Jättiläisten harteilla
Kertomukset on hyvä aloittaa alusta. Aivan alusta.
Luin vuonna 1996 artikkelin juuri löydetyistä uusista planeetoista. Siinä kerrottiin yksityiskohtaisesti, miten sveitsiläiset ja yhdysvaltalaiset tutkijat olivat kyenneet tekemään vuosikymmenten haaveesta totta. He olivat havainneet luotettavia merkkejä planeetoista kiertämässä toisia aurinkoja, galaktisen lähinaapuruston muita auringonkaltaisia tähtiä.
Ensimmäiset havainnot eksoplaneetoista edustivat tieteellistä vallankumousta. Ne merkitsivät samankaltaista paradigman muutosta kuin kopernikaaninen vallankumous, jossa koko kosmologinen näkökulma muuttui ja todettiin Maan olevan vain yksi planeetta muiden joukossa Aurinkoa kiertävällä radalla. Tai se Alfred Russell Wallacen ja Charles Darwinin työhön perustuva havainto, että ihminen on vain yksi evoluutiohistorian saatossa kehittyneistä miljoonista Maapallon lajeista.
Maa ei ole erityisasemassa muutoin kuin siitä subjektiivisesta näkökulmasta, että se on kehtomme ja kotimme. Aurinkokunta on vain yksi monista planeettakunnista galaksissamme, joka on puolestaan vain yksi monista näkyvän maailmankaikkeuden tähtijärjestelmistä. Emme ole millään periaatteellisella tavalla erityisasemassa maailmankaikkeudessamme, galaksissamme tai aurinkokunnassamme. Se oli ensimmäisten eksoplaneettahavaintojen oleellinen tulos — bonuksena löydettiin uusia mielenkiintoisia kohteita, joiden havainnointi on opettanut runsaasti uutta maailmankaikkeuden toiminnasta, monimuotoisuudesta, historiasta ja kehityksestä, sekä omasta paikastamme siinä.
Kiinnostukseni heräsi. Alitajuisesti aavistin, että halusin astua jonakin päivänä näiden suurten tähtitieteilijöiden, ”planeettojen metsästäjien”, valtaviin saappaisiin. Halusin olla löytämässä uusia maailmoja, elää modernin ajan löytöretkeilijänä jossakin jännittävän tieteiskirjallisuuden ja huipputieteen rajapinnalla. Halusin kiivetä aina vain ylemmäs, sinne, mistä näkee kauemmaksi.
En koskaan kehdannut mainita alitajuista aavistustani edes itselleni. Miten yksi keskinkertaisesti koulussa menestyvä pohjoisen periferian lapsi voisi saavuttaa mitään suurta tai tehdä mitään jännittävää? En osannut haaveilla. En osannut asettaa itselleni tavoitteita. Niinpä päädyin vain kulkemaan sinne, minne mielenkiinto johdatti, yksi kirja ja artikkeli kerrallaan. Kiipesin historian suurten tutkijoiden tukeville hartioille, kohti tunnetun tieteen ja tuntemattoman rajaseutua. Kurkistin lopulta sinne, minne kukaan ei ollut vielä nähnyt.
Ajatus planeetoista kiertämässä lähitähtiä ei ole uusi. Taivaan tähtien katsottiin voivan olla toisia aurinkoja jo 1500-luvulla kopernikaanisen vallankumouksen mukanaan tuoman paradigman muutoksen pyörteissä. Jos Maa on vain yksi planeetoista kiertämässä Aurinkoa, miksei tähtitaivaan muidenkin aurinkojen kiertoradoilla olisi planeettoja? Niiden havainnointi ajateltiin kuitenkin mahdottomaksi. Verrattaen himmeän, pikkuruisen planeetan havaitseminen kirkkaasti loistavan, valtaisan tähden vieresssä vaikutti teknisesti saavuttamattomalta — kuin koetettaisiin nähdä pienen kiiltomadon valonkajetta järven vastarannalla sijaitsevan, aivan ilmiliekeissä palavan talon vieressä.
Planeetat kuitenkin paljastavat olemassaolonsa monella tapaa. Tähtitieteilijöillä oli käytössään muuttumattomat fysiikan lait ja alati paraneva teknologia. He keksivät useita menetelmiä eksoplaneettojen havainnoimiseksi.
