollisuus on planeettojen korkea vesipitoisuus, joko niiden kuorikerroksiin sitoutuneena vetenä tai pintaa peittävinä satojen kilometrien syvyisinä valtamerinä. Mutta planeetat ovat niin lähellä tähteään, että ajateltiin järjestelmän syntyaikoina kirkkaampana loistaneen nuoren tähden haihduttaneen läheltään kaiken veden ja jättäneen planeetat kuiviksi. Hypoteesin mukaan veden olemassaolo, jos sitä tosiaankin on, tarkoittaa sitä, että sen on täytynyt kulkeutua planeetoille myöhemmin. Kyseessä on mainio tieteellinen hypoteesi, joka ennustaa planeettakunnan syntyhistoriaa, auttaa selittämään sen ominaisuuksia, on verrattavissa havaintoihin ja tietokonesimulaatioihin, ja osoittautui uudessa tutkimuksessa vääräksi.

raudan jakaantuminen tasaisemmin planeetan sisälle; suhteellisesti Maan ydintä pienempi rautaydin; tai maankaltainen koostumus päällystettynä paksulla valtamerellä. Kuva: NASA/JPL-Caltech.

Planeettojen koostumuksen tutkiminen perustuen suureksi osaksi vain kahteen numeroon, tietoon niiden fyysisestä koosta ja massasta, on suunnattoman hankalaa mutta onneksemme TRAPPIST-1 -järjestelmästä voi saada tietoa muillakin keinoilla. Ensimmäinen vinkki saadaan mittaamalla järjestelmän planeettojen keskinäistä vuorovaikutusta, kun planeetat kulkevat tähden editse joitakin minuutteja säännöllistä ajankohtaa aiemmin tai myöhemmin.

Kuten kaikki maailmankaikkeuden kappaleet, planeetat vaikuttavat myös toistensa ratoihin vetovoimansa välityksellä. Erityisesti ollessaan lähekkäin, ne heilauttavat toisiaan eri suuntiin tehdessään lähiohituksia radoillaan. Silloin tiheästi pakattujen planeettakuntien kappaleet vilahtavat vuoroin hiukan etuajassa tähtensä pinnan editse, vuoroin ne saapuvat himmentämään tähteään aavistuksen myöhässä. Efekti on pieni verrattuna tyypilliseen ylikulun tunnin tai parin kestoon mutta se on mainiosti havaittavissa määrittämällä jokaisen ylikulun keskiajankohta, eli hetki, jolloin planeetta on kaikkein lähimpänä tähden kiekon keskikohtaa. TRAPPIST-1 -järjestelmän planeetoilla heilahtelu on mainiosti erotettavissa johtuen planeettojen ratojen lähekkäisyydestä ja siitä, että ylikulkuja on havaittu useita. Ilmiö auttaa saamaan tietoa siitä, kuinka stabiili järjestelmä on kyseessä ja kuinka pieni heilahdus planeettojen radoissa suistaisi planeettakunnan kaaokseen. Tuoreessa julkaisussaan, Bordeauxin yliopiston Sean Raymond kollegoineen suoritti tarvittavat laskelmat.

TRAPPIST-1 -järjestelmän planeetat ovat resonoivilla radoilla. Se on tähtitieteilijöiden jargonia ja tarkoittaa vain sitä, että järjestelmän vierekkäisten planeettojen kiertoaikojen suhde vastaa erittäin tarkasti joidenkin kahden yksinkertaisen kokonaisluvun suhdetta. Tilannetta voi kuvata yksinkertaisella numerosarjalla 24:15:9:6:4:3:2 — kun uloin planeetta kiertää tähden 2 kertaa, toiseksi uloin suorittaa 3 ratakierrosta. Samassa ajassa kaikkein sisin planeetta kiertää tähden ympäri peräti 24 kertaa ja toiseksi sisin 15, mikä saa ne muodostamaan keskenään harvinaisen 8:5 resonanssin. Uloimpien planeettojen 3:2 resonanssi puolestaan on varsin tyypillinen tiiviisti pakattujen planeettojen järjestelmissä. Rataperiodien suhde taas vastaa hyvin tarkkaan kokonaislukujen suhdetta, koska järjestelmä on dynaamisesti stabiilimpi ollessaan resonanssissa. Sillon pienetkin heilahdukset planeettojen radoissa tulevat korjatuksi resonanssiketjun ratoja vakauttavan vaikutuksen ansiosta. Mutta liian suuri heilautus suistaisi planeettakunnan kaaokseen ja hajottaisi sen. Raymondin tutkimusryhmän tulosten mukaan vain oman kuumme kokoisen kappaleen vuorovaikutus riittäisi siihen.

