Elämä terminaattorivyöhykkeellä
Valo horisontissa pysyy aina vain vakaana. Se luo aavemaisen tunnelman, joka kuvastaa kauhua, kuolemaa ja hävitystä. Mutta kivikkoisessa maisemassa ei ole ainuttakaan pelokasta olentoa. Ei mitään, mikä juoksisi kauhuissaan karkuun, ryömisi kiven alle turvaan tai lentäisi pakoon kohti mustaa taivasta. Kelmeän auringon alla ei myöskään kasva mikään. Ei ole puita tai pensaita, eikä edes tuulessa heiluvia ruohonkorsia. On vain punaisena hohtava suuri valo, kuin kaiken näkevä silmä, joka on ikuisesti läsnä horisontissa, kallioisen maiseman tuolla puolen.
Maailma ei kuitenkaan ole eloton. Kivien ja kallioiden erilaisia mineraaleja hyödyntää kokonainen joukko kemiallista energiaa käyttäviä mikrobeja, jotka saavat tarvitsemansa hiilen ohuen kaasukehän hiilidioksidista. Kemosynteesi ylläpitää elämää punaisen auringon kelmeässä loisteessa mutta prosessin vaatimaton teho ei riitä ylläpitämään monimutkaisia ravintoverkkoja tai monisoluista elämää. Elämän vyöhyke ei tarkoita sitä, että syntyisi korkeaksi kasvavia kasveja ja monenlaisia niitä ravintonaan käyttäviä monisoluisia organismeja. On mahdollista, että elävä planeetta näyttäytyisi karuna ja kuolleena yhteyttävään kasvillisuuteen ja muuhun monisoluiseen elämään tottuneesta näkökulmastamme.
Yksi kiinnostavimmista eksoplaneettojen joukosta on punaisten kääpiötähtien pienet kiviplaneettat, jotka ovat pakkautuneena tiiviiksi järjestelmiksi aivan tähtensä lähelle, missä himmeän tähden säteily on sopivaa nestemäisen veden esiintymiseen planeettojen pinnoilla. Moni muu asia ei sitten luultavasti olekaan niin kovin sopivaa elämän esiintymiselle mutta ongelmana on, että yksityiskohtaista tietoa on niin kovin vaikeaa saada planeetoista, joita emme tunne omasta järjestelmästämme, ja joita emme voi havaita suoraan. Niiden monimuotoisuutta ja mahdollisia koostumuksia pääsemme puolestaan arvioimaan vain perustuen tietokonesimulaatioihin ja yksittäisiin perussuureisiin, kuten planeettojen halkaisija ja massa.
Tuore tutkimus käsittelee planeettojen terminaattorivyöhykkeen mahdollisuuksia tarjota edellytykset elämän esiintymiselle. Kyse ei siis ole tuhoajarobottien valloittamasta alueesta vieraalla planeetalla, vaan vuorovesilukkiutuneiden planeettojen pimeän ja valoisan puoliskon rajapinnasta. Punaisten kääpiötähtien elinkelpoiset vyöhykkeet ovat niin lähellä tähteä, että niiden sisälle mahtuvilla kiertoradoilla planeettojen pyörähtäminen lukkiutuu niiden kiertoaikaan tähden ympäri. Syynä tähän lukkiutumiseen ovat tähden voimakkaat, planeetan kuortakin muovaavat vuorovesivoimat. Lopputuloksena planeetat näyttävät tähdelle aina vain toisen puoliskonsa, joka kylpee ikuisessa valossa ja lämmössä, kun taas pimeäksi jäävä puolisko kokee ikuisen kylmyyden ja sitä valaisevat vain muut, kaukaisemmat pistemäisinä mustaa taivasta täplittävät tähdet. Planeetan toisen puoliskon ollessa kuuma ja toisen kylmä, on silti mahdollista, että elinkelpoisia olosuhteita esiintyy niiden välissä, terminaattorivyöhykkeen ikuisen aamuhämärän alueella. Edellytyksenä on kaasukehän olemassaolo, jotta olisi edes jokin mekanismi, jolla planeetan puoliskojen rajut lämpötilaerot pääsisivät tasautumaan, mutta asiaan liittyy useita tekijöitä, jotka asettavat elinkelpoisuudelle merkittäviä reunaehtoja.
Tähden tappava säteily
Siinä, että planeetat ovat lähellä tähteään, syvällä sen gravitaatiokaivon tiukassa huomassa, on omat puolensa. Tiiviisti pakatut planeettakunnat ovat kyllä hyvässä turvassa ulomman planeettakunnan kappaleiden aiheuttamilta häiriöiltä niiden ratoihin. Ne voivat selviytyä mainiosti tähtiensä kiertolaisina miljardeja ja jopa satoja miljardeja vuosia ja todennäköisyyden lait pitävät ne turvassa jopa vääjäämättömiltä toisten tähtien lähiohituksilta, koska pieneen tilaan pakattu planeettakunta on kovin pieni maali myös kaikenlaisille häiriötekijöille. Samalla planeetat ovat kuitenkin alttiita oman tähtensä säteilylle, hiukkastuulelle ja purkauksille.
Tähdet ovat rauhallisessa keski-iässäänkin arvaamattomia plasmapalloja, jotka saattavat purkautua milloin vain ja lähettää kohtalokkaan suurienergisen hiukkasryöpyn kohti niitä kiertäviä maailmoja. Punaisten kääpiötähtien tapauksessa huomionarvoista on kuitenkin niiden ikä. Suhteutettaessa tähtien elinikään, kaikki punaiset kääpiötähdet ovat nuoria, koska koko maailmankaikkeus ei ole vielä ehtinyt olla olemassa riittävän pitkään, jotta ne olisivat voineet saavuttaa keski-iän. Suhteellisen nuoruutensa seurauksena punaiset kääpiötähdet ovatkin usein samanikäisiä auringonkaltaisia tähtiä aktiivisempia. Ne purkautuvat usein ja vapauttavat purkautuessaan intensiivistä suurienergistä säteilyä gamma- ja röntgensäteilyn aallonpituuksilla, sekä voimakkaita hiukkasryöppyjä, joiden arvellaan voivan viedä vaikka kokonaisen kiviplanetan kaasukehän mennessään. Tyypillisesti punaiset kääpiöt onkin luokiteltu flare-tähdiksi niiden tavallisimpien purkausten perusteella. Esimerkiksi Aurinkoa lähinnä sijaitseva tähti, nimellä Proxima Centauri tunnettu punainen kääpiötähti luokitellaan purkautuvaksi, kirkkaudeltaan muuttuvaksi tähdeksi, koska sen aktiivisuus tuottaa jatkuvasti näkyvälläkin valolla havaittavissa olevia kirkastumisia flare-purkausten merkiksi.
Arvelin aiemmassa tekstissäni, että Proxima b saattaa kyetä säilyttämään elinkelpoisuutensa terminaattorivyöhykkeensä puitteissa. Vaihtoehtoisesti, planeetan kaasukehä on haihtunut avaruuteen aktiivisen tähden säteilyn, hiukkastuulen ja purkausten ansiosta, ja se muistuttaa lähinnä massiivisempaa versiota Merkuriuksesta vailla kaasukehää ja elämän edellytyksiä. On kuin kohtalon ivaa, että James Webb -avaruusteleskooppi paljasti planeetan TRAPPIST-1 b olevan juuri sellainen kuoliaaksi korventunut kivi saatuaan suoria havaintoja planeetan pintalämpötilasta, joiden avulla selvisi, että siltä puuttuu kaasukehä. Kyseessä on toki Proxima b:tä kuumempi planeetta mutta kohtalokas kaasukehän menetys saattaa olla kuoliniskuna monelle vastaavalle punaisten kääpiötähtien kiertolaisille ja erityisesti niiden elinkelpoisuudelle. Joidenkin tutkijoiden parissa on kuitenkin heränny jo huolta siitä, havaitaanko muiltakaan TRAPPIST-1 järjestelmän kiviplanetalta kaasukehiä, kun JWST:n havaintojen monitahoinen käsittely valmistuu ja on aika vetää johtopäätöksiä
Kuin kirsikkana kakun päällä, tutkijat ovat saaneet selville, että vaikka maanpäällinen elämä voisi aivan mainiosti yhteyttää hiilidioksidia ja vettä valon avulla sokereiksi myös punaisten kääpiötähtien olosuhteissa, ei sopivien säteilyolosuhteiden kirjo kuitenkaan osu kovinkaan hyvin yksiin niiden fysikaalisten olosuhteiden kanssa, jotka mahdollistavat nestemäisen veden esiintymisen. Tuoreiden tulosten mukaan punaisten kääpiötähtien planeetoilla ei ole juuri edellytyksiä paikallisten sinibakteerien ja muiden yhteyttävien organismien esiintymiselle, joten vaikka niiden pinnoilla elämää olisikin, se tuskin muistuttaa sellaista elämää, johon olemme metsäisellä, vihertävällä planeetallamme tottuneet.
Terminaattorivyöhykkeellä virtaava vesi
Yksi tuore tutkimustulos (1) joka tapauksessa tukee ajatusta siitä, että elinkelpoisen vyöhykkeen vuorovesilukkiutuneilla planeetoilla voisi olla nestemäistä vettä terminaattorillaan, ja siitä uutisoi äskettäin myös Tähdet ja avaruus. Maan ilmakehän mallintamiseen ja ennustamiseen rakentamamme ilmastomallit sisältävät vain perusfysiikkaa ja -kemiaa, joten niitä voidaan soveltaa mainiosti eksoplaneettojen olosuhteiden tutkimukseen tietyin oletuksin. Voimme mallintaa planeettaa, joka kylpee punaisen tähden säteilyssä siten, että säteilyä osuu kaikkina aikoina vain planeetan toiselle puoliskolle. Silloin pimeän ja valoisan puolen välissä, terminaattorin molemmin puolin, voisi olla elämälle suotuisat olosuhteet. Tällaiset pinnaltaan osittaisen elinkelpoisuuden maailmat saattavatkin muodostaa jopa valtaosan kaikista universumimme elinkelpoisista planeetoista, jos ne vain ylipäätään kykenevät ylläpitämään elämää.