Barnardin tähden valssi
Isaac Newtonin jo 1600-luvulla muotoilema teoria gravitaatiovoiman vaikutuksesta tarjoaa tavan havaita planeettoja näkemättä niiden loistetta valokuvissa. Tarvitsee vain tarkkailla tähtien liikettä taivaalla, ja etsiä niistä jaksollisia poikkeamia perustuen siihen, että tähdet kiertävät avaruudessa liikkuessaan itsensä ja jonkin toisen kappaleen yhteisen massakeskipisteen ympäri. Jos kumppanina on planeetta, tähti ei heilahtele paljon mutta sen liikkeessä voi silti havaita kumppanin vetovoiman aiheuttamia vaikutuksia. Aivan kuin tähdet tanssisivat valssia kosmisen musiikin säestämänä, näkymättömän partnerin ohjatessa niiden liikettä.
Peter van de Kamp tiesi, että planeetan aiheuttaman heilahtelun voisi havaita helpoiten, jos kohteena oli mahdollisimman lähellä Aurinkoa sijaitseva lähitähti. Kohteeksi oli helppoa valita yksi lähinaapureista, vuonna 1916 löydetty pieni punainen kääpiötähti, Barnardin tähti — lähempänä sijaitsee vain alpha Kentaurin kolmoistähti. Heilahtelun suuruudesta voisi laskea planeetan massan — heilahtelun jakso taas vastaisi suoraan planeetan vuoden pituutta. Oli vain havaittava tarkasti tähden liikkeen poikkeamia sen luotisuorasta ominaisliikkeestä, joka Barnardin tähdellä on tunnetuista tähdistä kaikkein suurinta.
Vuosikymmeniä kestäneen havaintokampanjan päätteeksi van de Kamp teki 1960-luvulla havainnon planeetasta — tai niin hän ainakin havaintonsa tulkitsi. Havaintojen variaatiot oli mallinnettavissa yhden tai kahden planeetan aiheuttamina mutta ongelmana olivat vaikeudet saavuttaa riittävä tarkkuus. Tarkkuutta koetettiin parantaa ottamalla joka vuosi sadan valokuvauslevyn tulosten keskiarvo sekä laittamalla usea kollega ja opiskelija mittaamaan tähden paikka suhteessa taustataivaan kohteisiin jokaiselta levyltä inhimillisen virheen minimoimiseksi. Sekään vain ei riittänyt. Kävi ilmi, että useat tähdet näyttivät liikkuvan van de Kampin valokuvissa samalla tavalla. Kyse ei siis voinut olla planeetoista, vaan kiusallisista teleskoopin ja muun laitteiston muutoksista, joita ei oltu otettu huomioon.
Barnardin tähden tanssia valokuvauslevyillä ei aiheuttanut planeetta tai kaksi tähden kiertoradalla huolimatta van de Kampin tulkinnasta. Barnardin tähti ei kuitenkaan ole yksin. Sen kiertolaiset vain eivät ole rittävän massiivisia, jotta van de Kamp olisi voinut havaita niistä merkkejä.
Peter van de Kamp etsi planeetan aiheuttamaa signaalia, näki signaalin, ja päätteli sen olevan todiste planeetan olemassaolosta. Kyseessä oli tavanomainen virhetulkinta, jollaisille kaikki tutkijat ovat aina alttiita, elleivät ole varovaisia. Vahvistusharha hoitaa lopun.
1980-luvulla moni oli kuitenkin ryhtynyt aavistelemaan, että ehkäpä eksoplaneettojen havainnointi ei olisikaan täysin mahdoton saavutus. Se saattaisi olla jopa seuraavan sukupolven tähtitieteilijöiden toteutettavissa. Van de Kampin virhe Barnardin tähden kanssa kuitenkin kasvatti tutkijoiden kynnystä ryhtyä epätodennäköiseen eksoplaneettojen etsintään. Juuri kukaan ei halunnut ottaa pienintäkään riskiä siitä, että tulisi muistetuksi vain tekemästään virheestä.