Planeetat päätyvät tiiviiksi ryppäiksi resonoiville radoille jo planeettakunnan synnyn alkuvaiheissa, kun tähden ympärillä on vielä kertymäkiekoksi kutsuttu muodostelma kaasua ja pölyä. Kaasun kitka hidastaa planeettojen ratanopeuksia ja ne siirtyvät hiljalleen kohti tähteään. Aivan tähden läheltä kaasu ja samalla kitkavoimat kuitenkin puuttuvat, joten kiekon sisäreunan saavutettuaan sisin planeetta ei enää liiku sisemmäksi. Sitä ulommat planeetat taas päätyvät niin lähelle toisiaan kuin voivat, koska rataresonanssit sisempien planeettojen kanssa tuottavat kitkaa vastustavan voiman. Syntyy vain juuri ja juuri stabiileja, tiiviitä planeettaryppäitä, joiden tulevaisuus on veitsenterällä.

Pitkien resonanssiketjujen kestävyys on heikkoa ja niiden esiintyminen planeettakunnissa on kohtuullisen harvinaista. Ne voivat rikkoutua helposti — TRAPPIST-1 -järjestelmän tapauksessa vain Kuun verran materianvaihtoa riittäisi järjestelmän muuttumiseen kaoottiseksi. Sellaista massanvaihtoa järjestelmässä ei siis ole tapahtunut, joten planeetat eivät ole myöskään saaneet merkittävää määrää lisämassaa esimerkiksi komeettojen törmäyksien myötä. Koska komeetat ovat koostuneet juuri niistä helpoiten haihtuvista aineksista, pääasiassa vedestä sen kiinteässä olomuodossa, vettä ei ole voinut kulkeutua planeettojen pinnoille merkittäviä määriä muodostumisen jälkeen, vaan sen on täytynyt olla osa planeettojen koostumusta jo niiden syntyajoista asti.

Tilanne on ongelmallista selittää. Vastasyntyneet tähdet ovat kuumia ja aktiivisia ja haihduttavat keveät molekyylit kuten veden nopeasti läheltään. On siis mahdotonta, että planeetat olisivat muodostuneet vesipitoisiksi lähellä nykyisiä ratojaan. Toisaalta, vettä ei ole voinut kulkeutua niiden pinnoille riittävissä määrin myöskään myöhemmissä vaiheissa, koska herkän resonanssijärjestelmän rakenne olisi tuhoutunut. Silloin jää vain kaksi realistista vaihtoehtoa. Joko planeetat ovat kuivia ja niiden rautaytimet ovat pienemmät kuin Maalla ja Venuksella tai planeetat muodostuivat kauempana tähdestään ja ovat vaeltaneet radoilleen etäisyyksiltä, joilta vesi ei ehtinyt koskaan haihtumaan edes tähden oltua nuorena kirkkaampi ja kuumempi. Vailla runsaita määriä vettä, TRAPPIST-1 -järjestelmän planeetoista uloimmat saattavat olla kuin Marsin suurikokoisia vastineita. Vastaavasti, kaksi sisintä järjestelmän maailmaa muistuttavat luultavasti suureksi osaksi Venusta. Planeetoista d ja e taas ovat pintalämpötiloiltaan eniten maankaltaisia mutta niiden pienempi massa, tiheys ja koko tekevät niistä hyvin omanlaisiaan maailmoja (Kuva 2.). Emme voi siksi sanoa aivan varmasti ovatko järjestelmän planeetat elinkelpoisia siinä mielessä kuin termin käsitämme suhteessa omalta planeetaltamme havaittuun elämään — suhteessa sopivan lämpöiseen kiviseen pintaan, jonka päällä vesi pääsee virtaamaan vapaasti. Ehkäpä juuri pinnan elinkelpoisuuden vaatimukset eivät täyty mutta planeetat ovat silti pinnanalaisen mikrobiston valtaamia kuten Maakin.

Kuva 2. TRAPPIST-1 -järjestelmän planeettojen vertailu Aurinkokunnan kiviplaneettoihin huomioiden niiden tiheys, suhteelliset koot ja niiden pinnalle saapuvan säteilyn määrä. Kuva: NASA/JPL-Caltech.

Saamme runsaasti uutta tietoa TRAPPIST-1 -järjestelmän planeetoista aivan lähitulevaisuudessa, kun tuoreeltaan avaruuteen laukaistu James Webb -avaruusteleskooppi kykenee havaitsemaan sen planeettojen kaasukehien koostumuksia. On mahdollista selvittää kaasukehien kemiallisia tasapainotiloja ja saada jopa merkkejä siitä, onko elämä voinut muokata niiden ominaisuuksia aineenvaihdunnallaan. Vaikkemme varmaankaan kykene näkemään varsinaisia biomarkkereita, saamme silti paljon nykyistä kattavamman kuvan planeettojen ominaisuuksista, niiden vesipitoisuudesta ja kehityshistoriasta — sekä siitä, kuinka elinkelpoinen planeettojen kokoelma TRAPPIST-1 -järjestelmä oikein on.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *