Dynaaminen kaaos planeettakuntien muovaajana
Keplerin lait, joilla tähtitieteilijät ovat jo vuosisatoja kuvanneet planeettojen liikettä omassa planeettakunnassamme, ovat mainio malli myös eksoplaneettakuntien rataliikkeiden kuvaamiseen. Olen itse käyttänyt niitä tuhansien eksoplaneettojen ratalaskelmiin koko ikäni ja havainnut niiden olleen merkitsevästi pielessä vain yhdessä erikoisessa tapauksessa. Tiedämme mallin olevan vain karkea approksimaatio, joka ei toimi luotettavasti monessakaan tilanteessa, mutta se on silti toimivuutensa ja helppokäyttöisyytensä vuoksi suosittu työkalu planeettojen rataliikkeiden kuvaamiseen ja ennustamiseen.
Pohjimmiltaan helppokäyttöisyyteen on syynä mallin staattisuus kahden kappaleen muodostaman järjestelmän ratojen ennustamisessa. Jos kyseessä on vaikkapa tähden sekä planeetan muodostama järjestelmä, tai mikä tahansa kahden kappaleen järjestelmä, kuten kaksoistähti tai planeetan ja kuun muodostama pari, Keplerin lait ennustavat kappaleiden liikkeen olevan täysin määritettyä mielivaltaisen pitkälle tulevaisuuteen, kunhan vain tunnetaan massat ja rataparametreiksi kutsutut suureet. Astrofyysikon työ on helppoa, jos mallit tarjoavat lopullisen vastauksen. Ja vaikka kappaleita olisikin useampi kuin kaksi, ovat kahden mallin ennusteeseen aiheutuvat häiriöt tyypillisesti hyvin pieniä vuosien tai vuosikymmenten aikaskaaloissa — sitä pidempiä havaintosarjoja ei ole toistaiseksi kertynyt yhdenkään eksoplaneetan rataliikkeestä.
Yleisesti ottaen todellisuus ei tietenkään anna mahdollisuuksia vastaavaan lopulliseen determinismiin. Jo kolmen kappaleen muodostaman järjestelmän liikkeitä on mahdotonta ennustaa kaikissa tapauksissa, ja sen kompleksisuudet ovat edelleen aktiivisen tutkimuksen kohteena. Myös suhteellisuusteorian tuomat korjaukset Keplerin liikelakeihin muuttavat tilannetta, ja tuovat mukanaan ongelmallisia monimutkaisuuksia, kuten vaikkapa Merkuriuksen rataellipsin hidas kääntyminen, joka oli yksi suhteellisuusteorian varmentamiseen käytetyistä testeistä — sitä Keplerin lait ja myöhemmin Newtonin vetovoimalait eivät nimittäin ennustaneet. Keplerin lakien determinismi on kuitenkin osaltaan vaikuttanut tähtitieteilijöiden mielenmaisemaan, jossa monet dynaamiset järjestelmät mielletään vakaiksi, koska yksi tärkeimmistä niiden kuvaamiseen käytetyistä malleista on vakaa siinä yksinkertaisessa erikoistilanteessa, jossa sitä useimmin sovelletaan. Aurinkokunta ei kuitenkaan ole edes likimääräisesti kahden kappaleen järjestelmä, vaan usean kappaleen dynaamisen kaoottinen kokonaisuus, johon vaikuttavat lisäksi ulkoisetkin tekijät.
Kaoottisuudella viitataan siihen, että järjestelmä on sisäsyntyisesti ennustamattomassa tilassa. Kaoottinen planeettakunta tarkoittaa sellaista, että mielivaltaisen pienet muutokset planeettojen paikoissa ja liikkeissä tuottavat mielivaltaisen suuria muutoksia niiden paikkoihin ja liikkeisiin tulevaisuudessa. Se tarkoittaa samalla sitä, että planeettojen radat eivät lopultakaan ole vakaita, vaan muuttuvat hiljalleen ajan kuluessa. Vaikka Aurinkokuntaa kutsutaankin stabiiliksi planeettakunnaksi, koska sen kappaleet tuskin karkaavat kovinkaan kauaksi nykyisiltä radoiltaan Auringon elinaikana, jo pienet muutokset voivat vaikuttaa merkittävillä tavoilla planeettoihin. Maa tuskin suistuu radaltaan tulevaisuudessakaan, mutta pienetkin muutokset sen kiertorataan Auringon ympäri voivat muuttaa esimerkiksi ilmastollisia olosuhteita merkittävällä tavalla.
Joskus tähdet tulevat lähelle
Aurinko on yksi galaksimme noin 200 miljardista tähdestä, joista jokainen kiertää yksinään tai kumppaniensa kanssa galaksimme keskustaa moninaisilla radoilla, joihin vaikuttaa galaksin tähtien ja sen sisältämän pimeän aineen yhdistetty vetovoima. Ajoittain tähdet ajautuvat lähelle toisiaan galaksia kiertäessään, jolloin tähdet pääsevät vaikuttamaan toistensa ratoihin. Tähtien radat galaksin ympäri siis muuttuvat ja elävät, ja on mahdotonta ennustaa mitkä tähdet sattuvat olemaan lähekkäin vaikkapa kymmenien miljoonien vuosien aikaskaaloissa. Aurinko ei ole poikkeus. Juuri nyt omaa avaruuden saarekettamme lähin tähtijärjestelmä on Alpha Centaurin kolmoistähti, johon kuuluvat komponentit A ja B kiertämässä toisiaan noin 80 vuoden kiertoajalla sekä Proxima Centaurina tunnettu komponentti C, joka on kauempana parista mutta Auringon suunnassa, joten se on tällä hetkellä Aurinkoa lähin tähti. Tilanne kuitenkin muuttuu vuosituhansien saatossa (Kuva 1.).
Jo noin 10 000 vuoden kuluttua Barnardin tähti saapuu yhtä lähelle kuin Alpha Centaurin A+B pari, poistuakseen taas nopeasti Auringon läheltä. Arviolta 33 000 vuoden kuluttua Ross 248 on lähin tähti menettääkseen taas paikkansa 44 000 vuoden kuluttua Gliese 445:lle. Noin 50 000 vuoden kuluttua lähin tähtemme on taas Alpha Centaurin A+B pari, Proxima Centaurin on karattua radallaan sitä hiukan kauemmaksi. Lähimmillään Alpha Centauri, Ross 248 ja Gliese 445 saapuvat noin kolmen valovuoden etäisyydelle, joten ne eivät saavu häiritsemään Aurinkokunnan kappaleiden kiertoratoja. Vuosimiljoonien saatossa sattuu kuitenkin runsain mitoin paljon läheisempiä tähtien ohituksia, joilla on vaikutusta.
Noin 2.8 miljoonaa vuotta sitten nykyisellään noin 250 valovuoden päässä meistä sijaitseva auringonkaltainen tähti HD 7977 saapui hyvin lähelle Aurinkoa. Se sattui niin lähelle, että se tunkeutui Aurinkoa ympäröivän komeettojen kodin, Oortin pilven sisälle, jossa se taatusti häiritsi lukemattomien komeettojen ratoja siepaten niitä jopa omiksi kiertolaisikseen. Tähti saapui todennäköisesti vain 0.2 valovuoden etäisyydelle ja ehkä jopa vain 0.06 valovuoden päähän Auringosta aiheuttaen vetovoimallaan häiriöitä planeettojen ratoihin. Vaikka häiriöistä ei olekaan suoriin havaintoihin perustuvaa todistusaineistoa, on tietokonesimulaatioiden perusteella selvää, että vastaavat lähiohitukset tekevät jopa Maan radan ennustamisen vaikeaksi yli muutaman kymmenen miljoonan vuoden päähän menneisyyteen ja tulevaisuuteen.
Toisen tähden kulku Aurinkokunnan ulko-osien läpi muuttaa jättiläisplaneettojen ratoja. Ne taas vaikuttavat hiukan muuttuneilla radoillaan sisempään planeettakuntaan ja aiheuttavat ennustamattomia muutoksia kiviplaneettojen ratoihin. Ilmeisin mekanismi on Maan radan eksentrisyyden eli soikeuden muutokset, jotka vaikuttavat merkitsevästi planeettamme ilmastoon. Silloin Maan historian ilmasto-olosuhteiden muutokset ovat voineet osaltaan aiheutua galaksimme muiden tähtien lähiohituksista — ainakin on selvää, että Linnunradan paikallinen tähtipopulaatio on yksi planeettojen ratojen kaoottisuuden lähde.
Planeettakunnat syntyvät kaaoksesta, kehittyvät kaoottisina järjestelminä, ja toisinaan jopa kuolevat omaan kaoottisuuteensa planeettojen kokiessa lähiohituksia tai törmätessään tähteensä. Ne eivät myöskään ole yksin, vaan tanssivat yhdessä muiden galaksimme tähtien kanssa galaktisessa vetovoimakentässä, jonka kaoottiset muutokset ja häiriöt johtavat ajoittain tähtien lähiohituksiin ja vuorovaikutuksiin vetovoimansa välityksellä. Niillä vuorovaikutuksilla taas on pitkäkestoiset seurauksensa, ja pienetkin muutokset jättiläisplaneettojen radoissa voivat siirtyä planeettakunnan kaikkiin muihinkin kappaleisiin merkittävillä tavoilla. Jupiter ei suojele meitä, vaan kiertää vain Aurinkoa radallaan mutta voi kyllä mainiosti välittää ohittavien tähtien vetovoimavaikutukset Maan rataankin asti. Se taas tarkoittaa, että pitkällä aikavälillä mikään ei ole pysyvää. Eivät edes planeettojen radat tähtien kiertoradoilla.
Planeettojen ratojen kaoottiset muutokset voivat vaikuttaa jopa Maan ilmastoon mutta se ei tarkoita, että nykyinen, nopea globaali keskilämpötilan nousu ja sen aiheuttama ilmastokatastrofi voisivat aiheutua Maan radan muutoksista. Sellaisia muutoksia ei ole sattunut ja ilmastokatastrofi on täysin ihmisen kasvihuonekaasupäästöillään aiheuttama fysikaalinen ilmiö.
Jokin ulkoinen tekijä voi rataliikkeitä muuttaa, mutta muutoksen jälkeenkin kappaleet pyrkii asettautumaan voimakkaimman tekijän ratatasapainoon. Siis vaikka Aurinkoa kiertävistä kappaleista jotkin lähtisi radoiltaan niin mikäli Aurinkokunnassa yhä pysyisivät ne asettautuisivat uudelleen melko vakaille radoilleen Aurinkoa kiertämään…