Planeettalöytöjen pioneerit
Vuonna 1988 yhdysvaltalainen Bruce Campbellin johtama tutkimusryhmä julkaisi tuloksensa, joiden mukaan eräs lähitähti, gamma Cephei A, liikkui avaruudessa aavistuksen heilahdellen. He olivat mitanneet tähden lähettämän valon sini- ja punasiirtymiä, keräten informaatiota nopeuden muutoksista meitä kohti ja meistä poispäin. Kyseistä Doppler spektroskopiaksi kutsuttua menetelmää oli käytetty ansiokkaasti kaksoistähtien ratojen määrittämiseen. Menetelmä oli nerokas, koska sen soveltamiseen tarvittiin vain riittävän kirkas tähti, josta oli tehtävä spektrimittauksia. Planeettojen etsintä tuli mahdolliseksi muutaman lähitähden sijaan tuhansien riittävän kirkkaiden tähtien ympäriltä.
Doppler spektroskopiassa mitataan tarkalleen ottaen tähden säteilyspektrin absorptioviivojen paikkojen muutosta. Jos ne heiluvat syklisesti punaiseen ja siniseen päin, on tavallisesti kyse näkösäteen suunnassa heilahtelevan tähden valon Doppler-siirtymästä. Se taas aiheutuu tähden tanssista planeetan vetovoiman vaikutuksesta. Voidaan sanoa, että menetelmällä havaitaan planeettoja tarkkailemalla pienenpieniä tähden värin muutoksia.
Gamma Cephein kaksoistähden A-komponentti käyttäytyi kuin sitä kiertäisi planeetta. Tutkijat olivat kuitenkin julkaisussaan varovaisia ja totesivat vain saaneensa ”luotettavaa todistusaineistoa pienimassaisesta kappaleesta”. Pienimassainen tarkoitti massaltaan vajaan kahden Jupiterin kokoista kiertolaista vajaan kolmen vuoden kiertoradalla. Campbell ryhmineen oli varovainen ja tiedosti virhehavainnon mahdollisuuden olevan valtava. Kollegoiden paineen vuoksi ryhmä vältti sanomasta suoraan, että gamma Cephei A:ta kiersi planeetta ja Campbell itse vaihtoi alaa ryhtyen verokonsultiksi — hän ilmeisesti kyllästyi ainaisiin vaikeuksiin saada työpaikkaa tai edes rahoitusta akateemisessa maailmasta.
Vuonna 2002 Campbellin löytö varmistui. Tähteä gamma Cephei A tosiaan kiertää jättiläisplaneetta. Campbell vain ei saanut kunniaa ensimmäisen eksoplaneetan löytäjänä, koska hänen kollegansa eivät uskoneet tulokseen. Luultavasti myös van de Kampin virhetulkintojen eksoplaneettojen etsinnän ylle langettama varjo esti häntä tuomasta löytöään esille sen ansaitsemalla tarmokkuudella.
Samoihin aikoihin toinenkin yhdysvaltalaisryhmä työskenteli oman spektrografinsa parissa, havaiten omia kohteitaan.
David Lathamin johtama joukko tähtitieteilijöitä ei ollut epävarma julkistaessaan löytönsä. He kertoivat havainneensa luettelokoodilla HD 114762 tunnettua tähteä kiertävän kappaleen, jonka olemassaolon paljasti vain sen vetovoima. Tähti heilui selvästi mutta näkymätön kappale oli sekin moninkertaisesti Jupiteria massiivisempi. Sen minimimassaksi saatiin arvioitua peräti 11 Jupiterin massaa, mikä sai tutkijat pohtimaan tosissaan miten he voisivat kuvailla kohteen luonnetta. HD 114762 b osoittautui niin massiiviseksi, että se saattoi kyetä fuusioimaan vedyn raskaampaa isotooppia deuteriumia heliumiksi ytimessään. Sellainen kappale olisi ruskeaksi kääpiöksi luokiteltava tähtien ja planeettojen välimuoto, ei planeetta.
