Signaali Proxima Centaurin suunnasta — merkki teknisestä sivilisaatiosta?
Väitetysti Proxima Centaurin suunnasta saapunut kapeakaistainen radiosignaali on kohahduttanut maailmaa ja toisten teknisten sivilisaatioiden olemassaololla spekuloineita tutkijoita. Signaalista ja sen havaintoprosessista on nyt tihkunut uutta tietoa ja lienee siksi paikallaan hiukan tarkastella sitä, mistä on kyse ja mitä se merkitsee. Tieteellistä julkaisua, joka kuvaisi havaitun signaalin ja selvittäisi sen ominaisuuksia ja lähdettä ei ole, joten joudumme tyytymään ongelmallisiin toisen käden tietoihin ja arvioihin. Tieto havaitusta signaalista vuodettiin Guardianille epäreilusti tavalla, joka asetti löydön tehneet tutkijat hankalaan paikkaan. He eivät voineet julkaista tietojaan omilla ehdoillaan, vaan joutuivat paikkaamaan vuodon aiheuttamaa kohua kertomalla julkisuuteen pääpiirteitä havaintoihin rekisteröityneestä radiosignaalista.
Nojaan tässä tekstissä Scientific American -tiedelehdessä julkaistuihin signaalin havainneiden tutkijoiden kommentteihin, tähtitieteilijä Jason Wrightin kirjoittamaan mainioon koosteeseen, sekä yleisessä tiedossa oleviin tosiasioihin tehtyjen havaintojen tarkoituksesta ja luonteesta. Haluan korostaa heti alkuun, että merkkejä vieraasta teknisestä sivilisaatiosta ei ole löydetty, vaan kaikki siihen suuntaan viittaavat tulkinnat ovat toistaiseksi puhdasta spekulointia ja utopiaa.
Korvia huumaava hiljaisuus
Vieraista sivilisaatioista ei ole toistaiseksi havaittu merkkiäkään, vaikka yrityksen puutteesta ihmiskuntaa tuskin voi syyttää. Kaksikymmentä vuotta sitten kotitietokoneessani pyörinyt SETI@home toimi näytönsäästäjänä ja käytti koneen prosessoria signaalien suodattamiseen esiin kohinaisista radioalueen havainnoista. Silloin vieraiden sivilisaatioiden lähettämien radiosignaalien etsintä astui monen omaan kotiin ja muuttui näkyväksi, todelliseksi toiminnaksi astronomien mystisen puuhastelun sijaan. Projekti on kuitenkin tullut tiensä päähän, koska se käytti datan keräämiseen pääasiassa Arecibon suurta radioteleskooppia, jonka instrumenttikelkka romahti joulukuussa 2020 lautasen päälle rakenteellisten vikojen vuoksi tuhoten koko rakennelman korjauskelvottomaan kuntoon.
Se, että vieraiden sivilisaatioiden radioviestejä ei ole havaittu voi johtua monesta syystä. Yksi ilmeinen syy suurelle radiohiljaisuudelle voisi olla se, että olemme yksin ja muita sivilisaatioita ei ole. Mutta jo oman galaksimme jopa miljardien maankaltaisten planeettojen olemassaolo vihjaa siihen suuntaan, että biosfäärejäkin on luultavasti kaikkialla. Ehkäpä jotkut niistä tuottavat monisoluisia, älykkäitä eläimiä, jotka oppivat käyttämään työkaluja ja tiedostavat oman olemassaolonsa, kuten on käynyt omalla planeetallamme. Kuitenkin, todennäköisesti teknisiä sivilisaatioita on niin harvassa, että noin 100 valovuoden etäisyydelle Maasta edenneeseen radiolähetysten kuplaamme ei ole kukaan ehtinyt vastaamaan. Sekin kuitenkin tarkoittaisi, että galaksissamme voisi silti olla tuhansia sivilisaatioita ja aika ei vain ole riittänyt tiedon saamiseen niiden olemassaolosta. On myös mahdollista, että radiolähetykset ovat niin alkeellinen viestintäkeino, että muut sivilisaatiot eivät sitä käytä. Tai sitten kehittyneemmät sivilisaatiot eivät vain halua lähettää signaaleja avaruuteen paljastamaan olemassaoloaan. Emme tiedä todellista syytä. Biodiversiteettikadon ja ilmastokatastrofin kourissa kärvistelevä oma sivilisaatiomme on ehkä muuttamassa planetaarisia elinolosuhteita kuolettavalla tavalla, mikä voisi selittää osaltaan sen, ettemme ole havainneet merkkejä muista sivilisaatioista. Ehkäpä muutkin sivilisaatiot oppivat heikentämään planeettansa elinkelpoisuutta ennen kuin ymmärtävät, että se ei ole kannattavaa. Se on ehkä masentavin mahdollinen ratkaisu Fermin kuuluisaan paradoksiin siitä, ”missä kaikki ovat?”
Tutkijat eivät kuitenkaan ole menettäneet toivoaan kansallisvaltioiden poliitikkojen kutistaessa tutkimusbudjetteja ja antaessaan instrumenttien rapistua tuhoisasti, kuten kävi juuri Arecibossa. Jotkut sinnikkäät radioalueen havaintojen asiantuntijat jatkavat radiosignaalien etsintää. Suurin signaalien kuunteluprojekti on nykyään Breakthrough Listen, joka on eksentrisen venäläismiljardöörin Yuri Milnerin ilmeisen harrastusmielessä rahoittama projekti etsiä teknisten sivilisaatioiden radiosignaaleja avaruudesta. Hiljattain projektin tutkijat löysivätkin jotakin, joka läpäisi heidän automaattiset data-analyysifiltterinsä ja jonka lähdettä ei onnistuttu paikantamaan muutoin kuin että se näytti saapuvan Proxima Centaurin suunnasta. Voisiko se olla vain sattumaa, että havaitsimme erikoisen signaalin juuri sen lähitähden suunnasta, josta vain muutama vuosi sitten löysimme lähimmän kandidaatin elinkelpoiseksi eksoplaneetaksi?
BLC1 — ensimmäinen kandidaatti
Tutkijoita hämmentänyt havainto tehtiin Parkesin observatorion 64-metrisellä radioteleskoopilla. Signaali havaittiin radioteleskoopin keilassa, eli pienessä alueessa taivasta siinä suunnassa, jonne teleskooppi oli suunnattuna. Ongelmana vain on se, että Parkesin käännettävän teleskoopin keila on noin 16 kaariminuuttia leveä — teleskooppi siis havaitsee kerrallaan noin neljännestäysikuun kokoista aluetta taivaalla ja signaali voi olla peräisin mistä tahansa kyseiseltä alueelta. Signaali havaittiin kolmen tunnin aikana viisi kertaa, kun teleskooppia käännettiin siihen suuntaan taivasta, missä Proxima Centauri sijaitsee. Aina välillä teleskooppi suunnattiin hiukan sivuun, jolloin signaali hävisi kokonaan. On siis lähestulkoon mahdotonta, että signaali olisi peräisin maanpäällisestä kohteesta — kuten vaikkapa mikroaaltouunista tai jostakin muusta observatorion virkistyshuoneen elektroniikasta. Sellainen signaali ei näyttäisi tulevan vain yhdestä verrattaen tarkasta suunnasta taivaalla.
Suunnan lisäksi kiinnostavaa on signaalin luonne. Kyseessä on kapeakaistainen signaali, joka esiintyy vain hyvin täsmällisellä taajuuskaistalla, noin 982.002 MHz taajuudella. Taajuus on niin tarkasti rajattu, että ei tunneta ainuttakaan mekanismia, jolla astrofysikaaliset ilmiöt voisivat tuottaa yhtä kapeakaistaisen signaalin. Luonnolliset signaalit ovat peräisin atomeista tai molekyyleistä, joiden joukoilla on aina jotkin lämpötilansa, ja jotka lämpöliikkeestä johtuen tuottavat aina kokonaisen jakauman erilaisia taajuuksia. Ehkäpä voisi olla mahdollista, että jokin toistaiseksi tuntematon, eksoottinen plasmafysiikan ilmiö voisi tuottaa havaitun signaalin mutta sellaisesta ei ole mitään viitteitä. Huomattavasti todennäköisempää on, että signaali on peräisin älykkään olennon rakentamasta teknisestä laitteesta.
Signaali ei ole ”moduloitu”. Se on termi, jota käytetään kertomaan, että signaalia kantavat radioaallot muuttuvat ja voivat siten sisältää informaatiota. Signaalin havainnoissa ei siis ole viitteitä, että radiolähetys kantaisi informaatiota, jonka voisimme dekoodata ja lukea viestinä. Se ei varsinaisesti auta selvittämään signaalin alkuperää. Mutta signaalin taajuus siirtyy hiljalleen matalammaksi. Se on toinen vihje, että kyse ei ole maanpäällisestä signaalista. On todennäköistä, että kyse on Doppler-siirtymästä, joka aiheutuu siitä, että signaalin lähettäjä ei liiku kuten Maan pinnan mukana pyörivät kappaleet, Parkesin teleskooppi mukaan lukien.
Viimeinen huomio on itse 982 MHz:n taajuus. Se osuu kohtaan sähkömagneettista spektriä, jossa on tavallisesti hyvin hiljaista. Luonnolliset prosessit eivät juuri tuota häiriöitä tai kohinaa signaalin taajuusalueella (karkeasti 1-10 GHz), jota kutsutaankin mikroaaltoikkunaksi, koska häiritsevän luonnollisen taustasäteilyn määrä on vähäistä. Onkin ehdotettu, että jos vieraat tekniset sivilisaatiot harjoittaisivat tähtienvälistä viestintää radiolähetyksillä, he käyttäisivät juuri mikroaaltoikkunaa, johon havaittu signaali osuu. Kyse on oikeastaan vain yksinkertaisesta taloudellisuudesta — mikroaaltoikkunan alueella viestin lähettämiseen tarvitaan vähiten lähetystehoa, jotta sen intensiteetti saadaan taustasäteilyä suuremmaksi.
Mitä luultavimmin kyseessä on ihmisen rakentaman laitteen tuottama signaali mutta silloin kyseessä on laite, joka on planeettamme ulkopuolella. Ehkäpä jokin avaruuteen ampumistamme satelliiteista oli Proxima Centaurin suunnassa taivasta juuri havaintojen aikana. Ongelmana vain on, että kukaan ei ole osannut osoittaa mikä satelliiteista olisi kyseessä.
Lähtökohtaisesti signaali on siis peräisin ihmisen rakentamasta laitteesta mutta entäpä, jos niin ei olekaan? Jos signaali on todellakin peräisin Proxima Centaurin suunnasta, mitä voimme päätellä siitä, että kyseessä on juuri Aurinkoa lähinnä oleva tähti, eikä jokin muista tuhansista lähitähdistä? Jason Wright tarjoaa huikean hypoteettisen selityksen. Maapallolla kännyköihimme saapuvat signaalit ovat peräisin lähimmästä mahdollisesta tukiasemasta. Aivan samoin, jos jokin galaksimme tekninen sivilisaatio haluaa ottaa meihin yhteyttä, se käyttää luultavasti tarkoitukseen meitä lähinnä sijaitsevaa galaktista lähetintä. Ja lähin mahdollinen lähetin voi olla vain lähimmän mahdollisen tähden kiertoradalla, Proxima Centaurin järjestelmässä. Ajatus on yhtä fantastisen huikea kuin se on epätodennäköinenkin.
Aivan yhtä uskomattomalta kuulostaa ajatus, että viesti olisi peräisin Proxima Centauria kiertävältä planeetalta, ehkäpä juuri planeetalta Proxima b. Asiasta ei ole minkäänlaisia viitteitä mutta voimme spekuloida. Ehkäpä vastoin kaikkia odotuksia, Proxima b on säilyttänyt kaasukehänsä alttiina tähtensä intensiiviselle säteilylle ja hiukkastuulelle. Ehkäpä planeetan pinalla esiintyy vettä, joka tarjoaa sille elämän edellytykset. Ehkäpä planeetalle syntyi elämää, jonka organismit lopulta ryhtyivät käyttämään työkaluja ja keksivät fysiikan lakien lisäksi radiolähettimen toimintaperiaatteen. Ehkäpä he jopa koettavat ottaa yhteyttä yhteen lähimmistä tähtijärjestelmistään. Ehkä. Jokainen tapahtumaketjun tapahtuma on vähintäänkin erittäin epätodennäköinen. Emme kuitenkaan voi varmasti sulkea sitäkään vaihtoehtoa pois.
Luultavasti Brekthrough Listen -projekti on löytänyt ensimmäisen signaalinsa, jonka syntyä ei voida selittää luonnollisten astrofysikaalisten prosessien avulla. Signaali on todennäköisesti peräisin Maapallon ulkopuolelta, Proxima Centaurin suunnasta taivaalla. Se on siis havainto teknisen sivilisaation radioaaltoja lähettävästä laitteesta Maapallon ulkopuolelta. Se taas tuskin on kovinkaan kiinnostavaa, sillä mitä todennäköisimmin se tekninen sivilisaatio olemme me itse.
Signaalia ei ole havaittu uudelleen. Jos uutta havaintoa ei saada jatkossakaan, on mahdollista, että emme saa koskaan selville signaalin alkuperää. Mutta jatkamme siitäkin huolimatta varmasti lähitähtien monitorointia ja signaalien etsintää keskeltä galaktista radiohiljaisuutta. Ehkäpä jonakin päivänä havaitsemme jotakin, joka paljastaa, että emme ole yksin. Tämä ei kuitenkaan vielä ole se päivä.
7 kommenttia “Signaali Proxima Centaurin suunnasta — merkki teknisestä sivilisaatiosta?”
Vastaa
Hymyile ja vilkuta — vieraat astronomit saattavat tarkkailla meitä
Eksoplaneettojen havainnoinnista on tullut parissa vuosikymmenessä rutiinia. Olemme löytäneet jo tuhansia planeettoja kiertämässä radoillaan Auringon galaktisen naapuruston tähtiä ja vaikka niistä jokainen onkin omalla tavallaan erityinen, oman aurinkokuntansa kiertolainen, olemme saaneet selville myös yleisiä lainalaisuuksia planeettojen ja niiden järjestelmien luonteesta ja ominaisuuksista.
Maapallon kokoista ja massaista planeettaa ei ole vielä havaittu kiertämässä maankaltaisella radalla toista auringonkaltaista tähteä mutta sellaisen löytyminen on luultavasti vain ajan kysymys. Meillä on teknologia maankokoisten planeettojen havaitsemiseen tarkkailemalla niiden kulkua tähtiensä editse mutta esteenä on vielä toistaiseksi niiden verrattaen pitkät kiertoradat aurinkojensa ympäri. Maankaltaisen planeetan havaitsemiseksi on tarkkailtava tähtiä usean ratakierroksen ajan ja havaittava useita ylikulkuja — se tarkoittaa vuosien keskeytyksetöntä havaintoprojektia. Kepler-avaruusteleskoopin havaintokampanjan kestoksi suunniteltiin juuri tästä syystä kolme vuotta mutta sekään ei riittänyt kaikilta ominaisuuksiltaan maankaltaisten planeettojen löytämiseen.
Ylikulkumenetelmä on ollut toistaiseksi kaikkein tehokkain tapa eksoplaneettojen havaitsemisessa. Vaikka ajatuksena on havaita vain planeetan varjo — havaitun valon hiuksenhieno himmeneminen planeetan kulkiessa tähden editse ja peittäessä pienen osan sen kirkasta pintaa — menetelmällä saadaan runsaasti tietoa planeettojen ominaisuuksista. Tärkeimpänä tietona saadaan planeetan koko mutta usean ylikulun perusteella voidaan määrittää planeetan kiertoradan ominaisuuksia ja arvioida planeetan fysikaalisia olosuhteita kuten lämpötilaa. Tässä blogissa olemme kohdanneet jo aiemmin esimerkiksi eksoplaneetan nimeltään HD 95338 b.
Oleellista on, että planeetta kulkee Maasta katsottuna tähden pinnan editse. Sen kiertoradan on siis oltava juuri oikeassa asennossa avaruudessa. Jos planeetta kiertää tähtensä verrattaen nopeasti muutamassa tai korkeintaan muutamassa kymmenessä päivässä, on noin prosentin todennäköisyys, että planeetan ylikulku on havaittavissa. Siten vain suunnilleen joka sadannen tähden kiertolaiset voidaan havaita Maasta käsin. Maankaltaisen kaukana tähtensä pinnasta kiertävän planeetan ylikulun havaitseminen on vielä sitäkin epätodennäköisempää — Maan ylikulun havaitsemistodennäköisyys on vain 0.04 promillea satunnaisesta suunnasta katsotuna. Mutta asetelman voi myös kääntää päälaelleen: voimme kysyä onko lähiavaruudessa olemassa tähtijärjestelmiä, joiden paikalliset tähtitieteilijät voisivat havaita Maan ylikulkumenetelmää hyödyntäen? Selvityksen mukaan, niitä on pienestä todennäköisyydestä huolimatta runsaasti.
Sadan parsekin, eli noin 330 valovuoden etäisyydellä Auringosta on lukuisia tähtiä, joita kiertävien planeettojen astronomit voisivat havaita Maan ylikulun Auringon editse. Lisa Kalteneggerin laskelmien mukaan, sellaisia tähtiä on lähettyvillämme kaikkiaan 1004 perustuen lähitähtien tarkkoihin Gaia-avaruusteleskoopilla mitattuihin paikkoihin. Näistä valtaosa, noin 770 on punaisia M-spektriluokan kääpiötähtiä, koska ne ovat maailmankaikkeudessa ja galaksissamme kaikkein yleisimpiä tähtiä. Punaisten kääpiötähtien planeettojen elämän edellytykset saattavat olla hiukan heikompia kuin auringonkaltaisten tähtien, joten niille on luultavasti syntynyt vähemmän tähtitieteellisiin havaintoihin kykeneviä astronomeja mutta Kalteneggerin luettelon tähtien joukkoon mahtuu myös noin 60 auringonkaltaista, keltaista G-spektriluokan tähteä.
Tämä tulos, luettelo tähdistä, joiden planeetoilta Maan voisi havaita, tarjoaa mielenkiintoisen mahdollisuuden jatkotutkimukselle. Voimme koettaa etsiä luettelon tähtiä kiertäviä planeettoja ja koettaa selvittää onko niiden kiertoradoilla maankaltaisia, potentiaalisesti elinkelpoisia kiviplaneettoja. Jos joukossa on maankaltaisia kiviplaneettoja, jotka kulkevat tähtiensä editse, saamme ensimmäistä kertaa havaintoja planeetoista, joiden astronomit voisivat havaita meitä tasa-arvoisesti, samoilla menetelmillä kuin me heitä. Voisimme tulevaisuuden instrumenteilla koettaa havaita näiden planeettojen kaasukehistä elämän merkkejä ja niiden astronomit puolestaan voisivat havaita Maan kemiallisen epätasapainotilan, joka aiheutuu siitä, että planeetallamme on mäntyjen, sillivalaiden, herkkutattien ja ihmisten täyttämä biosfääri.
Kehittyneemmät sivilisaatiot tuskin tarvitsevat ylikulkumenetelmäksi kutsuttua alkeellista, epäsuoraa menetelmää lähitähtien planeettojen tarkkailuun, vaan he voivat havaita planeettoja jättiläismäisillä, supertarkoilla laitteillaan aivan suoraan, kartoittaen niiden pintoja ja tutkien niiden sääolosuhteita. Ehkäpä jokin teknisesti kehittynyt sivilisaatio tarkkailee planeettaamme jo samalla resoluutiolla kuin Marsia kiertänyt MGS-satelliitti (Mars Global Surveyor) vuonna 2003 (Kuva 3.) saaden tietoa planeettaamme peittävästä biosfääristä. Mutta ihmiskunnan alkeellisen teknologian asteelle päässeen sivilisaation tähtitieteilijät olisivat rajoittuneita alkeellisiin, epäsuoriin havaintomenetelmiin aivan kuten mekin. Siksi on kiinnostavaa tietää minkä tähtijärjestelmien asukkaat voisivat nähdä olemassaolomme.
Lopultakin, vain etäisyys meistä rajoittaa muiden sivilisaatioiden kykyä tehdä havaintoja Maasta ja planeettamme elämästä. Maapallolta havaitsijoiden teleskooppeihin kulkeva säteily heikkenee suhteessa etäisyyden neliöön, joten meidät havaitaan sitä helpommin mitä lähempänä havaitsijat ovat. Lähin mahdollinen paikka on tietenkin lähin eksoplaneetta, Proxima b, aivan viereisessä galaktisessa postinumerossa. Se tosin kiertää punaista kääpiötähteä, joiden järjestelmissä elämän edellytykset ovat luultavasti ainakin hiukan heikentyneitä. Voimme kuitenkin harjoittaa vain spekulointia ennen kuin saamme tarkasteltavaksemme muitakin esimerkkejä elävistä planeetoista. Siihen asti, kannattaa hymyillä — vieraat astronomit saattavat jo tarkkailla planeettaamme.
4 kommenttia “Hymyile ja vilkuta — vieraat astronomit saattavat tarkkailla meitä”
-
Mielenkiintoista tekstiä. 👍🏻
-
Voiko vierailla kehittyneillä sivilisaatioila olla meille tuntemattomia vistintämenetelmiä joita me emme tiedä olevan olemassa. Ehkä tulevaisuudessa keksimme sellaisen menetelmän.Nyt tähyilemme avaruuden radioaaltoja erilaisilla taajuuksilla mutta se voi olla turhaa koska emme ole vielä keksineet miten kehittyneemmät sivilisaatiot kommunikoivat? Onkohan missään mitään työryhmää joka voisi pohtia kuinka avaruudessa todella kommunikoidaan.Nykyään tuntuu siltä että meidän menetelmillä ei kuulla mitään järkevää viestintää avaruudesta.
-
Kaksisuuntaisessa viestittelyssä on monia ongelmia. Ensinnäkin se paljastaa lähettäjän olinpaikan vastaanottajalle. Toiseksi, jos vastausta ei saada, siihen voi olla monia syytä. Ehkä viestiä ei huomattu. Tai jos se huomattiin, ehkä he päättivät olla hiljaa etteivät paljastaisi itseään. Jos vastaus saadaankin, viestin tulkinta ei ole yksiselitteistä.
Näitä ongelmia ei ole, jos viestien sijaan lähetetään luotaimia. Luotaimet tutkivat kohdetta lähietäisyydeltä ja raportoivat tietonsa. Tiedot saapuvat yksisuuntaisella valon nopeuden viiveellä. Sitä nopeampaan ei tässä maailmankaikkeudessa pystytä. Jos tutkittava sivilisaatio päättää vaikka lähteä valloitusretkelle, luotainten data varoittaa siitä etukäteen, koska mikään retkue ei kuitenkaan etene valoa nopeammin. Jotta tämä onnistuisi, luotaimien pitää toimia pitkiä aikoja, miljoonia vuosia, ja korjata itseään elävien organismien tapaan. Me emme tuollaiseen vielä pysty, mutta luonnonlakien vastaista se ei liene. Koska galaksi on vanha, todennäköisesti lähimmät naapurimme ovat joko meitä miljoonia vuosia jäljessä tai edellä. Samassa nopean kehityksen vaiheessa oleminen olisi epätodennäköinen sattuma.
Tämän takia pidän epätodennäköisenä että SETI löytäisi jotain. Jos kohtaamme jotain, kohtaamme todennäköisemmin luotaimia. Millaisia, tai miten niitä voisi tunnistaa, on vaikeampi kysymys. En kuitenkaan tuomitse SETI:kään. Vaikka todennäköisyys löytää jotain näyttääkin pieneltä, ainakin tiedetään mitä haetaan. Aina jotain opitaan, kun jotain tehdään teknisesti kunnolla.
Vastaa
Taivaan kaksi aurinkoa
Auringot leikkivät taivaalla omaa tasaista piirileikkiään. Niitä on kaksi ja ne valaisevat planeetan pintaa, kumpikin omalla ominaisella säteilyllään. Päivällä tähdet pyörähtelevät toistensa ympäri aikansa, tanssien halki taivaankannen, ja painuvat sitten mailleen yhdessä, toisiaan seuraten. Niitä yhdistää näkymätön kahle, gravitaatiovoima, joka pitää tähdet ikuisesti yhdessä. Gravitaatio varmistaa myös sen, että planeetat pysyvät radoillaan parin ympärillä. Niiden pinnoilla auringonlaskut ovat eri värisiä — vuoroin oranssin kääpiötähden, vuoroin sen punaisemman kumppanin valaisemia. Mutta päivät ovat polttavan kuumia, kun aurinkoja loistaa taivaalla hiukan eri suunnissa kaksi ja varjoa ei löydy juuri mistään.
Kahden auringon taivas kuulostaa eksoottiselta, oudolta paikalta, koska Aurinkokunnan monosolaariseen rakenteeseen tottuneille havaitsijoille kaikki tutusta ja turvallisesta poikkeava on väistämättä huomiotaherättävän erikoista ja saa aikaan ihmettelyä. Asetelmaa onkin käytetty luomaan pelottavaa, uhkaavaa vieraan ympäristön tunnelmaa tieteiskirjallisuudessa ja ehkäpä tunnetuimmin Star Wars -elokuvien fiktiivisen universumin Tatooine-planeetalla. Usean auringon järjestelmät eivät kuitenkaan ole harvinainen poikkeus, vaan suhteellisen yleinen tapa järjestää aurinkokuntien organisaatio galaksissamme.
Kaksi tähteä voi kiertää toisiaan stabiileilla, muuttumattomilla radoilla koko elinikänsä, kunnes ne ovat käyttäneet ytimensä ydinpolttoaineen loppuun ja kuolevat. Tavallisilla keltaisilla auringonkaltaisilla tähdillä siihen kuluu kymmenisen miljardia vuotta mutta esimerkiksi punaiset kääpiötähdet palavat säästöliekillä ja loistavat lähes muuttumattomina jopa satoja miljardeja vuosia. Avainasemassa on kuitenkin se, että tähtiä on vain kaksi. Kolmen tai useamman tähden järjestelmät ovat epästabiileja, kaoottisia kokonaisuuksia, joiden stabiileja erikoistapauksia on vain kourallinen. Tyypillinen lopputulos on yhden tai useamman tähden singahtaminen ulos järjestelmästä tähtien keskinäisten gravitaatiovoimien vaikutuksesta, jolloin jäljelle jäävät yksittäiset tähdet tai tähtiparit voivat aloittaa rauhallisen elämänsä kiertoradalla galaksin keskustan ympäri yksin tai parin kanssa. Tilanne tunnetaan tähtitieteilijöiden parissa hyvin ja sitä kuvastaa se, että kahden tähden radat voidaan määrittää matemaattisen tarkasti Johannes Keplerin jo 1600-luvulla muotoilemien liikelakien avulla mutta vaikkapa kolmen tähden muodostamalle järjestelmälle ei ole olemassa edes kaikenkattavaa matemaattista ratkaisua, joka kuvaisi radat pitkälle tulevaisuuteen. Kaikki riippuu järjestelmän tarkasta rakenteesta.
Initial conditions:
— Random Three-Body Problem (@ThreeBodyBot) September 10, 2020
m1=18.4 m2=50.6 m3=44.8 (solar masses)
v1x=-5.162 v1y=6.595 v2x=5.796 v2y=-1.118 v3x=5.307 v3y=-3.088 (km/s)
x1=-4 y1=9 x2=-4 y2=-3 x3=10 y3=2 (AU from center)
Music: The Blue Danube Waltz – Strauss pic.twitter.com/RYZ2XbVxCB
Leluesimerkki kolmen kappaleen kaoottisesta järjestelmästä osoittaa, että satunnaiset kolmen tähden järjestelmät ovat yleensä epästabiileja, kaoottisia tähtijärjestelmiä. Kolme tähteä voi olla vakailla, muuttumattomilla radoilla kiertämässä toisiaan vain siinä erikoistapauksessa, että kaksi tähdistä muodostaa tiiviin parin, jota kolmas tähti kiertää huomattavasti kauempana. Sellainen järjestelmä on esimerkiksi Aurinkoa lähin tähtijärjestelmä alpha Kentauri, jossa kahden auringonkaltaisen tähden paria kiertää piskuinen punainen kääpiötähti Proxima Kentauri. Alpha Kentaurin auringonkaltaiset tähdet kiertävät toisensa 80 vuodessa mutta Proximan kierros niiden ympäri kestää peräti puoli miljoonaa vuotta.
Samalla tavalla neljä tähteä voi muodostaa järjestelmän, jossa kaksi tähtiparia kiertää toisiaan ja tähtiä on havaittu jopa viiden tai useamman tähden stabiileina, hierarkisina järjestelminä. On kuitenkin huomionarvoista, että kahden tähden kiertäessä toisiaan lähekkäin, kolmas tähti voi olla vain selvästi kauempana, pitkällä kiertoradalla tiiviin parin ympäri, jotta järjestelmä ei hajoaisi kaoottisuuteensa. Se mahdollistaa myös planeettakunnat tähtiparien ympärillä — järjestelmissä ei voi olla kolmatta tähteä, joka tulisi niin lähelle, että se suistaisi planeetat radoiltaan, koska muutoin koko järjestelmä olisi epästabiili.
Esimerkin tarjoaa Kepler-avaruusteleskoopin havaintokentästä löydetty Kepler-16. Järjestelmässä on saturnuksenkokoinen kaasuplaneetta, joka kiertää kahden Aurinkoa pienemmän tähden ympäri ympyräradalla aina 228 päivässä. Tähdet muodotavat tiiviimmän parin, ja kiertävät toisensa kerran 41 päivässä näkyen planeetan Kepler-16 b taivaalla parhaimmillaan noin 17 asteen kulmaetäisyydellä toisistaan. Vaikka Kepler-16 b on hiukan Saturnusta pienempi jättiläisplaneetta, sen olemassaolo osoittaa kiistatta, että tähtiparia kiertäviä planeettoja voi olla olemassa. Kepler-avaruusteleskoopin havaintokentässä Kepler-16 b kulki molempien tähtiensä editse ja sen matka kummankin tähden editse onnistuttiin myös havaitsemaan tähtien pienenä himmenemisenä. Aivan samoin havaittiin miten tähdet peittävät vuorotellen toisiaan, mikä näkyi suurempina säännöllisinä himmenemisinä aina 41 päivän välein. Pahaksi onneksi järjestelmän kappaleiden radat muuttuvat vuosien saatossa hiukan ja ratalaskelmien mukaan planeetan ylikulut eivät ole havaittavissa uudelleen ennen vuotta 2042.
Pienemmät, maapallonkokoiset planeetat voisivat aivan hyvin kiertää tähtiparia jopa elinkelpoisella vyöhykkeellä. Vaikka sellaisia planeettoja ei olekaan vielä havaittu, ei ole ainuttakaan syytä olettaa, ettei niitä ole olemassa.
Planeettojen synty useamman kuin kahden tähden järjestelmissä on myrskyisää. Kolmen tähden järjestelmissä kertymäkiekko, jonka materiasta planeetat syntyvät, häiriintyy tähtien vetovoimien vaikutuksesta, eikä pysy enää yhdessä tasossa. Silloin planeettojen muodostuminenkin estyy etäisyyksillä tähdistä, joilla häiriöt ovat suurimpia. Kolmoistähtien hajottua, planeetat pääsevät siten muodostumaan rauhassa mutta niiden kiertoradat noudattavat vääntyneen kertymäkiekon tasoa. Planeetat voivat kiertää kaksoistähden ympäri lähes missä suunnassa tahansa — syynä ovat järjestelmän nuoruusaikojen kaoottiset häiriöt.
Se, minkälaiselle radalle planeetat lopulta päätyvät kaksoistähteä kiertäessään, riippuu paljolti sattumasta ja siitä, oliko järjestelmässä sen nuoruudessa useampiakin tähtikumppaneita. Absoluuttisen rajoittavana tekijänä on kuitenkin kaksoistähden komponenttien kiertorata toistensa ympäri — tähtien vetovoimien häiriöt suistavat planeetan radaltaan liian lähellä tähtiparia. Kauempana se voi kiertää kaksoistähden rauhassa. Jos parin kiertoaika toistensa ympäri on päiviä tai joitakin kymmeniä päiviä, planeettojen olemassaolo sen ympärillä on mahdollista elämän vyöhykkeellä. Se kuitenkin edellyttää, että ainakin toinen tähdistä on auringonkaltainen tähti. Punaisista kääpiöistä koostuvan parin ympärillä elämän vyöhyke on niin lähellä tähtiä, että sen alueella ei ole stabiileja ratoja.
ALMA-teleskoopilla tehtiin hiljattain havainto nuorta kolmoistähteä GW Orionis ympäröivistä pölyrenkaista. Ne ovat eri tasoissa johtuen kolmoistähden aiheuttamista häiriöistä (Kuva 4.). Planeetat voivat kuitenkin muodostua järjestelmässä ja niitä luultavasti löytyykin pölyrenkaiden väleistä paimentamassa ainesta ja siivoamassa ratansa puhtaaksi kaasusta ja pölystä. Se tarkoittaisi samalla, että planeettoja voi kiertää myös kolmoistähteä mutta vain kaukana, alueella, jossa tähtien vetovoimat eivät häiritse kiertoratoja.
Planeetat siis todistetusti syntyvät kaikenlaisiin tähtijärjestelmiin — riippumatta siitä kuinka monta tähteä järjestemässä oikeastaan on. Vaikka usean tähden järjestelmissä kaikki radat eivät ole stabiileja, planeetoilla on paljon tilaa muodostua ja kehittyä siellä, missä tähtien lähiohitukset eivät suista niitä radoiltaan. On olemassa runsaasti planeettakuntia, joissa taivaalla loistaa yhden tähden sijaan kaksi tai useita erilaisia aurinkoja. Joissakin järjestelmissä maankaltaiset planeetat voivat kiertää kahden tähden muodostamaa paria. Jotkut niistä voivat olla jopa otollisia elämän synnylle, evoluutiolle ja kukoistavalle biodiversiteetille. Siksi kaksoistähtien planeettoja kannattaa koettaa havaita tulevaisuudessakin. Yksittäiset auringot eivät ole ainoita mahdollisia paikkoja, joista maankaltaisia eläviä planeettoja voi löytää.
2 kommenttia “Taivaan kaksi aurinkoa”
-
En niitä laskuesimerkkejäsi osaa tulkita tai oikein ratkaista. Kirjoitit kuitenkin:
”Kolmen tai useamman tähden järjestelmät ovat epästabiileja, kaoottisia kokonaisuuksia,
joiden stabiileja erikoistapauksia on vain kourallinen.” Planeettojen 3 tai useampia…
Kenties ei niihin helposti ymmärrettäviä laskukaavoja olekaan tai löydetty,
mutta näennäisesti pallomaiset tähtijoukot ovat pakkautuneet niin kasaan –
että ne jotenkin lienee ratkaisseet käytännössä näitä 3 tai useamman tähtijärjestelmiä…
Vastaa
Kuinka monta maapalloa mahtuu yhteen galaksiin?
Muutaman kuukauden välein mediassa julkaistaan suurten sanojen saattelemina juttuja siitä kuinka monta elinkelpoista planeettaa galaksissamme on. Tavallisesti asia esitetään kertomalla jokin valtaisa numero, kuten 300 miljoonaa, ja sitten taivastellaan, että kylläpä kyseessä on suuri luku ja onpa elinkelpoisia planeettoja paljon jo omassa galaksissamme. Maankaltaisiin planeettoihin aina liittyvä yli-innokas hypetys, joka aika-ajoin lähtee pahasti käsistä, kuorrutetaan asettamalla tilastollinen kirsikka epävarman kakun päälle — sanotaan, että lähin maankaltainen planeetta on vaikkapa 20 valovuoden päässä meistä, mikä tietenkin tarkoittaa, ettemme voi siellä koskaan vierailla.