Tärkein elämän edellytyksiä määrittävä tekijä on jälleen kerran nestemäinen vesi, jonka olemassaolo on ehdoton vaatimus kaikelle elämälle omalla planetallamme. Terminaattorin elinkelpoisuuteen kuitenkin vaaditaan, että vettä ei ole liikaa — jos planeettaa peittää syvä valtameri, tähden säteily saa vettä haihtumaan valoisalla puolella niin paljon, että planeettaa peittää pian paksu vesihöyryvaippa, jonka voimakas kasvihuoneilmiö tuhoaa koko planeetan elinkelpoisuuden. Kuivemmilla planeetoilla niin ei käy, vaan terminaattorin alueella voi olla nestemäistä vettä planeetan pinnalla, vaikka lähes koko valoisa puoli muuttuisikin elottomaksi autiomaaksi kaiken veden haihtuessa ja kulkeutuessa ilmavirtojen mukana pois. Suuri osa sellaisen planeetan vedestä lukkiutuisi planeetan pimeälle puolelle ikijääksi mutta terminaattorin alueella voisi silti olla elämälle suotuisat olosuhteet. Ikijää saattaisikin pelastaa monen lukkiutuneen planeetan terminaattorialueen elinkelpoisuuden. Kun valtaosa planeetan vedestä kulkeutuu pimeän puolen ikijääksi, jopa vetisemmistä lähtökohdista ponnistava planeetta saattaa päätyä elinkelpoiseksi kuivuttuaan valoisalta puoleltaan ja kasvihuoneilmiön heikennyttyä riittävästi.
Lukkiutuneiden planeettojen tutkiminen voisi silti osoittautua hankalaksi jopa tarkimilla avaruusteleskoopeilla, kuten JWST. Havainto planeetan lämpösäteilystä saattaisi olla mahdollinen myös hiukan viileämmälle planeetalle, jonka terminaattori on elinkelpoinen. Silloinkin liian ohut kaasukehä saattaisi kuitenkin jäädä havaitsematta, ja havaintojen tulkinta voisi olla samankaltainen kuin TRAPPIST-1 b:n tapauksessa. Kun voimme havaita lämpösäteilyä vain kuumemmalta valoisalta puoliskolta, ja jos merkkejä kaasukehästä ei näy, saattaa olla houkuttelevaa tehdä virheellinen johtopäätös planeetan elottomuudesta. Esimerkiksi Maan ilmakehää ohuempi kaasukehä on kuitenkin toistaiseksi havaintojen tavoittamattomissa, vaikka sellainen saattaisi hyvinkin riittää paineeseen, jossa nestemäisen veden esiintyminen onnistuu erilaisissa ilmasto-olosuhteissa.
Toivon mukaan ainakin yhdeltä TRAPPIST-1 -järjestelmän planeetoista voidaan havaita merkkejä kaasukehästä, jotta voimme varmistua, että kaasukehän menettäminen ei ole kaikkien punaisia kääpiötähtiä kiertävien vuorovesilukkiutuneiden planeettojen kohtalona ja elinkelpoisuuden esteenä. Kuten tieteessä aina, mikään ei ole varmaa ja toistaiseksi voimme vain toivoa kunnes saamme uusia havaintoja tarkasteltavaksemme.
Jos vettä on melko paljon (esim. yhtä paljon kuin Maassa), niin käyköhän tuossa niin että ensin vesi kertyy yöpuolelle mannerjäätiköksi. Mutta jää painaa planeetan kuoren siellä lommolle, ja toisaalta jäätikön alla jää osin sulaa samasta syystä kuin Etelämantereella (geoterminen lämpö, paine). Jos kuori on melko paksu, sen lommo on loivapiirteinen. Silloin lommon reuna-alue voi ulottua terminaattorillekin, jolloin jäätikön alla oleva vesi voi levitä sinne asti. Vesikin painaa kuorta ja ylläpitää osaltaan lommoa.
Kuvaan on piirretty maakaistale terminaattorimeren ja jäätikön väliin. Onkohan tuo maakaistale perusteltu vai taiteilijan vapautta? Luulisi että siinä olisi merijään reuna.
Karkeasti ottaen elämä on rantailmiö, jota merijääkin voi kiinnostaa. Tuossa voisi olla tarjolla molempia.
Energialähde, ravinteet ja vesihän on se kolmikko jota elämä haluaa. Maassakaan tuo kolmikko ei ole tarjolla läheskään kaikkialla. Mantereiden keskellä on pulaa vedestä, meren pohjalla energiasta ja meren pinnalla ravinteista. Joten ei tuo terminaattoriplaneetta välttämättä kauhean paljon huonompi paikka olisi elämälle kuin Maakaan.