Julkaisemassaan artikkelissa Lathamin tutkijaryhmä joutui hyväksymään tosiasiat. He olivat tosiaan löytäneet erittäin mielenkiintoisen tähtiin verrattuna pienimassaisen kappaleen mutta sen luokittelulle planeetaksi ei ollut tarpeeksi vahvoja perusteita. Ryhmä totesi, että ”kyseessä on todennäköisesti ruskea kääpiö tai jopa jättiläisplaneetta”, painottaen kohteen luokittelun planeetaksi olevan perusteetonta. Siksi sitä ei myöskään pidetty ensimmäisenä eksoplaneettalöytönä.
On puhdasta kohtalon ivaa, että nykyisellään HD 114762 b luokitellaan eksoplaneetaksi likimain jokaisessa eksoplaneettojen luettelossa.
Eksoplaneettojen aika
Uudet tieteenalat voivat alkaa hyvinkin nopeasti. Yksittäinen löytö voi paljastaa uuden eksoottisten tutkimuskohteiden luokan, jonka ympärille muotoutuu oma tutkimussuuntauksensa vuosien saaatossa.
Eksoplaneettojen suhteen niin kävi parissa viikossa. Ensin ei tunnettu — Campbellin, Lathamin ja kumppaneiden tuloksista huolimatta — ainuttakaan auringonkaltaista tähteä kiertävää eksoplaneettaa. Seuraavassa hetkessä niitä tunnettiin jo kourallinen ja kokonainen tutkijoiden armeija käänsi katseensa eksoplaneettojen metsästykseen.
Mutta sitä ennen, vuonna 1992 Aleksander Wolszczan ja Dale Frail raportoivat ensimmäisestä luotettavasta eksoplaneettalöydöstä. Löytö oli täysin odottamaton, fantastisen kummallinen planeettakunta kuolleen tähden jäänteen, neutronitähden PSR1257+12 ympärillä. Planeetat ovat ilmeisesti muodostuneet valtaisan supernovaräjähdyksen jäljiltä kiertoradalle jääneestä materiasta. Yksikään tähtitieteilijä ei ollut tullut ajatelleeksi, että vinhasti pyörivän, säteilyllään lähiympäristönsä steriloivan tähden jäänteen kiertoradoilla voisi olla planeettoja. Joskus maailmankaikkeus vain on erikoisempi kuin kukaan on edes osannut kuvitella.
Ensimmäinen auringonkaltaista tähteä kiertävä planeetta löytyi vuonna 1995. Tähden 51 Pegasi kiertoradalta havaittiin kuuma jättiläisplaneetta 51 Pegasi b, joka myöhemmin sai nimen Dimidium. Löydön tehneet sveitsiläisastronomit Michel Mayor ja Didier Queloz palkittiin vuoden 2019 fysiikan Nobelin palkinnolla. Kun yhdysvaltalaiset Paul Butler ja Geoffrey Marcy julkaisivat omat tuloksensa vain kahta viikkoa myöhemmin, he eivät vain varmistaneet 51 Pegasi b:n olemassaoloa, vaan raportoivat samalla kahdesta muustakin eksoplaneetasta.
Butler ja Marcy eivät olleet ajatelleet, että jättiläismäiset kaasuplaneetat voisivat kiertää tähtiään lähellä, niiden pintaa viistäen. Siksi he eivät olleet osanneet etsiä Merkuriusta nopeammin tähtensä kiertäviä planeettoja, vaan vasta hioivat menetelmiään ja tekivät havaintoja koettaessaan nähdä jupiterinkaltaisia planeettoja lähitähtien kiertolaisina. He riensivät analysoimaan mittauksiaan välittömästi kuultuaan Mayorin ja Quelozin löydöstä ja onnistuivat varmistamaan sen ennätysnopeasti. Samalla he muuttivat eksoplaneettojen etsinnän muutaman optimistisen tutkijan haihattelusta varteenotettavaksi tähtitieteen haaraksi, koska yhden yksittäisen löydön voi aina kyseenalaistaa hatarinkin perustein mutta kolmen havaintovirheen esittäminen ei ole mahdollista edes ankarimmalle epäilijälle.
Eksoplaneettojen aika oli alkanut.