Kuitenkin, pelkän numeron kirjoittaminen mediaan ja kehystäminen merkittäväksi tulokseksi antaa tavallisesti kovin harhaanjohtavan kuvan siitä, mitä alan asiantuntijat, tähtitieteen tutkijat, ovat oikeastaan asiasta kirjoittaneet. Tilanne ei ole koskaan niin yksinkertainen, kuten Helsingin Sanomien esimerkiksi tarjoama heikosti taustoitettu, ulkomaisesta mediasta kopioimalla ja kääntämällä tuotettu artikkeli antaa viimein ymmärtää aivan lopussa tutkija David Charbonneaun sanoin: ”Kepler [avaruusteleskooppi] ei ole havainnut vielä yhtäkään planeettaa, joka olisi Maan kanssa täysin samankokoinen ja kiertäisi auringonkaltaista tähteä täsmälleen samassa ajassa kuin Maa.” Mutta kuinka voimme sanoa mitään maankaltaisista, elävistä planeetoista, jos emme tunne Maan lisäksi ainuttakaan sellaista muiden tähtien kiertoradoilta?
Olen aiemmin kirjoittanut asiasta runsaasti. Yhden arvion mukaan Linnunradassa on jopa kuusi miljardia tietyin kriteerein maankaltaista planeettaa. Voi olla olemassa jopa planeettoja, jotka ovat Maata parempia ylläpitämään monimuotoista biosfääriä. On olemassa luultavasti monia erilaisia elämää ylläpitämään kykenevien planeettojen tyyppejä ja jopa lähin eksoplaneetta, Proxima b, saattaa olla elinkelpoinen. On siksi syytä tarkastella yksityiskohtaisemmin sitä, mistä on kyse, kun sanotaan galaksissamme olevan 300 miljoonaa elinkelpoista planeettaa.
Ensimmäinen askel sen selvittämiseksi kuinka monta maankaltaista planeettaa galaksistamme löytyy, on määritellä mitä tarkoitetaan maankaltaisella. Planeetta voi muistuttaa Maata kooltaan, massaltaan, tiheydeltään, lämpötilaltaan ja monilta muilta ominaisuuksiltaan, mutta mikä oikeastaan tekee planeetasta maankaltaisen ja voimmeko edes havaita planeettoja, jotka ovat valittujen ominaisuuksien osalta maankaltaisia? Steve Brysonin johtaman suuren, pääosin yhdysvaltalaisen tutkimusryhmän tuore selvitys lähtee luonnollisesti liikkeelle juuri maankaltaisuuden määrittelystä.
Bryson ja kumppanit rajasivat tutkimuksensa auringonkaltaisia tähtiä kiertäviin planeettoihin. Planeetta ei voi olla maankaltainen, jos se kiertää radallaan täysin erilaista tähteä. Tähden tyyppi vaikuttaa niin planeetan kokemiin säteilyolosuhteisiin, lämpötilaan kuin pyörimisen lukkiutumiseen synkroniin kiertoajan kanssa. Olosuhteiden seurauksena, esimerkiksi punaisia kääpiötähtiä kiertävät mutta lämpötilaltaan maankaltaiset planeetat kylpevät Maasta poiketen voimakkaassa suurienergisessä säteilyssä kiertäessään tähteään sen lähellä, intensiivisille tähden purkauksille alttiina. Lisäksi ne näyttävät aina saman puoliskon tähdelleen, mikä tekee punaisten kääpiöiden planeetoista hyvin erilaisia elinympäristöjä, jos ne edes voivat ylläpitää elämää. Aurinkoa kirkkaampien tähtien ongelma taas on niiden lyhyt elinikä, jonka puitteissa biosfäärit eivät luultavasti ehdi kehittymään ja kukoistamaan, vaikka elämän synty olisikin mahdollista.
Tavanomainen tapa rajata tutkimus auringonkaltaisiin tähtiin, on tarkastella tähtien lämpötiloja, jotka voidaan määrittää kohtuullisen tarkasti tähtien kirkkauksia havainnoimalla. Bryson ryhmineen määritteli auringonkaltaisiksi tähdet, joiden lämpötilat ovat välillä 4800-6300 kelvinastetta — vertailun vuoksi, Aurinko on lämpötilaltaan noin 5770 K. Valitulla lämpötilavälillä olevien tähtien joukkoon mahtuvat siten kaikki keltaiset spektriluokan G kääpiötähdet, jollaiseksi Aurinkokin luokitellaan. Joukkoon mahtuvat myös noin puolet oransseista spektriluokan K tähdistä, sekä kourallinen valkoisena hehkuvia, kuumempia F spektriluokan tähtiä. On huomionarvoista, että lämpötilaväli on täysin subjektiivisesti valittu — tutkijat perustelevat välin valinnan sillä, että Kepler-avaruusteleskoopin havainnot eivät ole kattavia 6300 K kuumemmille tähdille ja 4800 K viileämpiä tähtiä kiertävien elinkelpoisten planeettojen pyöriminen on todennäköisesti synkronissa niiden kiertoajan kanssa. Kyseessä eivät kuitenkaan ole rajoitukset elämän esiintymiselle mutta toisaalta taas joukkoon mahtuu runsaasti tähtiä, jotka poikkeavat Auringosta huomattavasti, eikä niiden planeettoja siten voi kutsua siltä osin maankaltaisiksi. Tällainen määritelmällinen subjektiivisuus on kuitenkin väistämätöntä, koska tarkasteltavien tähtien joukko on rajattava jollakin tavalla.
Toinen subjektiivinen raja on vedettävä siihen, minkä kokoisia planeettoja pidetään maankaltaisina. Jos planeetan halkaisija on sama kuin Maalla, se voi silti olla koostumukseltaan ja ominaisuuksiltaan täysin maasta poikkeava mutta koko on likimain ainoa suora tieto, jota Kepler-avaruusteleskoopin havaitsemista planeetoista saadaan selville. Siksi tutkijat tekivät jälleen subjektiivisen valinnan — he määrittelivät planeetan kooltaan maankaltaiseksi, jos sen halkaisija on vähintään puolet Maan halkaisijasta tai korkeintaan sitä 50% suurempi. Jos planeetan koostumus ja tiheys vastaavat Maata, kooltaan puolet pienempi planeetta on massaltaan kuin Mars, pieni kiviplaneetta, joka ei kykene pitämään kiinni paksusta kaasukehästä pitkiä aikoja. Sellainen planeetta on luultavasti kuiva autiomaa, josta kaikki vesi on haihtunut, ellei tähden säteily ole niin heikkoa, että osa vedestä pysyy planeetan pinnalla jäänä. Vastaavasti, 50% Maata suurempi planeetta on supermaapallo, joka voi pitää kiinni paksusta kaasukehästä ja jonka kuumaa painekattilaa muistuttavat pintaolosuhteet voivat silloin tehdä planeetasta vihamielisen kaikelle tunnetulle elämälle. Siihen, minkä kokoinen planeetta voi olla maankaltainen liittyy huomattavia epäselvyyksiä.
Ongelmia tulee vastaan myös koetettaessa arvioida millä etäisyydellä tähdestään planeetan tulisi olla, jotta se voisi olla maankaltainen. Koska tähden säteily heikkenee suhteessa etäisyyden neliöön, kaukaisempien planeettojen pinnalla on viileämpää. Vain tietyt etäisyydet kosmisista fuusioreaktion voimalla toimivista lämpöpattereista mahdollistavat nestemäisen veden ja siten elämän esiintymisen. Nämä rajat osataan arvioida varsin tarkkaan, ja rajoiksi asetetaan tyypillisesti etäisyys tähdestä, jonka sisäpuolella kasvihuoneilmiö tekee planeettojen pinnoista kuumia pätsejä kuten Venuksen pinnalla ja ulkoraja, jolla säteily riittää juuri ja juuri estämään edes joitakin planeetan osia jäätymästä. Kaikki riippuu kuitenkin planeetan ja sen kaasukehän koostumuksesta sekä kaasukehän paksuudesta, joista ei saada toistaiseksi mitään tietoa valtaosalle planeetoista edes parhailla käsillä olevilla instrumenteilla.
Edelläolevan pintaraapaisun lisäksi tilanteessa on niin paljon tuntemattomia muuttujia, subjektiivisia oletuksia ja vain karkeasti mallinnettuja arvioita, että jokainen saatu lukema maankaltaisten planeettojen yleisyydestä on vain valistunut arvaus, jonka paikkansapitävyydestä voimme käydä loputtomia akateemisia keskusteluita. Ne ovat kuitenkin parhaita olemassaolevia arvioita ja antavat meille edes jonkinlaisen tavan arvioida paikkaamme maailmankaikkeudessa.
Brysonin tutkimusryhmän saamat tulokset ovat mielenkiintoisia. Heidän konservatiivisten arviodensa mukaan, maankaltaisia planeettoja esiintyy galaksissamme yhtä auringonkaltaisia tähteä kohti keskimäärin 0.37 tai 0.60 riippuen valituista oletuksista. Yksi maankaltainen planeetta kahta auringonkaltaista tähteä kohti on siis perusteltu väite perustuen laajaan Kepler-avaruusteleskoopin havaintojen uudelleenanalyysiin. Tulos ei ole kuitenkaan vailla ongelmia. Numerot saavat merkityksensä ja kontekstinsa vasta, kun huomioimme niiden epävarmuuden. Sitä epävarmuutta taas kuvaa parhaiten arvioiden todennäköisyysjakauma (Kuva 2.).
Vaikka on perusteltua sanoa, että tulosten mukaan jokaista auringonkaltaista tähteä kiertää keskimäärin noin puoli maankaltaista planettaa, Kuvan 2. tulkinta on tulokselle ilmeisen brutaali. Arvion epävarmuudet ovat niin suuria, että mikä tahansa lukumäärä likimain nollasta aina 3-4 planeettaan tähteä kohti on mahdollinen, vaikkei aivan yhtä todennäköinen. Siksi tutkimus ei tarjoa kovinkaan paljon tietoa todellisesta maankaltaisten planeettojen lukumäärästä — niitä voi olla galaksissamme jotakin muutaman miljoonan ja muutaman miljardin välillä. Oikeastaan, likimain saman luottamusvälin saamme jo siitä, että tiedämme planeettoja olevan nollaa suuremman määrän mutta yksittäisen tähden kiertoradalle ei saada niiden keskinäisten vetovoimien aiheuttamien häiriöiden vuoksi pakattua enempää kuin 3-5 planeettaa, joiden olosuhteet voisivat olla maankaltaisia. Syynä tähän valtavaan epävarmuuteen on tietenkin kriteerit täyttävien planeettojen erittäin pieni määrä niiden ollessa aivan havaintotarkkuuden rajoilla, juuri ja juuri havaittavissa ja vain kouralliselle Kepler-avaruusteleskoopin tarkkailemista kymmenistätuhansista tähdistä.
Maankaltaisten planeettojen lukumäärää on ilmeisen vaikeaa arvioida. On kuitenkin hyödyllistä koettaa, jotta osaisimme arvioida mahdollisuuksia havaita niitä tarkemmin tulevaisuuden tehokkaammilla instrumenteilla. Saatuja tuloksia ei ole kuitenkaan syytä paisutella merkitykseltään, eikä lukuarvoihin tule luottaa sokeasti. Valitettava tilanne on edelleenkin se, että tunnemme vain yhden maankaltaisen planeetan, kourallisen joiltakin ominaisuuksiltaan maankaltaisia kiviplaneettoja, ja lukemattomia maailmoja, jotka eivät muistuta Maata juuri miltään ominaisuuksiltaan. Maapallojen yleisyydestä galaksissamme voi näiden tietojen pohjalta siksi esittää korkeintaan vain äärimmäisen karkeita arvioita.
Vastaa
Punaisen horisontin loisteessa
Miljoonien vuosien ajan, meren kuluttava voima on murentanut punertavassa, ihmissilmälle aamuhämärältä näyttävässä valossa paistattelevia rantakallioita. Miljardit aallot ovat murtuneet sen edustan matalikkoon ja kastelleet kalliot suolaisella vedellä. Ranta on syrjäinen, karun mantereen reunalla, paikassa, jossa tuuli puhaltaa ikuisesti mereltä tuoden mukanaan lämmintä, kosteaa ilmaa. Se kulkeutuu mantereen päälle, nousee korkeammalle ja jäähtyy. Kosteus putoaa taivaalta pisaroina, kaiken kastelevana sateena.
Jatkuva tuuli tuo mukanaan ikuisen sateen, kuin pysyvän monsuunin, joka kuluttaa mannerta antaen alkunsa monimuotoiselle jokien, purojen ja järvien verkostolle. Kuten rantakalliokin, joet ja järvet ovat ikuisen muutoksen kourissa. Eroosio kuluttaa rantatörmiä ja peruskalliota ja jokien uomat siirtyvät hiljalleen uusiin paikkoihin. Ilmasto on viileä mutta kostea. Olosuhteet ovat kuin Etelä-Amerikan Tulimaassa tai Pohjois-Euroopan Norjassa. Ilma ei ole varsinaisesti kylmä mutta kosteus ja tuuli saavat ihon kananlihalle ja pakottavat hakeutumaan suojaan. Tunnelmassa on kuitenkin jotakin erilaista, jotakin silmiinpistävän omituista. Punertava, vain vaivoin kelmeällä säteilyllään valaiseva aurinko horisontissa ei laske koskaan. Se pysyttelee liki paikallaan planeetan näyttäessä jatkuvasti saman puolensa tähdelleen.
Punertava valo on ainoaa, mitä niukan lämpösäteilyn lisäksi on tarjolla. Kellertävää valoa saapuu planeetan pinnalle vain vähän, sinistä valoa ei näy missään. Taivas on punainen ja synkkä. Kalliot näkyvät meressä vain tummanpunaisen eri sävyissä. Myös karun maailman kasvillisuus on sopeutunut punaiseen säteilyyn. Sen biokemiallinen koneisto on erikoistunut tuottamaan energiaa punaisesta valosta, jonka kasvien klorofyllimolekyylit imevät lähes täysin. Kasvit eivät heijasta valoa juuri lainkaan, vaan näyttävät väriltään lähes mustilta.
Olemme vieraassa maailmassa, elinkelpoisen planeetan pinnalla mutta täysin Maapallolta poikkeavassa ympäristössä. Punaisten kääpiöiden elävillä planeetoilla ruoho ei ole vihreämpää kuin aidan tällä puolella, vaan näyttäytyy synkkänä hiilenmustien korsien piikkimattona. Elävien planeettojen ei tarvitse olla samanlaisia kuin Maa.
Suurin osa punaisten kääpiötähtien elämän vyöhykkeen planeetoista on lukkiutunut näyttämään tähdelleen aina saman puoliskonsa. Elämän vyöhykkeet, joilla tähden säteily riittää pitämään planeettojen pinnoilla olevan veden nestemäisenä muttei saa sitä höyrystymään pois, sijaitsevat hyvin lähellä punaisten kääpiötähtien pintoja. Niiden vuoden pituudet ovat kymmenestä muutamaan kymmeneen Maan päivää, ja suhteutettuna Aurinkokunnan järjestelmään, planeetat kiertäisivät silloin Aurinkoa Merkuriuksen radan sisäpuolella. Himmeämpien tähtien kiertoradoilla ei kuitenkaan ole liian kuumaa edes aivan tähtien lähellä.
Punaisten kääpiöiden planeettakunnat ovat tavallisesti hyvin tiukkaan pakattuja. Toisin kuin oman aurinkokuntamme verrattaen kaukana toisistaan sijaitsevat planeetat, punaisia kääpiöitä kiertävät kiviplaneetat ovat hyvin lähellä toisiaan. Niitä saattaa olla useita yksittäisen tähden elämän vyöhykkeellä. Ja niistä valtaosa on silmäplaneettoja.
Lähellä loimottavan tähden vuorovesivoimien aikaansaama planeetan kiertoajan ja pyörimisen lukkiutuminen toisiinsa tekee planeetan toisesta puolesta valoisan, toisesta pimeän. Silloin elinkelpoiset planeetat, joiden pinnalla on nestemäistä vettä, poikkeavat Maasta erikoisilla tavoilla. Valoisalla puolella säteily korventaa päiväntasaajaa armotta, saaden meren kuumenemaan ja höyrystymään massiivisiksi pilviksi. Pimeällä puolella kaikki on jäässä. Merivirrat kyllä pyrkivät tasaamaan lämpötilaeroja ja kuumat, kosteat merituulet puhaltavat yön ja päivän rajalle tasaten lämpöä puoliskojen välillä mutta tähden säteily ei jakaudu tasaisesti, vaan pitää yllä valtavia lämpötilaeroja. Yläilmakehässä kylmä ilma kulkeutuu toiseen suuntaan, pimeältä puolelta kohti punaisen auringon loistetta. Syntyy rengasmainen lauhkean ilmastovyöhykkeen alue, jolla esiintyy elämälle otolliset olosuhteet. Siksi planeettaa kutsutaan leikkisästi silmäplaneetaksi — sen ulkonäkö muistuttaa avaruudessa leijuvaa silmämunaa (Kuva 1.).
Haasteensa tarjoaa myös punaisen tähden ultraviolettisäteily. Se korventaa valoisaa puoliskoa, hajottaen kaikki pinnalle eksyvät orgaaniset molekyylit. Elämä voi kuitenkin kukoistaa hyvässä suojassa meren pinnan alla, vaikka jatkuvat valoisan puolen hurrikaanit paksuine pilvineen tarjoavatkin runsaasti suojaa säteilyltä. Rengasmaisella lauhkealla vyöhykkeellä säteilyn intensiteetti on riittävän matala mustille kasveille ja muulle maaekosysteemille.
Elämä punaista kääpiötähteä kiertävän kiviplaneetan pinnalla olisi hyvin erilaista kuin mihin olemme Maassa tottuneet. Ihmissilmälle jopa elinkelpoiset silmäplaneetat näyttäytyisivät aavemaisina, kuolleina kauhuelokuvien kuvailemina maailmoina. Erilaista olisi niin kasvillisuuden väri, ilmastovyöhykkeiden jakauma kuin säteilyolosuhteetkin. Vihreää väriä ei olisi missään, vaan ympäristö olisi väriltään punertavan harmaa tai musta. Valoa olisi aivan liian vähän, jotta ihmissilmä voisi nähdä ympärilleen tarkasti. Taivas ei olisi sininen, vaan kelmeän punainen. Punainen aurinko näkyisi taivaalla aina samassa kohdassa, loistaen kaksi kertaa Aurinkoa suurempana kiekkona. Toisella puolella horisontti olisi musta. Tiheästi pakatun planeettakunnan muut planeetat näkyisivät kuitenkin taivaalla kirkkaina ja niiden ominaisuuksia olisi helppoa havaita jo pienelläkin kiikarilla.
Mutta silmäplaneettojen meret olisivat jatkuvasti haihtumassa, ja monsuunituulet kuljettaisivat punaisen auringon paisteessa höyrystyneen veden planeetan pimeälle puolelle. Se kertyisi lumeksi ja tiivistyisi pimeän puoliskon paksuksi jääpeitteeksi. On mahdollista, että kaikki valoisan puolen vesi kulkeutuisi pimeän puoliskon jäätiköksi, jonka reunoilta vesi virtaisi muututtuaan nesteeksi jäätikön alimpien kerrosten kovassa paineessa. Syntyisi jokien järjestelmä, jonka jokainen uoma suuntaisi kohti aurinkoa, kohti päivän puolta, tuoden lauhkealle vyöhykkeelle sen biosfäärin tarviteman veden. Vesi virtaisi kohti ikuista päivänvaloa, jossa kutistuvat joet haihtuisivat lopulta olemattomiin. Ehkäpä elinkelpoisten silmäplaneettojen kehityksen ainoa mahdollinen päätepiste on kapea elinkelpoinen rengas, jonka toisella puolella on ikuisessa valossa kylpevä, kuuma autiomaa, ja toisella ainaisessa pimeydessä lepäävä valtaisa jäätikkö.
Toisessa ääripäässä silmäplaneetat eivät kuivu, vaan kokevat toisenlaisen kohtalon. Jos planeetan kivistä pintaa peittävä meri on kymmeniä kilometrejä paksu ja planeetta on lämpötilaltaan suhteellisen viileä, säteily ei koskaan pääse kuivattamaan planeetan valoisaa puolta kokonaan. Pimeälle puolelle kyllä muodostuu paksu jääkuori mutta lämpimät merivirrat pitävät sen suhteellisen ohuena ja tasaavat lämpöä jääkuoren alla. Meri on kuitenkin näkyvillä vain valoisalla puolella, jossa tähden säteily estää avomerta jäätymästä umpeen. Pienikin heilahdus tasapainotilassa tosin saattaa muuttaa tilanteen. Jos valoisakin puoli pääsee sattumalta jäätymään, jää toimii heijastimena ja estää planeettaa lämpenemästä uudellen riittävästi, jotta infrapunasäteilyä itseensä mainiosti imevä meri tulisi jälleen esiin. Paksun meren peittämien silmäplaneettojen kohtalona saattaa silloin olla muuttuminen lumipalloiksi, joiden jääkuorien alla elämä ehkä pääsee kehittymään mutta joiden elinolosuhteet pysyvät jään alla tiukasti havaitsijoilta piilossa.
Lähin galaktinen naapuriplaneettamme, Proxima Kentauria kiertävä planeetta Proxima b, on lämpötilaltaan sopiva nestemäisen veden esiintymiselle. Vaikka se kylpee alituiseen purkautuvan tähtensä voimakkaassa säteilyssä, joka on saattanut jopa puhaltaa planeetan kaasukehän tiehensä, Proxima b on todennäköisesti meitä lähinnä sijaitseva silmäplaneetta. Se voi olla asettunut tasapainotilanteeseen, jossa valoisan puolen autiomaan ja pimeän puolen jäätikön välissä, aamuhämärän vyöhykkeellä, olosuhteet mahdollistavat elämän esiintymisen. Tai ehkäpä planeetta on kuollut, tähtensä hiukkastuulen ja purkauksien korventama autio, kaasukehätön aavikkoplaneetta kauttaaltaan.
Emme tiedä. Mutta saamme vielä selville, kun Proxima Kentaurin järjestelmän kappaleiden suora havainnointi tulee tulevaisuudessa mahdolliseksi.
Yksi kommentti “Punaisen horisontin loisteessa”
-
Jos punaisen tähtien planettalla on älykäs elämä, niin heidän on järkevä ottaa lippu tähtienvälisen lentoon. Ihan tavallinen lippu toimi siellä punaisen kääpiöiden planeetalla tuulimittauslaitena. Tuulen suunta myös saa selville. Kannattaa ottaa se mukaan tähtienvällisen matkaan kun se painaa vaan muutama grammaa. Lippu voi pelastaa austronauttin elämän siellä, eikö niin?
Vastaa
Superelinkelpoiset planeetat
Tunnemme vain yhden elinkelpoisen planeetan koko näkyvän maailmankaikkeuden alueella. Vaikka jo omassa galaksissamme on joidenkin arvioiden mukaan kuusi miljardia planeettaa, joilla elämää voisi esiintyä, emme ole havainneet ainuttakaan eksoplaneettaa, jonka pinnalta edes voisimme löytää merkkejä elävistä organismeista. Eksoplaneettoja on kuitenkin havaittu jo yli 4000 ja niiden elinkelpoisuutta voi koettaa tarkastella perustuen siihen, mitä tiedämme niiden kiertoradasta, koosta, massasta, koostumuksesta, pintalämpötilasta, säteilyolosuhteista, pyörimisestä ja muista fysikaalisista ja geokemiallisista olosuhteista. Ongelmana tietenkin on, että tiedämme vain niin kovin vähän.
Sen määrittäminen, onko jokin planeetta elinkelpoinen vai ei — puhumattakaan elinkelpoisuuksien kvantitatiivisesta vertailusta — on erittäin vaikeaa. Tarkoitusta varten on kuitenkin kehitetty menetelmiä, kuten erilaiset maankaltaisuusindeksit, jotka kuvaavat planeettojen samankaltaisuutta Maapallon kanssa. Sellaisten menetelmien ongelmat ovat myös välittömästi ilmeisiä. Verratessamme eksoplaneettojen ominaisuuksia Maan ominaisuuksiin, olemme tarkastelemassa niiden maankaltaisuutta, emme niiden elinkelpoisuutta. Siten sivuutame kaikki planeetat, jotka eivät muistuta Maata mutta jotka ovat silti elinkelpoisia. Etsiessämme vain maankaltaisia planeettoja, saatamme jättää runsaasti jopa Maata parempia elämän kehtoja huomiotta. On kuitenkin äärimmäisen vaikeaa etsiä jotakin, jota emme osaa edes määritellä kunnolla.
Tässä mielessä astrobiologit ja eksoplaneettojen metsästäjät ovat vaikean paikan edessä. Jos tarkoituksena on löytää eläviä tai vähintäänkin elinkelpoisia eksoplaneettoja, mistä tunnistamme sellaisen, jos emme voi saada juurikaan tietoa edes pinnan ominaisuuksista tai kaasukehän koostumuksesta puhumattakaan siitä, että havaitsisimme elämää?
Dirk Schulze-Makuch kollegoineen kuitenkin tarttui ennakkoluulottomasti kysymykseen elinkelpoisista planeetoista. He kysyivät rohkeasti voisiko galaksissamme olla planeettoja, jotka olisivat Maata parempia ylläpitämään elämää. Jos sellaisia on, maanulkopuolisen elämän etsinnän kohteiksi kannattaisi valita superelinkelpoisia planeettoja maankaltaisten planeettojen sijaan. Mutta miten määrittelemme planeetan elinkelpoisuuden ja saamme sille numeroarvoja, joita voidaan verrata eri planeettojen välillä?
Schulze-Makuch ryhmineen otti lähtökohdakseen määritellä elämälle soveltuvien fysikaalisten ja geokemiallisten olosuhteiden kirjon tarkkailemalla olosuhteita, joiden rajoissa elämää tiedetään esiintyvän Maapallolla. Maan elämä kykenee esimerkiksi aktiivisuuteen laajalla lämpötilaskaalalla, alkaen noin -18°C lämpötilasta aina 130°C asti. Jotkin mikrobit ja vaikkapa hiivasolut voivat kasvaa ja jakautua -18°C lämpötiloissa ja bakteerien tiedetään kasvavan jopa 130°C kuumuudessa. Monisoluisille eläimille maksimilämpötilaksi on havaittu 105°C. Lämpötilan suhteen äärimmäisiä elinympäristöjä edustavat suolaisen veden taskut jään sisällä, kuumat lähteet ja merenpohjan mustat savuttajat. Aivan samoin, elävät solut menestyvät laajalla skaalalla pH-asteikkoa erittäin happamasta -0.5 lukemasta aina emäksiseen arvoon 13 asti. Monisoluisille organismeille skaala on vaatimatttomammin välillä 0-10 mutta on muistettava, että arvo 0 vastaa elämistä vahvassa happokylvyssä. Elinympäristöjä ovat esimerkiksi merenpohjan mustat savuttajat, kuumat happamat lähteet ja emäksiset järvet.
Samalla periaatteella voidaan määritää elämän esiintymisen fysikaalisia ja geokemiallisia rajoja ottaen huomioon muitakin tekijöitä, kuten paine, happipitoisuus tai sen puute, säteilyolosuhteet ja vaikkapa muut kemiallisesti haastavat olosuhteet. Tämän jälkeen voidaan arvioida planeettojen olosuhteita kaiken olemassaolevan tiedon valossa ja määrittää niiden sopivuutta eläviksi planeetoiksi. Prosessissa tarvitaan tietenkin runsaasti yksinkertaistuksia, oletuksia ja karkeita arvioita mutta sekin on parempi kuin ei mitään.
Ongelmista ilmeisin on, että osaamme määritellä elämälle suotuisia elinympäristöjä vain suhteessa niihin olosuhteisiin, joissa tiedämme Maan elämän selviävän. Kaikki saadut tulokset ovat siten vääristyneet Maapallon elämän vaatimusten mukaisiksi. Vaikka pyrkimystä objektiivisuuteen ja pois maakeskeisestä ajattelusta olisikin, on täysin mahdotonta tietää voisiko jokin elinympäristö olla elinkelpoinen, jos sellaista ei esiinny Maapallolla tai jos Maan elämä ei kykene elämään siinä.
Seuraavana ilmeisenä ongelmana on määrittää mitä tarkoitetaan superelinkelpoisella planeetalla. Ilmeisiä tapoja on laskea sen biomassan tai lajikirjon määrää, jota planeetta kykenee ylläpitämään mutta asiaan vaikuttavat myös evolutiiviset innovaatiot, evoluutiohistoria ja siten puhdas sattuma. Voidaan esimerkiksi kuvitella olosuhteiltaan paljon Maapalloa elinkelpoisempi ja elämälle (joillakin kriteereillä) suotuisampi planeetta, jonka pinnalla esiintyy vain bakteereja, koska mitokondrioksi kutsuttua tehokkaan aineenvaihdunnan mahdollistavaa bakteerien symbioosia ei ole muodostunut ja siten monisoluisuus ja pitkät ravintoketjut eivät ole tulleet mahdollisiksi. Se, täyttääkö planeetta todellisuudessa oman elinkelpoisuuspotentiaalinsa on kuitenkin kaiketi oma kysymyksensä.
Superelinkelpoisuus käytännössä
Superelinkelpoisuuden käsitteen esittelivät Rene Heller ja John Armstrong. Tähtitieteellisten havaintojen ja geofysikaalisten ja -kemiallisten olosuhteiden kontekstissa sen voidaan sanoa tarkoittavan planeettoja, jotka täyttävät seuraavat kriteerit:
- Kiertorata oranssin tähden ympärillä: Oranssit K-spektriluokan kääpiötähdet elävät Aurinkoa kauemmin ja tarjoavat siten Aurinkoa stabiilimman ja pitkäikäisemmän elinkelpoisen vyöhykkeen. Vaikka punaiset kääpiötähdet ovat vielä sitäkin pitkäikäisempiä, niiden elinkelpoiset vyöhykkeet ovat niin lähellä tähtien pintoja, että vuorovesivoimat saavat planeetat näyttämään aina saman puoliskonsa tähdelleen. Se taas aiheuttaa valtavia lämpötilaeroja ja heikentää planeettojen elinkelpoisuutta.
- 5-8 miljardin vuoden ikä: Maapallolla monisoluisen elämän kehittymisessä kesti 4 miljardia vuotta. On siten luultavaa, että aivan nuorella planeetalla elämä ei ole vielä saavuttanut täyttä kukoistustaan biomassan tai -diversiteetin maksimin muodossa. Liian vanhojen planeettojen ytimet taas ovat saattaneet jäähtyä liikaa, jolloin geologinen aktiviteetti hidastuu ja heikentää elinkelpoisuutta. Planeetan todennäköisyys steriloitua valtavan asteroidin törmäyksestä kasvaa myös, kun tarkasteltava aikaväli kasvaa.
- Kooltaan 10%, massaltaan 50% Maata suurempi: Maata suuremmalla planeetalla on enemmän pinta-alaa ylläpitää biosfääriä. Liian suuri planeetta kuitenkin on heikentynyt elinkelpoisuudeltaan paksun kaasukehän ja sen tuottaman voimakkaan kasvihuoneilmiön vuoksi. Liian keveät planeetat taas jäähtyvät nopeasti ja menettävät kaasukehäänsä avaruuteen, mikä heikentää elinkelpoisuutta.
- Maata 5°C korkeampi pintalämpötila: Maapallolla eniten elämää esiintyy trooppisissa sademetsissä. Hiukan Maata lämpimämmällä planeetalla vastaavia olosuhteita voisi esiintyä paljon laajemmalla alueella, vaikka itse päiväntasaaja saattaisikin olla liian kuuma ja siksi aavikoitunut. Vieläkin kuumempien planeettojen pinnalla vain heikosti elämälle soveltuvat aavikot olisivat liian laajoja. Maata kylmemmillä planeetoilla laajat jäätiköt heikentävät elinkelpoisuutta.
- Kostea, happipitoinen kaasukehä: Trooppiset olosuhteet vaativat paljon kosteutta ja reaktiivista happea vaaditaan tehokkaaseen aineenvaihduntaan, joka mahdollistaa pitkät ravintoketjut ja siten korkean biodiversiteetin tason.
- Vaihteleva pinta: Biodiversiteetti on maksimissaan, kun pintaolosuhteet ovat mahdollisimman vaihtelevat. Tämä tarkoittaa paljon matalia meriä ja saaristoja. Tämä perustuu siihen havaintoon Maapallolta, että historiassa biodiversiteetti on ollut rikkainta, kun rantaviivaa on ollut eniten. Mantereiden puolestaan muodostettua Pangaeaksi kutsutun supermantereen, biodiversiteettiä oli vähemmän.
- Suuri kuu: Verrattaen massiivisen kuun olemassaolo stabiloi planeetan pyörimisen ja siten olosuhteet, jotta biodiversiteetti ja -massa ehtii maksimoitua. Kuun aikaansaamat vuorovedet myös lisäävät elinympäristöjen monimuotoisuutta.
- Laattatektoniikka ja geologinen aktiivisuus: Geologinen aktiviteetti aikaansaa mannerten uudistumista ja siten ravinteiden kierrätystä elävien organismien käytettäväksi. Sula magma maan vaipassa ja ytimessä myös tuottaa Maan magneettikentän, joka suojaa pinnalla eläviä organismeja avaruuden suurienergisiltä hiukkasilta ja Auringon hiukkastuulelta.
Lista ei ole kattava mutta se antaa kuvaa superelinkelpoisen planeetan olosuhteista. Vaikka jokaista kohtaa voikin kritisoida varsin hyvin perustein, luettelo tarjoaa ainakin jonkinlaisen lähtökohdan sille, minkälaisia planeettoja kannattaa koettaa havaita, jotta maksimoitaisiin mahdollisuus löytää eläviä planeettoja. Luettelon voimakkaan maakeskeisyyden lisäksi ongelmaksi muodostuu se, mitä eksoplaneettojen ominaisuuksia voidaan havaita. Suureksi osaksi tunnemme vain planeetojen radan ominaisuudet ja niiden koon tai massan — vain harvoin tunnemme molemmat ja voimme arvioida keskitiheyttä ja siten koostumusta. Tunnemme lisäksi tähtien ominaisuudet riittävän tarkasti, jotta voimme laskea planeettojen radallaan kohtaamat säteilyolosuhteet ja arvioida niiden pintalämpötiloja. Koostamalla nämä tiedot yhteen, saadaan arvioita sille, kuinka elinkelpoisia tai jopa superelinkelpoisia planeettoja tunnettujen eksoplaneettojen joukossa esiintyy.
Tarkastelemalla tunnettujen eksoplaneettojen tunnettuja ominaisuuksia ja vertaamalla niitä elinkelpoisuutta maksimoiviin ominaisuuksiin, Schulze-Makuch kollegoineen onnistui tuottamaan luettelon parhaimmista kohteista. Kaikki luetteloon kelpuutetut 24 planeettaa ovat Kepler-avaruusteleskoopin havaitsemia planeettakandidaatteja. Ne ovat lisäksi hyvin kaukaisissa, useiden satojen tai tuhansien valovuosien päässä Aurinkokunnasta sijaitsevissa planeettakunnissa. Tutkijoiden päällimmäisenä tavoitteena ei kuitenkaan ollut luoda luetteloa elinkelpoisimmista planeetoista, vaan vain kiinnittää huomiota siihen, että superelinkelpoisia planeettoja voi hyvinkin olla olemassa ja niitä saattaa olla jopa jo löydettyjen muutaman tuhannen eksoplaneetan joukossa.
Koska tarkasteltavana on vain neljä parametria, joista saadaan havaitsemalla tietoa, elinkelpoisuutta voidaan arvioida vain suhteessa niihin. Ne ovat listattujen ominaisuuksien kohdat 1-4, joita määrittävät karkeasti tähden massa ja ikä sekä planeetan kiertorata ja koko. Luettelossa on kaksi kohdetta, jotka ovat superelinkelpoisia kolmen ominaisuuden suhteen, mikään tunnetuista planeetoista ei yllä superelinkelpoiseksi kaikkien neljän suhteen. Kohde KOI 5554.01 on muutoin optimaalinen — suunnilleen Maan kokoinen, hiukan Maata vanhempi ja aavistuksen lämpimämpi — mutta se kiertää auringonkaltaista tähteä, joten sen olosuhteet tuskin pysyvät stabiileina ja elämälle otollisina Maata kauempaa. Toinen kandidaatti, KOI 5715.01, kiertää Aurinkoa pitkäikäisempä oranssia kääpiötähteä, on miljardin vuoden verran Maata vanhempi ja pinnaltaan Maata lämpimämpi, jos planeetan kaasukehä tarjoaa hiukankaan lämmitystä kasvihuoneilmiön muodossa. Ongelmana on, että KOI 5715.01 on noin kaksi kertaa Maata suurempi, ja sen elinkelpoisuus saattaa sen vuoksi olla heikentynyt — kaksi kertaa Maan kokoinen planeetta on luultavasti 6-10 maanmassainen kappale ja siten aivan liian paksun kaasukehän peitossa ja liian kuuma ollakseen elinkelpoinen.