Tunnemme tuhansia planeettoja lähitähtien kiertolaisina. Mutta eksoplaneettojen aika ei ole tulossa päätökseen, siinä vain alkaa uusi vaihe. Tavoitteena ei ole enää vain planeettalöytöjen tekeminen, vaan niiden ominaisuuksien ja pintojen olosuhteiden määrittäminen. Eksoplaneettatutkimus on modernia löytöretkeilyä, jossa emme löydä ja tutki vain uusia maita, vaan kokonaisia uusia maailmoja.
Minulla on ollut kunnia olla mukana etsimässä ja löytämässä kymmeniä eksoplaneettoja. Se on ollut mahdollista vain, koska sinnikkäämmät tutkijat ovat periksiantamattomasti kehittäneet havaintomenetelmiä, keränneet havaintoja ja etsineet eksoplaneettoja vuosien ja vuosikymmenten ajan.
Olen löytänyt uusia maailmoja. Mutta vaikka olen hetken verran, pienen vilauksen ajan nähnyt kauemmaksi, se on ollut mahdollista vain, koska olen seissyt jättiläisten harteilla.
Eksoplaneettatutkimuksesta hyvä kooste.
Viimeiset sanat: – ”jättiläisten harteilla” / kommentoin:
Sanonta ollut käytössä monen aikaisemman tiedemiehen kertomana myös.
Sitä käsitettä voinee hieman laajentaakin. Jättiläinen tietysti kookasta tarkoittaen,
jolla eläneiden tieteentekijöiden runsasta tietomäärää osoitettu. Sanasta toinen merkitys: Jättää myös sopii kun jälkeensä jättäneet tietonsa ovat…
Tieteentekijät yleensä olleet myös toisten aikalaistensa tuen saaneita
(rahoitukseen, asumiseen, ravintoon vaatetukseen, tieteen avustajiinsa jne.),
joka mahdollistanut saavutuksiaan. Kirjoitus- ja lukutaito sekä opiskelu edistäneet.
Nyttemmin voisi kenties jo ymmärtää asiaa ns. jättiläisen harteilla olemista,
joka kaikkea kertynyttä maailmanlaajuista tietomäärää ja se monipuolistunutta jakautumista kaikille ihmisille ollut – siis maapallon laajuista tietokapasiteettiamme.
Meemeiksi näitä ajatuskertymien perimää kutsuttanee geeniperimämme lisänä.
Terve Mikko,
Hiljattain julkaistiin kuva tähdestä, missä myös näkyi 2 eksoplaneettaa. Plateettojen etäisyydet oli muistaakseni 160 ja 320 au:ta keskustähdestä. Onko muissakin järjestelmissä tyypillistä planeettojen etäisyyksien tuplaantuminen niinkuin omassamme? Käytetäänkö tuon tyyppisiä ominaisuuksia vaikka tähtien huojuntaan perustuvissa mallinnuksissa, sijoittamaan planeettoja todennäköisiin oikeisiin paikkoihin?
Planeettojen ratojen koot ja etäisyydet toisistaan eivät noudata minkäänlaista yksinkertaista ”tuplaantumislakia”, kuten Titius-Boden laki, joita on aina joskus ehdotettu. Järjestelmät syntyvät kaoottisen prosessin lopputuloksena, ja ratoihin vaikuttavat muodostumisvaiheessa tähden ympärillä olevan kaasukiekon kitka sekä planeettojen keskinäiset vuorovaikutukset niiden vetovoimien välityksellä. Minkäänlaista standardilopputulosta planeettakuntien hierarkialle ei ole tiedossa. Jättiläisplaneetat kuitenkin saattavat syntyä tietyin etäisyyksin, jotka riippuvat niiden synnyttäneen kertymäkiekon tiheydestä ja massasta. Niiden etäisyydet kuitenkin muuttuvat, joskus runsaastikin, syntymän jälkeen, kun kaasukiekon kitka muuttaa niiden ratoja.
Planeettojen keskinäiset vetovoimat asettavat rajan sille, kuinka lähellä toisiaan planeetat voivat olla pakkautuneena stabiiliksi järjestelmäksi. Maksimaalisella tavalla pakattuja planeettakuntia tunnetaankin useita, ja niille vastaava geometrinen planeettojen keskinäisiä etäisyyksiä kuvaava yksinkertainen ”laki” voi olla olemassa. Esimerkkinä vaikkapa TRAPPIST-1 järjestelmä.