Emme tiedä havaittujen planeettojen ominaisuuksista tarpeeksi voidaksemme arvioida niiden elinkelpoisuutta mutta se ei ole oikeastaan edes tärkeää tässä vaiheessa. Tärkeämpää on kyetä arvioimaan minkälaisia planeettoja kannattaa tulevaisuudessa tarkkailla tiiviimmin elämän merkkien etsimiseksi. Siinä mielessä superelinkelpoiset planeetat ovat jopa parempia kohteita kuin maankaltaiset kohteet (Kuva 1.). Kepler-avaruusteleskoopin havaitsemat maailmat eivät ole riittävän lähellä, jotta niistä saataisiin merkittävästi tarkempaa tietoa edes suuremmilla ja paremmilla lähitulevaisuudessa käyttöön otettavilla teleskoopeilla. Mutta superelinkelpoisuuden käsitettä ja mittareita voidaan soveltaa aivan mainiosti myös lähitähtien planeettakuntiin.
Lähin tähtemme, alpha Kentauri B, tarjoaa oranssina kääpiötähtenä potentiaalisen superelinkelpoisten maailmojen järjestelmän. Sen kiertoradalta ei tunneta planeettoja mutta Maata vain hiukan suurempien kappaleiden havaitseminen ei ole vielä ollut edes mahdollista. Ehkäpä superelinkelpoisia planettoja on kaikkialla, kunhan vain opimme etsimään niitä. Sitä tähtitieteilijät ainakin ovat kiivaasti opettelemassa.
Yksi kommentti “Superelinkelpoiset planeetat”
-
Elämää eksoplaneetoilta mahdollisesti löydettävissä kunhan ihmisten tietotaito
siihen yltää. Todennäköisyys kuitenkin täysin Maan kaltaiseen happi, ilmanpaine
jne. tuntemaamme elämään lienee löydettävistä alle 50% / raja-arvolla kun niitä
elämään suotuisia seossuhteita vaihteluineen löytynee…
Happi Maassakin muodostunee vasta elollisten kasvien kautta yhteyttämällä
Auringosta tulevaa säteilyä ja sen seossuhteita muihin kaasuihin monen tekijän
yhteisvaikutuksin…
Sekin mahdollista, että mikäli jossain olisi ihmisiä kehittyneempää elämää niin
ne eivät Maan kaltaisessa ympäristössä hyvin kykenisi olemaan ja päin vastoin.
Lähiaikoina elämää tehokkaammin kyetään etsimään Aurinkokunnasta,
jos sitä olisi tai ollut Maan lisäksi ja eksoplaneettojen elämän etsintäkin sitä
kautta vähitellen edistyy.
Vuoden 2021 alkupuolelta Mars saanee mm. Nasan lähettämän uuden
laskeutujan, joka entistä tehokkaammin elämän mahdollisuuksiakin sieltä
kykenisin havaitsemaan. Myöhemmin Venuksen kaasuseoksiakin
paremmin tutkitaan uusilla hankkeilla ja muualtakin, elämän mahdollisuuksista…
Vastaa
Kuumien neptunusten hautausmaalla
Uloin Aurinkokunnan kahdeksasta virallisesta planeetasta, Neptunus, on toinen järjestelmämme ”jääjättiläisistä”. Nimityksellä viitataan siihen tosiasiaan, että Uranus ja Neptunus ovat jättiläismäisiä kaasuplaneettoja, massaltaan noin 15 ja 17 kertaa Maan kokoisia. Ne ovat radoillaan Aurinkokunnan viileissä ulko-osissa, jossa on niin kylmä, että vesi esiintyy vain kiinteänä jäänä. Auringon lämmittävä säteily on vain hyvin vähäistä Järjestelmämme laitamilla, joten Neptunus ja Uranus vaeltavat rauhallisesti radoillaan äärimmäisessä kylmyydessä ja ikuisessa hämärässä. Alue on niin kaukainen, että planeettojen pintaan osuu vähemmän Auringon säteilyä kuin ne säteilevät itse muodostumisestaan jäljelle jäänyttä lämpöä.
Vesi on maailmankaikkeuden yleisin yhdiste ja on siksi pääroolissa muodostamassa ulkoplaneettojen siemeniä, protoplaneettoja, joista Uranus ja Neptunuskin ovat syntyneet. Vaikka niitä ympäröi paksu, pääasiassa vedyn ja heliumin muodostama kaasuvaippa, planeetat koostuvat lähinnä vedestä, ammoniakista ja metaanista. Aivan ytimessä on raudasta, nikkelistä ja silikaateista koostuva ydin. Vesi ei ole planeettojen sisäosien kuumuudessa ja kovassa paineessa kiinteänä jäänä, joten ”jääjättiläinen” on terminä jokseenkin harhaanjohtava. Se kuitenkin kuvaa tilanneta planeettojen pinnalla — lämpötila Neptunuksen kaasukehän yläosissa on noin 200 astetta pakkasen puolella.
Kylmistä neptunuksenkaltaisista planeetoista ei ole olemassa runsaasti havaintoja toisten tähtien kiertoradoilla. Ne ovat liian himmeitä, jotta havainnot onnistuisivat suoran kuvaamisen keinoin ja niiden kiertoradat ovat aivan liian pitkiä, jotta havaintoja voitaisiin tehdä epäsuorista menetelmistä astrometrialla, Doppler-spektroskopialla tai ylikulkumenetelmällä. Niitä on kuitenkin havaittu mikrolinssimenetelmällä ja galaktisessa planeettapopulaatiossa neptunuksenkaltaiset jääjättiläiset ovat todennäköisesti planeettakuntien kylmien ulko-osien yleisimpiä planeettoja. Niiden erikoiset, lämpimämmät serkut ovat nekin erittäin yleisiä Auringon lähinaapuruston tähtien järjestelmissä.
Jotkut neptunukset ovat lämpimiä. Vaikka ne eivät mitä luultavimmin voikaan syntyä kovinkaan lähellä tähtiään, planeettakuntiensa viileämmissä osissa alkunsa saaneet kaasuplaneetat voivat muuttaa lämpimämpiin olosuhteisiin. Sellaisia tunnetaankin useita kiertämässä lähitähtiä — Kepler-avaruusteleskoopin havainnot sekä lukuisat radiaalinopeushavaintojen avulle tehdyt löydöt kertovat lämpimien neptunusten olevan erittäin yleisiä mutta kuumia neptunuksia on vain hyvin harvassa. Joskus niitäkin kuitenkin löytyy.
Kuumilla neptunuksilla tarkoitetaan planeettoja, jotka ovat massaltaan noin Neptunuksen kokoisia mutta jotka kiertävät tähteään aivan sen vieressä. Niiden ratajaksot ovat korkeintaan vain muutamia päiviä. Vaikka neptunukset ovat yleisiä kiertoradoilla, joiden ratajakso on suunnilleen kymmenestä päivästä sataan päivään, niiden puuttuminen aivan tähtien lähettyviltä vaikuttaa erikoiselta. Massiivisempia kuumia jupitereja ja pienempiä kuumia kiviplaneettoja on runsaasti mutta kuumat neptunukset ovat harvinaisia. Syynä on luultavasti se, että kuumat neptunukset kokevat muodonmuutoksen, menettävät kaasukehänsä ja muutuvat pienemmiksi kiviplaneetoiksi. Jennifer Burtin johtama tutkimusryhmä kuitenkin löysi sellaisen kiertämässä yhtä TESS-avaruusteleskoopin kohteista nimeltä TOI-824.
TESS-avaruusteleskoopin kiinnostavien kohteiden luettelon kohde numero 824 on aivan tavallinen, noin 64 parsekin päässä Auringosta sijaitseva oranssi kääpiötähti. Se himmeneen säännöllisesti Neptunusta jonkin verran pienemmän planeetan kulkiessa tähden editse aina 1.4 päivän välein. Ylikulkujen ominaisuudet on verrattaen helppoa määrittää TESS-avaruusteleskoopin tarkoista kirkkausmittauksista. Ne kertovat planeetan koosta ja sen kiertoradan ominaisuuksista mutteivät juuri muuta — siksi Burtin johtama ryhmä teki parhaansa havaitakseen himmeänä taivaalla näkyvää kohdettaan myös spektroskooppisesti, saadakseen selville sen massan. Tarkkuutta vaativat radiaalinopeusmittaukset onnistuivat ja tarjolla oli yllätys. TOI-824 b on massaltaan neptunuksenkokoinen planeetta keskellä kuumien Neptunusten autiomaata.
Havaintojen perusteella TOI-824 b on poikkeuksellinen kiertolainen. Se on kestänyt iäkkään tähtensä voimakkaassa säteilyssä miljardeja vuosia menettämättä kaasukehäänsä toisin kuin lukuisat kaltaisensa planeetat. Muut kuumat neptunukset menettävät tyypillisesti kaasukehänsä tähden voimakkaan säteilyn kiehuttaessa sen avaruuteen miljoonien ja miljardien vuosien kuluessa. Silloin jäljelle jää vain korventunut kivinen ydin, joka näyttäytyy kuumana kiviplaneettana. Siten kuumia neptunuksia ei ole löytynyt kuin kourallinen — huomattavasti vähemmän kuin pienempiä kuumia kiviplaneettoja, joiden havaitseminen on huomattavasti vaikeampaa. Miksi KOI-824 b on säilyttänyt kaasukehänsä niin lähellä tähteään?
TOI-824 b on halkaisijaltaan vain noin 75% Neptunuksesta, vaikka onkin massaltaan yhtä suuri. Se on siis kuin aavistuksen tiukemmin pakkautunut Neptunus, koostuen keskimäärin hiukan painavammista aineista. Sen kaasukehä on siten ohuempi kuin Neptunuksella ja ydin suurempi — ja koska planeetan pinnan vetovoima on Neptunusta suurempi, sen kaasukehä ei karkaa avaruuteen yhtä helposti kuin muilla kuumilla neptunuksilla. Voimakkaan säteilyn korventamana, TOI-824 b on luultavasti menettänyt osan kaasukehänsä vedystä ja heliumista avaruuteen, mikä on kutistanut planeettaa ja saanut sen keskitiheyden kasvamaan tyypillistä neptunusta suuremmaksi. Burtin kansainvälinen tutkijaryhmä löysi siis planeetan, joka on parhaillaan kiehumassa oman kiertoratansa hornankattilassa ja menettämässä kaasukehäänsä avaruuteen. TOI-824 b on muutoksen kourissa mutta muutos on niin hidasta, että planeetta on toistaiseksi luokiteltavissa kuumaksi neptunukseksi.
Tarkasteltaessa planeettaa lähemmin, sen 18.5 Maapallon massa ja 2.9 Maapallon säde antavat viitteitä TOI-824 b:n koostumuksesta (Kuva 2.). Vesi on yleinen planeettojen rakennusaine mutta TOI-824 b:n koostumus on yhteensopiva jopa 75-100% vedestä muodostuneen planeetan kanssa (3,4). Planeetat kuitenkin muodostuvat raudasta, nikkelistä ja silikaateista koostuvan ytimen ympärille, joten TOI-824 b:n massa ja koko sallivat vedyn ja heliumin muodostavan kaasukehän olemassaolon. Todennäköisesti planeetan ydin muodostaa sen massasta neljänneksen, sitä ympäröivä vaippa runsaan kolmanneksen ja vesi noin kolmanneksen. Vesikerroksen päällä on luultavasti vedyn ja heliumin muodostama kaasukehä, joka on huomattavasti ohuempi kuin Neptunuksella, muodostaen vain noin 3% planeetan massasta. Tämä kaikki on kuitenkin ainoastaan valistunutta arvailua, tieteellistä spekulaatiota, joka perustuu vain kouralliseen planeettoja, joiden koostumusta on voitu selvittää edes alustavasti.
Vaikka TOI-824 b on erikoinen planeetaksi, se ei ole niin erikoinen kuin toinen tuore löytö, LTT 9779 b. Santiagon yliopiston James Jenkins ryhmineen löysi TESS-teleskoopin havainnoista aivan mahdottomalta vaikuttavan, ultrakuumaksi neptunukseksi luokitellun planeetan kiertämässä auringonkaltaista tähteä LTT 9779. Lähes 2000 celciusasteen lämpötilassa hikoileva planeetta kiertää tähtensä vain 0.79 Maan päivässä. Se on niin lähellä tähteä ja niin kuuma, että planeetan koostumusta on vaikeaa selittää — vaikuttaa mahdottomalta, että massaltaan 29 Maapallon kokoinen planeetta voisi ylläpitää paksua vedyn ja heliumin vaippaa tähden brutaalin säteilyn korventamana. Jotakin erikoista on täytynyt tapahtua, jotta kappale voi olla olemassa.
Neptunuksenkaltainen tiheys ei sinällään ole omituista planeetalle, jonka kaasukehä on laajennut valtavassa kuumuudessa mutta jolla on verrattaen massiivinen ydin. Omituista on, että kaasu ei ole kiehunut kokonaan pois, koska LTT 9779 b:n vetovoima ei riitä pitämään kuumenneista, keveistä kaasuista kuten vety ja helium kiinni. Jenkins ryhmineen joutuikin spekuloimaan villeillä ehdotuksilla löytämänsä planeetan olemassaolon selittämiseksi. On mahdollista, että planeetta on juuri saapunut tähden lähietäisyydelle, ehkäpä kaoottisen planeettakunnan gravitaatiovuorovaikutusten ansiosta. Mutta se vaikuttaa epätodennäköiseltä. Siksi tutkijat arvelevat, että LTT 9779 b oli huomattavasti massiivisempi aiemmin, ja vaellettuaan liian lähelle tähteään menetti suuren osan kaasustaan tähteensä kaasun karattua planeetan vetovoimakentästä (sen Rochen pinnan ulkopuolelle) ja siten tähden pinnalle. Silloin alkujaan massiivinen kaasujättiläinen on voinut muuttua keveämmäksi neptunukseksi.
Vaihtoehtoisesti planeetta on muuttanut tähtensä lähelle hitaasti, tähden jo hiukan viilennyttyä nuoruutensa kirkkaamman vaiheen jälkeen, ja sen kaasuvaippa ei ole vielä ehtinyt kiehua pois valtaisassa kuumuudessa. Oikeaa vastausta on kuitenkin mahdotonta antaa ja muitakin vaihtoehtoja on. On kuitenkin selvää, että kyseessä on äärimmäinen kappale, joita ei ole aiemmin havaittu ja joita ei oikeastaan pitänyt olla edes olemassa.
Kuumien neptunusten autiomaa ei ole täysin asumaton. Kaikki neptunuksenkokoiset planeetat eivät kuole kuumien neptunusten hautausmaalla ja synny uudelleen kuumina kiviplaneettoina. Osa niistä, ehkäpä onnellisten sattumusten kautta, pystyy pitämään kaasuplaneettojen ominaispiirteensä jopa tähtiensä lähellä, polttavassa, kaasukehää kiehuttavassa kuumuudessa.
TOI-824 b on yksi kummajaisista, Neptunusta hiukan massiivisempi mutta sitä kooltaan pienempi, kompaktimpi planeetta. Se kiehuu hiljalleen ja menettää vedystä ja heliumista koostuvan kaasukehänsä uloimpien osien atomeita avaruuteen hitaasti soljuvana planetaarisena atomien virtana. Lopulta se menettää koko kaasukehänsä ja sen kaasukehän alla oleva vesi alkaa kiehua. Vesi kiehuu ja sen molekyylit hajoavat hiljalleen intensiivisen säteilyn vaikutuksesta. Happi muodostaa molekyylejä, jotka painuvat raskaampina alemmas ja reagoivat kuumuudessa muiden atomien kanssa. Vety vapautuu ja karkaa planeetan vetovoimakentästä kunnes kaikki vesi on mennyttä. TOI-824 b viettää vanhuutensa vuodet kivisenä, karrelle palaneena planeettana, jonka nykyisestä massasta jää jäljelle ehkäpä vain noin 10 Maan massan kivinen planeetta. Mutta ennen lopullista muutostaan, voimme havaita sen ominaisuuksia ja tutkia miten se hiljalleen läpikäy yhtä suurimmista muuntautumisleikeistä, joita universumistamme löytyy.
Planeetan LTT 9779 b kohtalo voi olla vieläkin karumpi. Se voi lopulta sulautua tähteensä ja kadota kokonaan. Toisena vaihtoehtona on, että planeetta vain kiehuu hiljalleen avaruuteen, menettäen muiden kuumien neptunusten tapaan kaasuvaippansa vuosimiljoonien ja miljardien kuluessa. Emme tiedä planeetan kohtaloa. Se tuottaa astronomeille päänsärkyä mutta se myös pitää heidät hereillä öisin.
Yksi kommentti “Kuumien neptunusten hautausmaalla”
-
Eksoplaneetan läheisyys tähteen vaikuttanee kiertonopeuksiin akselinsa
ympäri / vrk hidastuen tai lukkiutuen ja tähden ympäri / vuosi kiertonopeuteen
(Heikki Oja, Tiede 11/2020 lehden artikkeli).
Eksoplaneettojen kiertoa akselinsa ympäri / vrk ei vielä havaittu,
jolla myös lienee vaikutus siihen, miten kaasu- ja vesiaineet eksoplaneetan
pinnalla tähden läheisyydessä muotoutuu (säilyen tai haihtuen pois)…Aurinkokunnan kahdeksaa planeettaa tarkastelin ja havaitsin
selkeät pariutumisjakautumat:
Merkurius – Venus, Maa – Mars, Jupiter – Saturnus ja Uranus – Neptunus.
Kaikilla planeetoilla likimääräiset samat etäisyyskertoimet, ns. T-B kaava.
Planeettaparit myös liki samoin akselikierroin / vrk
(suurempi jaettuna pienemmällä):
Maa – Mars 1,01 – Jupiter – Saturnus 1,02 ja Uranus – Neptunus 1,07
(likiarvoin laskettuna) ja niiden koot ja koostumukset myös liki samoin…
Lienee valikoitunutta seuloutumista samoihin pariutumisiin ollut…
Parilla Merkurius – Venus em. luku 4,15 – liki 4 kertaa kolmeen muuhun
pariin nähden – kenties Venuksen vastasuuntaisesta kierrosta akseliinsa
Auringon kiertoonsa nähden, josta hidastumiskerroin muodostunut…
Merkuriuksen ja Maan kiertojen vuosisuhde sijoittuu myös samalle
4,15 kertoimelle. Em. parien kiertojen vuosisuhteista myös
täsmääviä lukusarjoja (suurempi jaettuna pienemmällä):
Merkurius – Venus 2,56 – Maa – Mars 1,88 – Jupiter – Saturnus 2,48
ja Uranus – Neptunus 1,96.
Eksoplaneetoillakin mahdollisesti em. samankaltaisten pariutumista…
Vastaa
Kuusi miljardia maapalloa
Aurinko on vain yksi Linnunradan, oman kotigalaksimme tähdistä. Samoin Linnunrata on vain yksi näkyvän universumin galakseista. Tähtiä on siten taivaalla havaittavissa niin käsittämätön määrä, että inhimillisen käsityskyvyn rajat tulevat vastaan niiden kokonaismäärää laskettaessa.
Jätämme nyt huomiotta sen tosiasian, että maailmankaikkeus jatkuu siitä näkemämme pienen nurkkauksen ulkopuolella. Voimme havaita vain pienen osan universumiamme, koska valonnopeuden rajallisuuden ja universumin 13.8 miljardin vuoden iän vuoksi valoa on ehtinyt saapua havaintolaitteisiimme vain rajallisesta osasta maailmankaikkeutta. Se osa on muodoltaan pallo, joka kasvaa valonnopeudella, mutta emme kykene edes arvioimaan kuinka suuri maailmankaikkeus on tämän havaittavan osan ulkopuolella. Emme tiedä universumistamme tässä mielessä edes perusasioita.
Linnunradassa on arviolta 100 miljardia tähteä. Jos kaikki näkyvän universumin noin 1000 miljardia galaksia ovat suunnilleen saman kokoisia, voimme arvioida, että näkyvässä osassa universumia on noin 1023 tähteä. Maapallon hiekkarannoilla ei ole läheskään niin montaa hiekanmurusta. Parasta asiassa on se, että likimain jokaista tähteä kiertää planeetta tai planeettoja. Näkyvässä maailmankaikkeudessa on siis ainakin noin 100000000000000000000000 (23 nollaa) planeettaa. Olisi omituista, täysin hämmästyttävän outoa, jos niiden joukkoon ei mahtuisi maankaltaisia planeettoja — sellaisia maailmoja, joden pinnalla vesi virtaa ja joita ympäröi silikaattivaipan ja kaasukehän rajapinnassa biosfääriksi kutsuttu ohut kerros, jossa elävät organismit kukoistavat.
Aurinko on kaikenlaista luokittelua rakastavien tähtitieteilijöiden jargonissa ”pääsarjaan kuuluva G-spektriluokan tähti”. Sellaiset tähdet loistavat väriltään keltaisina. Himmeämpiä oransseja tähtiä kutsutaan K-spektriluokan tähdiksi ja hiukan kirkkaammat kohteet ovat spektriluokassa F. Näitä kolmea tähtien luokkaa pidetään yleisesti suunnilleen auringonkaltaisina ja Linnunradan tähdistä niitä onkin yhteensä noin 20% — yleisempiä ovat vain punaiset M-spektriluokan kääpiötähdet, tai lyhyesti punaiset kääpiöt, joita on suunnilleen kolme neljännestä kaikista tähdistä.
Spektriluokalla tarkoitetaan karkeasti sitä, millä aallonpituusalueella tähdet loistavat kirkkaimmin. Aurinko loistaa voimakkaimmin näkyvän valon keltaisella aallonpituusalueella, kun taas K-luokan tähdet ovat himmeämpiä ja loistavat kirkkaimmillaan oranssin värin alueella. F-luokan tähdet taas loistavat Aurinkoa voimakkaammin vaaleankeltaista valoa. Planeettojen ja niiden olosuhteiden osalta oleellista on tähtien kirkkaus. Auringonkaltaiset tähdet säteilevät kirkkaammin ja kuumempana kuin punaiset kääpiöt, mikä vaikuttaa niitä kiertävien planeettojen pintalämpötiloihin. Viileiden punaisten kääpiöiden planeetoilla voi esintyä nestemäistä vettä, jos niiden kiertoradat ovat tähtiä lähellä ja vuoden pituus on kymmeniä päiviä. Auringonkaltaisten tähtien kiertoradoilla vastaavat lämpötilat saavutetaan radoilla, joilla vuoden pituus on kymmenien sijaan satoja päiviä. Erolla on merkittäviä vaikutuksia planeettojen olosuhteisiin.
Tähtien vetovoima aiheuttaa niitä kiertäviin, oman akselinsa ympäri pyörähteleviin planeettoihin vuorovesivoimia, jotka nostavat ja laskevat veden pintaa kuten Maapallolla tai jopa muokkaavat planeetan vaippaa ja kuorta tuottaen kitkalämpöä ja lämmön aiheuttamaa aktiivisuutta. Miniatyyriversio tilanteesta on Jupiterin ja sen kuun Ion muodostama pari. Jupiterin vuorovesivoimat muokkaavat Ion pintaa voimakkaasti saaden sen kuumenemaan ja laukaisemaan tulivuoritoimintaa. Io onkin Aurinkokunnan aktiivisin taivaankappale. Mutta vuorovesien ehkäpä merkittävin seuraus on se, että Ion pyöriminen on synkronissa sen kiertoajan kanssa. Vuorovesivoimat ovat muokanneet kuun pyörimistä kunnes se on lukkiutunut kiertoaikaan ja Io näyttää aina saman puolen Jupiteriin. Oman planeetamme kiertolainen, Kuu, on samalla tavalla synkronissa. Tilanne on maailmankaikkeudessa yleinen.
Valtaosa tähtiä lähellä kiertävistä planeetoista on todennäköisesti synkronissa tähtien voimakkaiden vuorovesivoimien vuoksi. Vain kauempana tähteään kiertävät planeetat välttyvät vuorovesivoimien lukitsevalta vaikutukselta. Siksi vain auringonkaltaisten tähtien elinkelpoisella vyöhykkeellä olevat planeetat voivat pyöriä vapaasti. Vapaa pyöriminen puolestaan tasoittaa planeetan eri puolien lämpötilaeroja lisäten siten elämän edellytyksiä. Se on suurin yksittäinen syy siihen, että lähintä eksoplaneettaa Proxima b ei pidetä kaikilta osin maankaltaisena planeettana. Proxima b:n pyöriminen on synkronissa, koska planeetta matkaa ratakierroksen vain noin 11 päivässä, lähellä tähden pintaa, alttiina vuorovesivoimille.
Vaikka vuorovesivoimilla on muitakin vaikutuksia — ne pyöristävät lähellä tähtiään kiertävien planeettojen radat lähes täydellisiksi ympyröiksi vähentäen vuodenaikojen vaihteluita — elävien, maankaltaisten planeettojen löytämiseksi on parasta tarkastella planeettoja kiertämässä auringonkaltaisia tähtiä. Kepler-avaruusteleskoopin havaintokentässä niitä oli monia kymmeniä tuhansia.
Arvioitaessa kuinka paljon tietyn tyyppisiä planeettoja on kiertämässä kohteeksi valittuja tähtiä, on otettava huomioon mitä havaittiin sekä se, mitä olisi voitu havaita mutta ei havaittu. Periaate on yksinkertainen. Jos löydetään vaikkapa kaksi jollakin kriteerillä maankaltaista planeettaa, kun on havaittu esimerkiksi tuhatta tähteä, ei voida suoraan sanoa, että maankaltaisia planeettoja kiertää kahta promillea tähdistä. Arvioon vaikuttaa kuinka monen tähden maankaltaisia kiertolaisia oltaisiin voitu havaita — kaikkien havaitseminen ei juuri koskaan ole mahdollista. Jos esimerkiksi vain 20 tähdistä on sellaisia, että maankaltaisen planeetan löytö olisi mahdollista tehdä vaivalla hankitun havaintomateriaalin perusteella, lopputuloksena voidaan sanoa, että maankaltaisten planeettojen esiintymisfrekvenssi on 10% — niitä on siis joka kymmenennen tähden kiertolaisina. Se tosiasia, että joukossa oli 980 tähteä, joiden maankaltaisia kiertolaisia ei kyetä näkemään ei vaikuta tulokseen.
Kepler-avarusteleskooppi tarkkaili havaintokampanjansa kuluessa taivaan aluetta, jossa on kymmeniätuhansia tähtiä. Niiden perusteella on laskettu useita erilaisia arvioita planeettojen esiintymisestä galaksissamme. Esimerkiksi Michelle Kunimoto ja Jaymie Matthews kävivät huolellisesti läpi Keplerin kohdeluettelon. He tarkastelivat luettelon tähtien havaittuja ominaisuuksia ja saivat kasatuksi noin 96000 suunnilleen auringonkaltaisen tähden listan rajaamalla liian kuumat ja liian kylmät tähdet pois luettelostaan. Heidän määritelmänsä ”auringonkaltaisiksi tähdiksi” oli F, G ja K luokan tähdet, joiden lämpötila on välillä 3900-7300 kelvinastetta — vertailun vuoksi, Auringon lämpötila on noin 5800 K. Seuraavaksi oli vain selvitettävä minkä kokoisia planeettoja kohteiksi valittujen tähtien kiertoradoilla oli erilaisilla kiertoradoilla sekä kuinka pienet planeetat milläkin radalla olivat havaintojen tavoittamattomissa.
Kunimoto ja Matthews saivat huolellisen analyysinsa päätteeksi selville paljonkin maankaltaisten planeettojen esiintymisestä. Ongelmana vain on miten määritellään maankaltainen. Maankaltaiseksi voi kutsua vaikkapa planeettaa, joka on kooltaan suunnilleen Maan kokoinen, korkeintaan 50% pienempi tai suurempi. Kun ottaa huomioon kuinka moni planeetoista on tähtiensä elinkelpoisella vyöhykkeellä, arvioksi maankaltaisten planeettojen yleisyydestä saadaan optimistisesti laskettuna keskimäärin 0.66 planeettaa jokaista tähteä kohti. Se on valtava määrä, ja tarkoittaa sitä, että Linnunradassa on 26 miljardia ehdot täyttävää planeettaa. Kunimoto ja Matthews kuitenkin tyytyivät pessimistisempiin ehtoihin maankaltaisuudesta, ja arvioivat realistisemman määrän olevan korkeintaan noin kuusi miljardia — kokonsa ja pintalämpötilansa puolesta maankaltaisia planeettoja kiertää siis keskimäärin joka viidettä auringonkaltaista tähteä. Silloin pessimistisenkin arvion mukaan potentiaalisesti elinkelpoisia planeettoja on kirjaimellisesti aivan kaikkialla.
Punaisten kääpiötähtien planeetat ovat vielä tätäkin yleisempiä. Planeettoja on vähintään kolme jokaista punaista kääpiötä kohti ja maankaltaisia planeettoja — jos jättää synkronisen pyörimisen maankaltaisuutta heikentävän vaikutuksen huomiotta — on keskimäärin suunnilleen yhtä paljon kuin tähtiä. Silloin punaisten kääpiötähtien maankaltaisia planeettoja olisi galaksissamme valtaisa määrä, vähintään noin 75 miljardia. Vaikka jokaista punaista kääpiötähteä ei välttämättä ole kiertämässä ainuttakaan planeettaa, toisten kiertoradoilla niitä on useita. Yksi parhaista esimerkeistä on pienikokoinen, verrattaen lähellä Aurinkokuntaa sijaitseva TRAPPIST-1 tähti. Sitä kiertää seitsemän kiviplaneettaa, joista jopa kuusi katsotaan kooltaan ja lämpötilaltaan mahdollisiksi elinkelpoisiksi planeetoiksi.
Esitetyt lukemat maapallonkaltaisten planeettojen esiintymisestä galaksissamme ovat käsittämättömiä, suorastaan naurettavan suuria ja uskomattomalta tuntuvia. Kolme vuosikymmentä sitten emme tienneet eksoplaneettoja edes olevan olemassa. Nyt tiedämme karkeasti maankaltaisia planeettoja olevan kaikkialla, kiertämässä käytännöllisesti katsottuna jokaista tähteä, galaksimme jokaisessa kolkassa. Siksi on perusteltua ajatella, että galaksimme — samoin kuin koko maailmankaikkeus — suorastaan kuhisee elämää, jota syntyy väistämättä planeettojen vetisten pintojen biokemiallisista prosesseista aina, kun prosessit vain pääsevät kunnolla vauhtiin. Sen lisäksi tarvitaan vain aikaa. Ja aikaa elämän kehittymiseen on ollut kaikkialla jo miljardeja vuosia.
Yksi kommentti “Kuusi miljardia maapalloa”
-
Näissä maankaltaisten planeettojen laskelmissa kenties eräs rajoittava tekijä myös se miten etäällä Linnunradan keskuksesta sijaitsevat ja siitä: millaisille eri voimille ovat vuorovesi-ilmiöiden lisäksi. Tähtitihentymissä keskemmällä lienee elämän edellytykset toisin kuin täällä etäämpänä ja kaukaisuudessa galaksia kiertäen kenties myös omat erilaisuutensa planeettoihin kohdistuu. Pallomaisissa- ja epäsäännöllisissä tähtijoukoissa myös omanlaisensa tähtitiivistymät ja ikäjakautumat planeetoille…
Vastaa
Esiintyykö Venuksen kaasukehässä elämää?
Koen olevani optimistinen sen suhteen, kuinka paljon elämää universumissa esiintyy. Ajattelen, että elämää on kaikkialla, missä sen synty on ollut mahdollista geofysikaalisen ja -kemiallisen historian saatossa. Luultavasti elävät organismit osaavat myös matkustaa planetaaristen elinalueidensa välillä liftaamalla kyytejä meteoreilta ja komeetoilta. Ehkäpä elämä matkustaa mikrobien lepoitiöinä jopa planeettakuntien välillä. Asiasta ei ole konkreettista todistusaineistoa mutta olen optimisti. Haluan uskoa, että elämää on aivan kaikkialla siksi, että mielestäni se olisi valtavan mielenkiintoista ja jännittävää, osittain pelottavaakin. Tieteessä mielipiteillä vain ei ole mitään merkitystä.
Havainto elämästä toisella planeetalla on niin valtaisa tieteellinen tulos, että se vaatii tuekseen aukotonta todistusaineistoa. Siksi suhtaudun erittäin skeptisesti kaikkiin väitteisiin, joita on esitetty sen suhteen, onko elämää Marsissa, Europan jääkuoren alla tai muilla Aurinkokunnan kappaleilla, joissa fysikaaliset olosuhteet mahdollistavat elämän esiintymisen. Ehkäpä voimme lisätä luetteloon myös Venuksen — siellä elämää voisi hypoteesin mukaan esiintyä kaasukehän yläosissa, jossa lämpötila on varsin miellyttävä ja elämän rakennuspalikat ovat kaasumaisessa muodossaan saatavilla. Mutta mitä oikein tiedämme elämästä Venuksen kaasukehässä ja onko sen olemassaolon puolesta esitetty lähemmän tarkastelun kestävää todistusaineistoa?
Tuoreen Sara Seagerin johtaman tutkimusryhmän julkaiseman tuloksen mukaan, elämää voi esiintyä Venuksen polttavan kuuman pinnan yläpuolella, yläilmakehän leppoisammissa olosuhteissa. Venuksen kaasukehässä vesihöyryä on vain hyvin vähän. Silti, mikrobit saattaisivat kyetä selviytymään pienten vesipisaroiden sisällä, suojassa rikkihapon kyllästämältä kaasukehältä. Tuottaakseen energiaa ja rakennusmateriaalia, ne luultavasti tarvitsisivat kyvyn yhteyttää, kuten oman planeettamme kasvit ja sinibakteerit. Kosteuden ja ravinteiden vähäinen määrä tekisi elämästä hidaskasvuista mutta sen olisi oltava hyvin kestävää ja monipuolista aineenvaihdunnaltaan.
Venuksen kaasukehässä mikrobien elämänkierto olisi kuitenkin verrattaen yksinkertainen. Mikrobien lepoitiöt pärjäisivät kaasukehän alemmissa kerroksissa, ei kuitenkaan niin alhaalla, että pinnan kova kuumuus tuhoaisi ne. Tiedämme oman planeettamme mikrobifaunasta, että lepoitiöt selviävät laajassa skaalassa olosuhteita ja voivat paremmissa oloissa virota eloon, käynnistäen aineenvaihduntansa. Kun kaasukehän virtaukset kuljettavat itiöt ylemmäksi suotuisampiin olosuhteisiin, ne voisivat kerätä ympärilleen pieniä määriä kosteutta ja ryhtyä aktiivisiksi. Se voisi tapahtua aivan fysiikan lakien mukaan — Maapallollakin sadepisarat syntyvät pienten tiivistymiskeskusten ympärille, joita ovat tyypillisesti pienet pölyhiukkaset mutta myös bakteerisolut. Mikrobit voisivat elää ja jakautua pienenpienissä vesipisaroissa, jotka sitten kasvettuaan hiukan suuremmiksi painuisivat alemmas kaasukehässä, haihtuisivat, ja jättäisivät mikrobit lepoitiöiksi odottamaan uutta virtausta ylemmäs (Kuva 1.).
Jotta Venuksen kaasukehässä voisi olla elämää, on oltava myös realistinen kehityskulku sille, miten eläviä soluja päätyi ja sopeutui Venuksen epätodennäköisiin olosuhteisiin. Tiedämme kuitenkin, että Venus ei ole aina ollut äärimmilleen voimistuneen kasvihuoneilmiön kourissa, vaan se oli nuoruudessaan hyvinkin Maata muistuttava planeetta, jonka pinnalla elämä saattoi syntyä ja kukoistaa miljoonia muttei miljardeja vuosia. Olosuhteiden hiljalleen muututtua elinkelvottomiksi planeetan pinnalla, elämä olisi saattanut jatkaa kukoistustaan ainoassa mahdollisessa jäljelle jääneessä paikassa, jossa lämpötila ei kohonnut liian suureksi — 50-60 kilometrin korkeudessa kaasukehässä. Seager ryhmineen huomauttaa, että Maassa on meneillään samankaltainen kiertokulku, kun mikrobit kohoavat tuulien mukana taivaalle, joutuvat vesipisaroiden tiivistymisytimiksi ja palaavat maanpinnalle sateen mukana. Venuksessa sama kiertokulku vain voisi toimia kaukana pinnan yläpuolella.
Jos Seagerin tutkimusryhmän hämmästyttävä hypoteesi on oikea, ja elämää esiintyy korkealla Venuksen yläilmakehässä, miten sen merkkejä voitaisiin havaita? Astrobiologit ovat miettineen tapoja havaita elämän merkkejä eksoplaneettojen pinnalla, joten asiasta on olemassa runsaasti ajatuksia ja tutkimustuloksia. Ilmalaivan tavoin seilaavan robottiluotaimen lähettäminen paikanpäälle tutkimaan kaasukehän biokemiaa olisi yksi varteenotettava vaihtoehto, ja sellaisia on suunniteltukin niin Neuvostoliiton Venera projektin aikoihin 1970-luvulla kuin aivan hiljattain NASA:n toimesta. Neuvostoliiton Vega projektissa Venuksen kaasukehään lähetettiin jopa kuumailmapalloja mittaamaan kaasukehän fysikaalisia olosuhteita. Elämän havaitsemiseen niitä ei kuitenkaan oltu suunniteltu.
Elämää voitaisiin kuitenkin havaita epäsuoralla tavalla, tarkkailemalla Venuksen kaasukehän koostumusta tarkoilla spektrografeillla Maasta käsin. Sellaiset havainnot ovat arkipäivää tähtitieteessä ja on ehdotettu, että tiettyjen biologisista prosesseista kertovien kaasujen havaitseminen voisi onnistua jopa eksoplaneettojen kaasukehistä. Mutta millaisten molekyylien havaitseminen olisi kiistaton merkki elämästä vieraassa paikassa, jonka kemiasta tiedämme vain hyvin vähän? Astrobiologeilla on kuitenkin olemassa vastaus tähänkin.
Fosfiini on yksinkertainen molekyyli, joka koostuu kolmesta fosforiatomiin liittynestä vetyatomista. Se on erittäin myrkyllinen, äärimmäisen reaktiivinen ja sitä käytetään lähinnä kemianteollisuuden reagenssina. Fosfiinia esiintyy Maapallolla hapettomissa olosuhteissa, joissa sitä on arveltu syntyvän mikrobien aineenvaihduntatuotteena. Fosfiinia on siksi ehdotettu molekyyliksi, jonka havaitseminen eksoplaneetan kaasukehästä kertoisi elämän esiintymisestä planeetalla (3). Mutta kyseessä on vain epäsuora havainto, ja se perustuu negatiiviseen tulokseen — tutkijat eivät ole yrityksistään huolimatta onnistuneet löytämään tapaa, jolla fosfiinia voisi muodostua elottomalla planeetalla. Ehkäpä heillä vain ei ole ollut tarpeeksi mielikuvitusta.
Uusimpien havaitojen perusteella Venuksen kaasukehässä tosiaankin on fosfiinia. Jos aineella ei ole elottomia muodostumismekanismeja, sen on siis oltava elävien solujen tuottamaa. Tässä kohdassa on kuitenkin otettava avuksi Occamin partaveitsi. Se havainto, että Venuksen kaasukehässä esiintyy fosfiinia voi selittyä kahdella tavalla: joko Venuksen kaasukehässä on elämää tai sitten fosfiinia muodostuu toistaiseksi tuntemattoman elottoman prosessin seurauksena kaasukehässä, jonka ominaisuudet ja koostumus ovat vielä suureksi osaksi tuntemattomia. Molemmat tavat sopivat havaintoaineistoon yhtä hyvin mutta ei liene tarpeellista kertoa kumpi on yksinkertaisempi ja siten parempi selitysmalli.
Elämän löytyminen Venuksen kaasukehästä olisi valtaisa uutinen, ja tarkoittaisi sitä, että elämää on jotakuinkin varmasti aivan kaikkialla maailmankaikkeudessa, missä olosuhteet vain ovat sopivat. Sellainen poikkeuksellisen merkittävä tulos on kuitenkin näytettävä toteen poikkeuksellisella varmuudella. Jos on mahdollisuus, edes hyvin pieni sellainen, että havainnot voi selittää omalla tietämättömyydellämme, olen valmis lyömään vetoa sen puolesta, että elämää ei vielä ole havaittu planeettamme biosfäärin ulkopuolelta. On yksinkertaisesti luultavampaa, että emme tunne jotakin tapaa tuottaa fosfiinia elottomilla prosesseilla kuin että Venuksen kaasukehässä tosiaan olisi elämää. Siksi tekstin otsikkokin on kysymysmuodossa — Betteridgen laki sanoo, että vastaus sensaatiomaisiin kysymysotsikoihin on aina yksiselitteinen ”ei”. Toivon olevani väärässä mutta vasta tulevat havainnot näyttävät saako ehdotus elämästä tukea vai ei.
Voimme kuitenkin tehdä ajatuskokeen ja olettaa, että Venuksen kaasukehässä tosiaankin on elämää. Sillä olisi arvaamattomia seurauksia. Voisimme päätellä, että elämää on siinä tapauksessa lähes kaikkialla, missä olosuhteet vain ovat sopivat sen muodostumiselle ja kehittymiselle. Kyseessä olisi kuitenkin huono uutinen ihmiskunnalle. Vastaus Fermin paradoksiin ja kysymykseen siitä, miksi emme ole havainneet merkkejä teknisistä sivilisaatioista ei silloin ole se, että elämän synty ja esiintyminen on harvinaista. Ehkäpä emme ole vielä selvinneet kosmisesta seulasta ja todennäköinen syy Fermin paradoksiin ei löydykään menneisyydestämme, vaan tulevaisuudestamme — ehkäpä tekniset sivilisaatiot tuhoavat synnyinplaneettansa elämän edellytykset ennen kykyään levittäytyä avaruuteen ja muuttaa toisille planeetoille.
Kukapa tietää. On edelleen avan liian aikaista vetää johtopäätöksiä.
9 kommenttia “Esiintyykö Venuksen kaasukehässä elämää?”
-
Jos Venuksessa olisi elämää, miksei sen alkumuoto olisi voinut lentää sinne Maasta impaktiheitteleiden mukana. Se mahdollisuus pitäisi sulkea pois ennenkuin voitaisiin päätellä että elämä olisi maailmankaikkeudesa yleistä.
-
Asiaa ajatellaan liikaa Maan ja ihmiskunnan kannalta, Täällä on tämä sivilisaatio, teknisesti ja älyllisesti vielä kypsymätön ja alkeellinen, tiukasti reviiriään vartioiva eläinlaji kuten muutkin eläimet ja kädelliset. Hyvänä esimerkkina sotiminen ja asevarustelu.
Muilla keä hittyneemmillä sivilisaatioilla saattaa olla täysin erilainen näkökulma elämään ja ehkäpä he eivät tunne tarvetta kontaktiin ihmiskunnan kanssa, henkinen ero voi olla liian valtava, joten kommunikointi voi olla mahdotonta,
Myös tekninen taso on vielä alkukantainen , ihminen pääsee hädintuskin kuuhun, eikä sen pitemmälle ole päästykkään, muutama luotain lähiplaneetoille; etupäässä Marsiin, menee varmasti aikaa ennenkuin tekninen taso antaa mahdollisuuden tähtienvälisiin matkoihin. Eli olemme odottavalla kannalla, jos joku sivilisaatio sattuisi hoksaamaan tämän planeetan ja sen ärhäkän evoluution viimeisimmän huipputuotteen homo sapiensin, jonka nykyistä haaraa voisi kutsua nimellä ”homo stabilis” ”toimeton ihminen”.
-
Se tulos mittauksesta, että miljardia pienkohdetta sisältäisi 20 elämään viittaavaa f-ainetta, joka jaettuna olisi 1 / 50 miljoonaa kohden ja se taas verrattavissa Suomen väestömäärää tutkittavia 10 vuotta – joista yksi olisi tavoiteltu havainto.
Näitä tarkkoja mittauksia Maan päältä tehtynä – ensin 2017 ja joskus nyttemmin tarkemmin, josta julkaisu eilen annettuna. En nyt muista oliko jo kolme vuotta sitten jotain ennakointia tähän asiaan julkisuuteen…
Nopeasti kuitenkin uutistiedot ja tämä sinunkin kirjoituksesi tietoa keränneet, joten varmaankin hyvää ennakko valmistelua aiheeseen ensin hiljaisuudessa ollut.
Tarkempi luotain, joka kerää Venuksen ilmakehästä Maahan takaisin tuotavaksi tarkentanee asiaa – joidenkin vuosien kuluttua. -
Asiaa ajatellaan liikaa Maan ja ihmiskunnan kannalta, Täällä on tämä sivilisaatio, teknisesti ja älyllisesti vielä kypsymätön ja alkeellinen, tiukasti reviiriään vartioiva eläinlaji .
ainen näkökulma elämään ja ehkäpä he eivät tunne tarvetta kontaktiin ihmiskunnan kanssa, henkinen ero voi olla liian valtava, joten kommunikointi voi olla mahdotonta,
Myös ihmiskunnan tekninen taso on vielä alkukantainen , ihminen pääsee hädintuskin kuuhun, eikä sen pitemmälle ole päästykkään, muutama luotain lähiplaneetoille; etupäässä Marsiin, menee varmasti aikaa ennenkuin tekninen taso antaa mahdollisuuden tähtienvälisiin matkoihin. Eli olemme odottavalla kannalla, jos joku sivilisaatio sattuisi hoksaamaan tämän planeetan ja sen ärhäkän evoluution viimeisimmän huipputuotteen homo sapiensin, jonka nykyistä haaraa voisi kutsua nimellä ”homo stabilis” ”toimeton ihminen”.
Toinen juttu on taas se että tutkijat ajattelevat elämän syntyprosessin vaativan samat olosuhteet kuin Maassa syntyneen elämän. Eli suppealla näkökulmalla varustetut tutkijat maalaavat itsensä nurkkaan Olisi oltava avoin kaikille mahdollisuuksille, kuka tietää vaikka elämä voisi esiintyä jopa aivan poikkeuksellisilla tavoilla, myös älyllinen elämä, Onko dna :n oltava samanlaista kuin täällä, Kysymyksiä riittää, eikä ihme. Kannattaisi etsiä vain elämää ei Maan elämää, tutkijan pitäisi laajentaa näkökulmaansa elämän etsimisessä, ei antaa Maan elämän ominaispiirteiden hämätä etsintää.
-
Korjaus puuttuvaan tekstiin yllä
”ainen näkökulma elämään ja ehkäpä he eivät tunne tarvetta kontaktiin ihmiskunnan kanssa, henkinen ero voi olla liian valtava, joten kommunikointi voi olla mahdotonta,”
Tiedä häntä vaikka jo lähitähtien planeetoilla on älyllistä elämää, heillä voi olla ”erilainen näkökulmaelämään” eikä tarvetta kommunikointiin ihmiskunnan kanssa. Henkinen ja fyysinen ero saattaisi mennä yli ymmärryksen , eikä kommunikointi luonnistu
-
Tänään julkaistussa blogipostauksessaan Kirsi Lehto kirjoittaa ”Mielestäni fosfiini ei ainakaan nykyisten kemian tietojen mukaan sovi biomarkkeriksi, koska sille tunnetaan abioottisia synteerireittejä – ja toistaiseksi, vain (?) niitä.”, mutta yllä kirjoitat ”Ainoa tunnettu luonnollinen tapa tuottaa fosfiinia on mikrobien aineenvaihdunta hapettomissa olosuhteissa.”.
Luetteko te eri lähteitä vai miksi tämä kuulostaa ristiriitaiselta?
Vastaa
Erilaiset maailmat: eksoplaneettojen hämmästyttävä diversiteetti
Tunnemme jo yli 4000 eksoplaneettaa kiertämässä Auringon lähitähtiä. Tietomme planeetoista ja planeettakunnista ovat kasvaneet eksponentiaalisesti viimeisen 25 vuoden aikana — sinä lyhyenä ajanjaksona, kun eksoplaneettojen löydöt ovat olleet tieteen valtavirtaa. Eksoplaneettojen tutkimus on tähtitieteen haarana ja osa-alueena nuori mutta vakiintunut — ja yksi mielenkiintoisimmista, koska planeettoja on niin monenlaisia, erilaisilla radoilla kiertämässä erilaisia tähtiä.
Aurinkokunnasta tuttu luokittelu kivisiin sisäplaneettoihin ja kaasumaisiin ulkoplaneettoihin, on ehkäpä tunnetuin tapa jaotella planeettoja omiin lokeroihinsa. Jaottelu on myös omalla tavallaan helpon intuitiivinen. Pienet kiviset planeetat kiertävät Aurinkoa sen lähettyvillä kun taas suuret kaasumaiset planeetat ovat kauempana, Aurinkokunnan ulko-osissa. Pienet kappaleet, kuten Pluto ja muut kääpiöplaneetat, rikkovat tätä intiutiivista illuusiota harmoniasta ja osittain siitä syystä Pluto onkin luokiteltu uudelleen kääpiöplaneetaksi varsinaisen planeetan sijaan.
Koska perinteinen luokittelumme perustuu vain yhteen esimerkkiin, Aurinkokunnan tuttuihin planeettoihin, se ei kuvasta juuri lainkaan muita tähtiä ympäröiviä ja kiertäviä planeettakuntia ja planeettoja. Aurinkokunta on oikeastaan erikoinen, eriskummallinen luonnonoikku, joka poikkeaa tavanomaisista planeettakunnista jokseenkin joka tavalla. Luokittelut ovat lisäksi väistämättä keinotekoisia, luonnon jatkumoon näennäistä järjestystä tuovia konstruktioita, joita ei todellisuudessa ole olemassa muualla kuin luokitteluista pitävien ihmisten mielissä. Luonnon ei tarvitse piitata veteen piirtämistämme erilaisten luokitusten välisistä viivoista hitusenkaan vertaa.
Havainnot vääristävät
Se, mitä tiedämme eksoplaneetoista ja eksoplaneettakunnista, riippuu voimakkaasti siitä, mitä voimme havaita. Tällä yksinkertaisella tosiasialla on suunnattomia vaikutuksia siihen, mitä saamme tietää ja mitä kykenemme tutkimaan.
Erilaisilla havaintomenetelmillä voidaan luonnollisesti havaita erilaisia planeettoja ja niiden eri ominaisuuksia. Doppler spektroskopialla tai radiaalinopeusmenetelmällä havaitaan planeettoja tarkastelemalla tähden heilahtelua avaruudessa. Heilahtelu havaitaan mittaamalla tähden valon Doppler siirtymää, eli siirtymää sinisemmäksi ja punaisemmaksi, kun tähti liikkuu näkymättömän planeetan vetovoiman vaikutuksesta meitä kohti ja meistä poispäin. Havainto on sitä helpompi mitä suurempi planeetta on kyseessä, koska planeetan vetovoima ja siten tähden heilahtelun suuruus riippuu suoraan planeetan massasta. Havaitsemme siten suuremmat planeetat pienempiä helpommin ja varmemmin.
Pienet tähdet taas heilahtelevat voimakkaimmin. Jos tähti on massaltaan pieni, esimerkiksi pienimassainen punainen kääpiötähti, planeetan vetovoima heilauttaa sitä voimakkaammin kuin massiivisempia auringonkaltaisia, keltaisia spektriluokan G kääpiötähtiä. Kaksi Aurinkoa lähintä planeettakuntaa on havaittu juuri punaisten kääpiötähtien Proxima Kentauri ja Barnardin tähti ympärillä. Samalla muodostuu toinen havaintojen tuottama harha — planeettoja on helpompaa löytää keveämpien tähtien kiertoradoilta, joten niitä löydetään enemmän kuin planeettoja kiertämässä massiivisia tähtiä.
Myös planeetan radalla on merkitystä. Havainnot ovat sitä helpompia ja varmempia mitä useampi ratajakso on havaittu. Planeetat, jotka kiertävät tähtensä nopeasti, havaitaan siis todennäköisemmin kuin planeetat, joiden kiertoajat — eli vuoden pituudet — ovat pidempiä. Havaittaessa jaksollista ilmiötä kuten planeetan kiertoliikettä tähden ympäri on lisäksi varmennettava, että se tosiaan on jaksollista. Planeetan liike on siksi tunnettava tyypillisesti ainakin yhden ratajakson ajalta, jotta voidaan varmistua tähden heilahtelun aiheutuvan juuri planeetasta eikä kyseessä ole vaikkapa tähden aktiivisuuden aiheuttama epäsäännöllinen Doppler siirtymäksi tulkittu häiriö. Silloin planeetat, joiden kiertoajat ovat vuosikymmenien mittaisia, jäävät tyypillisesti havaitsematta. Löydämme siis enemmän planeettoja, joiden kiertoajat ovat lyhyitä ja joiden radat ovat lähellä tähtiään. Syy ei ole se, että sellaisia planeettoja olisi välttämättä enemmän, vaan se, että havaitsemme niitä todennäköisemmin.
Pisimmät yhtäjaksoiset lähitähtien havaintosarjat kattavat nykyisellään noin 10, korkeintaan 20 tai erittäin harvoin jopa 30 vuotta joillekin kirkkaille lähitähdille. Aurinkokuntaan suhteutettuna se tarkoittaa sitä, että Auringon 29 vuodessa kiertävä Saturnus olisi vain juuri ja juuri havaittavissa riittävällä varmuudella, vaikka se heilauttaakin aurinkoa havaittavan määrän. Saturnusta pienemmän Neptunuksen havaitseminen ei olisi nykyisellään lainkaan mahdollista. Neptunuksenkaltaisia planeettoja ei siis voi havaita lähitähtien kiertoradoilta, vaikka niitä olisi kirjaimellisesti kaikkialla.
Radiaalinopeusmenetelmällä siis havaitaan helpoiten planeettoja, jotka ovat suurikokoisia massaltaan ja kiertävät pieniä kääpiötähtiä mahdollisimman nopeasti. Siksi pienet auringonkaltaisia tähtiä kiertävät planeetat, jotka matkaavat tähtensä ympäri vuoden tai vuosien kuluessa muutamien päivien sijaan, ovat huomattavasti hankalammin havaittavissa. Niihin kuuluu myös Maa — radiaalinopeusmenetelmällä voidaan havaita noin 0.5 m/s heilahteluita auringonkaltaisen tähden liikkeessä mutta maapallojen aiheuttama heilahtelu olisi vain suuruusluokkaa 0.1 m/s. Sellainen tarkkuus on toistaiseksi saavuttamattomissa. Ylikulkumenetelmällä maapallojen havainnointi on samoin erittäin vaikeaa mutta täysin eri syistä.
Ylikulkuhavainto tarkoittaa sitä, että havaitaan, kun planeetta kulkee tähtensä pinnan editse. Koska planeetat eivät loista kovin kirkkaina, kaukaisista planetoista saadaan tietoa vain havaitsemalla miten tähti näyttää himmenevät prosentin murto-osia planeetan peittäessä pienen osan sen pintaa. Jotta eksoplaneetta kulkisi Maasta katsottuna tähtensä editse, sen ratatason on oltava juuri sopiva. Planeetan on silloin matkattava radallaan täsmälleen maanpäällisten havaitsijoiden ja tähden pinnan välistä. Vain noin prosentilla tähdistä on kiertolaisinaan planeettoja sopivilla radoilla, joten käytännössä on havaittava keskimäärin sataa tähteä, jotta edes yhden planeetan ylikulku voitaisiin nähdä.
Kepler-avaruusteleskoopin tuhannet löydöt onnistuivat vain, koska tähtitieteilijät suunnittelivat teleskoopin havainto-ohjelman oikealla tavalla. Teleskooppi asetettiin Maan kiertoradalle siten, että se kykeni tuijottamaan valittua taivaan kohtaa silmääkään räpäyttämättä muutaman vuoden ajan. Kepler suunnattiin kohtaan taivasta, jossa on samaan aikaan näkyvissä satoja tuhansia tähtiä. Siksi tuhansien eksoplaneettojen löytäminen oli jopa väistämätön lopputulos. Sitä ei tosin tiedetty etukäteen, avaruusteleskooppia suunniteltaessa, koska planeettojen määrää avaruudessa on kyetty arvioimaan luotettavasti vasta juuri Kepler-teleskoopin tulosten avulla.
Yksi ylikulkumenetelmän ongelmista on se jäljelle jäävä valtaosa, 99% tähdistä, joiden planeetat jäävät havaitsematta, koska ne eivät kulje radallaan tähtensä editse. Siksi ylikulkumenetelmällä ei voida havaita Aurinkokuntaa lähinnä sijaitsevia eksoplaneettoja — sadasta lähimmästä planeettakunnasta vain keskimäärin yksi on havaittavissa. Lähimmät ylikulkumenetelmällä havaitut planeetat kiertävätkin tähteä HD 219134 noin 21 valovuoden päässä.
Ylikulkumenetelmällä on muitakin rajoitteita. On kyettävä tuijottamaan valittua kohdetta tai niiden joukkoa keskeytyksettä, pitkiä aikoja. Vain tuntien pituisten planeettojen ylikulkujen havaitseminen on äärimmäisen vaikeaa, koska niiden kiertoajat mitataan suotuisimmillaankin päivissä tai kymmenissä päivissä.
Planeettojen ylikulkujen havaitsemiseen vaaditaan runsaasti puhdasta tuuria. Maan päällä planeettamme pyörähtäminen estää tehokkaasti luotettavat ylikulkujen etsinnät, koska kohteet siirtyvät taivaalla pois näkyvistä aina 24 tunnin sykleissä. Puolta taivaasta ei voida havaita, koska Auringon puolella päivänvalo tekee tähtitieteellisistä havainnoista mahdottomia. Maan vuotuinen kierros Auringon ympäri estää vuorollaan eri taivaan osien havainnot. Ongelmia tuottavat myös ilmakehän vesihöyry ja ajoittainen pilvisyys, joka sulkee optisen ikkunan taivaalle kokonaan. Myös Kuun sattuminen lähelle havaintokenttää nostaa taustavalon määrän liian suureksi tarkoille havainnoille — erityisesti Kuun ollessa täysi. Maan päältä on siten mahdotonta havaita ainuttakaan tähteä yhtäjaksoisesti, pitkiä aikoja, jotta voitaisiin etsiä luotettavasti planeettojen ylikulkuja. Avaruudessa on toisin.
Eksoplaneetan ylikulun luotettavaan havaitsemiseen ei yleensä riitä yksi tunnettu ylikulkutapahtuma. Yksittäinen tähden näennäinen himmeneminen voi johtua jostakin muustakin ilmiöstä, kuten taustataivaan vuorotellen toistensa eteen kiertävistä kaksoistähden komponenteista tai vaikkapa suuresta tähdenpilkusta, joka pyörähtää vuoroin esiin ja vuoroin tähden taakse. On havaittava mieluiten kolme ylikulkua, jotta saadaan kaksi mittausta ratajaksosta ja voidaan varmistua sen pysyneen samana.
Kahden ylikulun havaitseminen ei sekään riitä. Kyseessä voivat olla yksittäiset kahden eri planeetan ylikulut. Silloin menetelmällä havaittavien planeetojen kiertoajoilla on yläraja. Esimerkiksi Kepler avaruusteleskoopin toiminta-ajaksi suunniteltiin 3.5 vuotta. Se olisi rajoittanut planeettojen havainnointia siten, että kappaleet, joiden kiertoaika on noin 400 päivää tai enemmän jäisivät armotta havaitsematta riittävällä varmuudella. Teleskoopin toiminta-aika valittiin sitä silmälläpitäen, että Maata kooltaan ja kiertoratansa ominaisuuksilta muistuttavien planeettojen havaitseminen olisi mahdollisuuksien rajoissa.
Suuremmat planeetat ovat luonnollisesti helpompia havaita kuin pienemmät, jotka himmentävät tähteään vähemmän kulkiessan niiden editse. Tähtensä nopeasti kiertävät planeetat taas tuottavat useamman havaittavissa olevan ylikulun samassa ajassa. Ylikulkumenetelmä on siten parhaimmillaan, kun havaitaan kuumia Jupitereita, jättiläismäisiä planeettoja, jotka kiertävät tähtensä nopeasti, aivan niiden pinnan vieressä. Mutta menetelmä soveltuu vain satunnaisiin kohteisiin, joissa planeettojen ratataso sattuu olemaan sopiva. Sillä ei voida varmistaa muilla menetelmillä havaittujen planeettojen olemassaoloa kuin vain hyvin harvoissa, onnekkaissa tapauksissa.
Havaintomenetelmien herkkyys vaikuttaa havaittujen planeettojen määrään ja ominaisuuksiin voimakkaasti. Saamme niiden vääristävän linssin avulla vinoutuneen kuvan galaktisen lähinaapurustomme planeetoista ja planeettakunnista. Mutta vääristymää voidaan myös korjata — tuntemalla havaintomenetelmän herkkyys eri kokoisille planeetoille erilaisilla radoilla, voidaan arvioida eri kokoisten planeettojen todellinen määrä erilaisilla kiertoradoilla. Kaikista vääristymistä huolimatta, olemme saaneet valtavasti tietoa paikallisesta eksoplaneettapopulaatiosta vain etsimällä planeettoja ja pitämällä kirjaa etsintämenetelmiemme herkkyydestä ja rajoitteista.
Oudot jättiläiset oudoilla radoilla
Päätelmät planeetttojen luonteesta ja yleisyydestä joudutiin tekemään perustuen radiaalinopeushavaintoihin ennen Kepler-avaruusteleskoopin laukaisua vuonna 2009. Radiaalinopeusmenetelmällä tehdyistä planeettahavainnoista on saatu runsaasti tietoa erilaisista planeettatyypeistä (Kuva 1.). Koska jättiläisplaneettojen havainnointi on helpointa, massaltaan Jupiterin ja Saturnuksen suuruiset kappaleet olivat ensimmäisiä planeettoja, joita onnistuttiin löytämään. Mutta ne eivät muistuttaneet juuri lainkaan oman aurinkokuntamme tuttuja jättiläisiä.
Ensimmäiset havaitut eksoplaneetat kuuluivat omituiseen kuumien jupiterien luokkaan — ne ovat jättiläisplaneettoja, joita ei pitänyt olla olemassakaan, kiertämässä tähtiään vain muutamassa päivässä, aivan tähtensä pintaa viistäen. Kuumat neptunuksenkokoiset planeetat ovat myös helposti havaittavissa mutta loistavat, muutamaa poikkeusta lukuunottamatta, poissaolollaan — aivan kuin jokin kosminen voima estäisi niitä muodostumasta. Se kosminen voima on aika. Kuumat Neptunukset menettävät kaasukehänsä tähtien puhaltaessa ne avaruuteen ja muuttuvat pelkiksi karrelle palaneiksi kivisiksi ytimiksi, kuumiksi supermaapalloiksi (Kuva 1.).
Nopeasti kävi myös ilmi, että kauempana tähdestään sijaitsevat viileät ja kylmät jättiläisplaneetat ovat usein hyvin soikeilla kiertoradoilla, joilla niiden etäisyys tähdestä vaihtelee huimasti jo yhden ratakierroksen aikana. Näitä planeettoja kiertää Aurinkokunnan lähitähtiä radoilla, joiden ratajakso on viidestäkymmenestä päivästä aina kymmeniin tuhansiin — Jupiter ja Saturnus sopivat siksi tähän planeettojen joukkoon mainiosti, joskin niiden radat ovat omituisen tarkasti ympyränmuotoisia suhteessa joukon muihin jättiläisiin.
Planeettojen väliset vuorovaikutukset ovat tyypillisesti syynä eksoplaneettojen soikeisiin ratoihin. Vain noin pari prosenttia jättiläisplaneetoista on kiertämässä tähteään Jupiterin ja Saturnuksen tapaan kaukana, usean AU:n päässä, lähes ympyräradalla. Sellaiset järjestelmät ovat hyviä kandidaatteja Aurinkokunnan kaltaisiksi planeettakunniksi. Ne ovat vain valitettavan harvinaisia.
Planeettakuntien syntyhistorioiden tapahtumat ovat vastuussa jättiläisplaneettojen ratojen havaitusta monimuotoisuudesta. Mukana on oleellisesti kaksi planeettojen ratoihin vaikuttavaa tekijää: nuoren, vastasyntyneen tähden ympärille muodostuvan kertymäkiekoksi kutsutun kaasukiekon vuorovaikutus planeettojen ratojen ominaisuuksien kanssa ja planeettojen oma vetovoima. Siten fysikaaliset reunaehdot tuottavat erilaisten planeettojen luokkia, joita ovat jättiläisplaneetoille karkeasti kuumat jupiterit sekä ”klassiset jättiläisplaneetat”. Jupiter ja Saturnus kuuluvat näistä jälkimmäiseen joukkoon, vaikka valtaosa klassisista jättiläisistä onkin soikeilla kiertoradoilla. Mitään tästä emme kuitenkaan tienneet ennen eksoplaneettojen aikakauden alkua. Valtaosa tutkijoista arveli Jupiterin ja Saturnuksen olevan malliesimerkkejä kaasuplaneetoista maailmankaikkeudessamme ja se vaikutti siihen, miten planeettoja 1980- ja 1990-luvuilla, ja vieläkin sitä aiemmin, etsittiin.
Jättiläisplaneetat syntyvät tähtien kiertoradoilla, kun pölyhiukkaset takertuvat toisiinsa ja muodostavat aina vain suurempia, kasvavia komplekseja, joihin uudet pölyhiukkaset takertuvat. Pölyksi kutsutaan tässä yhteydessä atomeja ja molekyylejä, joista koostuva aines pysyy kiinteässä muodossaan. Lähellä tähteä metallit ja silikaatit muodostavat pölyhiukkaset mutta kauempana, niin kutsutun ”jäärajan” takana lämpötilat ovat riittävän matalia, jotta myös vesimolekyylien joukot ovat kiinteitä hiukkasia. ne muodostavatkin valtaosan aineksesta, josta jättiläisplaneettojen ytimet koostuvat — siksi jättiläisplaneettojen ei katsota voivan muodostua jäärajan, eli noin 2-3 AU:n etäisyyden, sisäpuolella auringonkaltaisten tähtien ympärillä.
Pöly jatkaa hidasta kasautumistaan tuhansia vuosia. Hiukkaset kasvavat aina vain suuremmiksi ja lopulta syntyneet kappaleet ovat metrien ja satojen metrien kokoluokassa. Kappaleet myös törmäilevät ja syntyy aina vain suurempia kiertolaisia. Lopulta alkunsa saa kourallinen protoplaneetoiksi kutsuttuja kappaleita, jotka ovat kooltaan kääpiöplaneettojen Ceres ja Pluto kokoluokkaa, yli kaksituhatta kilometriä halkaisijaltaan, ja niin massiivisia, että ryhtyvät hakeutumaan hydrostaattiseen tasapainotilaan. Niiden oma gravitaatio saa aineksen erottumaan siten, että raskaampi materiaali ryhtyy vajoamaan kohti ydintä prosessissa, jossa vapautuu lämpöä. Ensimmäiset planeetat ovat syntyneet.
Mutta muodostumisprosessi ei pääty, vaan kiihtyy. Suurimmat protoplaneetat häiritsevät vetovoimallaan läheisillä kiertoradoilla olevia pienempiä kappaleita, mikä aikaansaa lisää törmäyksiä, joiden seurauksena protoplaneetat kasvavat entisestään. Jäärajan ulkopuolella, jossa jäät ovat kiinteinä aineina ja materiaa on eniten, protoplaneetat saavuttavat lopulta 10-20 kertaa Maapallon massan. Silloin niiden kehityksessä alkaa uusi vaihe ja ne saavat tulevaisuuden jättiläisplaneettojen ytiminä.
Tähteä ympäröivä kaasukiekko tarjoaa lisää materiaalia planeettojen kasvuun. Jättiläisplaneetat muodostuvat, kun massiiviset protoplaneetat ryhtyvät vetämään puoleensa kaasumaista kertymäkiekon materiaa vetovoimansa avulla. Niiden kasvulla on silloin rajana vain kiekossa olevan materian määrä ja ne kasvavat massiivisiksi Jupiterin kokoisiksi planeetoiksi tai vieläkin suuremmiksi jättiläisiksi. Näiden jättiläisten varjossa syntyvät pienemmät planeetat, kiviset maapallot ja supermaapallot, joita on universumissa lähes kaikkialla.
Monenlaiset pikkuplaneetat
Maankaltaisilla planeetoilla tarkoitetaan tavallisesti kooltaan tai massaltaan Maan kokoluokkaan kuuluvia kivisiä planeettoja. Mutta sellaiset planeetat voivat olla erilaisilla radoilla ja kiertämässä erilaisia tähtiä. Ne voivat olla kuumia tai kylmiä, vapaasti pyörähteleviä tai pyörimiseltään lukkiutuneita, yksin tai tiheästi pakatuissa planeettakunnissa ja joskus, jopa elämän vyöhykkeeksi kutsutulla etäisyydellä tähdestään, jolla planeettojen pintalämpötilat mahdollistavat nestemäisen veden esiintymisen.
Ylivoimaisesti suurin osa tunnetuista eksoplaneetoista on kuitenkin karkeasti kuumiksi supermaapalloiksi luokiteltavia kappaleita (Kuva 2.). Niitä on kiertämässä käytännöllisesti katsoen jokaista tähteä, ja niiden kiertoratojen periodit vaihtelevat päivästä noin sataan päivään. Kooltaan kyseiset planeetat ovat puolesta Maapallosta noin neljään, joskin sitä suurempia planeettoja on myös suhteellisen runsaasti lähitähtien kiertoradoilla. Aurinkokunnan planeetoista yksikään ei varsinaisesti kuulu tähän planeettojen joukkoon, mutta syynä voi olla vain se, että niistä yksikään ei olisi ollut helposti Kepler-avaruusteleskoopin havaittavissa. Tarkempi tarkastelu kuitenkin osoittaa, että planeetat ovat vielä tätäkin monimuotoisempia.
Vaikka kaksi kertaa Maapallon kokoinen planeetta voi hyvinkin olla edelleen kivinen pinnaltaan, ja siten ominaisuuksiltaan maapallon kaltainen, suuremmat kappaleet ovat jotakin aivan muuta. Kaksi kertaa maapallon kokoinen kappale, jolla on maapallon kanssa sama koostumus, on massaltaan noin kahdeksankertainen supermaapallo. Se on niin massiivinen, että sen pintaa peittää luultavasti paksu kaasuvaippa, jonka pohjalla olevan kivipinnan päällä paksun kaasumeren kuumuus ja paine ovat niin suuria, että olosuhteet muistuttavat lähinnä valtaisaa painekattilaa Maapallon sijaan. Jos kaasukehä on primitiivistä hiilidioksidista koostuvaa tyyppiä, jollainen Maan kaasukehä oli sen ollessa nuori ja Marsin ja Venuksen kaasukehät ovat edelleen, kasvihuoneilmiö pääsee voimistumaan valtavaksi tuottaen pinnalle muservatan paineen lisäksi valtaisan kuumuuden, jossa kivinen pinta sulaa. Sellaiset planeetat eivät selvästi ole otollisia paikkoja ainakaan elämän etsimiseen.
Vieläkin suuremmat kappaleet taas omaavat huomattavasti paksummat kaasuvaipat, kuten vajaan neljän Maapallon kokoinen Neptunus, joka on massaltaan noin 17 maapalloa. Kepler-avaruusteleskoopin havaitsemaan planeettojen joukkoon kuuluu siis valtava kirjo kappaleita Maapalloa pienemmistä kaasukehättömistä kivenmurikoista massiivisiin, kuumiin neptunuksenkaltaisiin kaasuplaneettoihin. Näiden joukossa on muutama erittäin mielenkiintoinen, joskin osittain hypoteettinen, planeettojen luokka.
Aavikkoplaneetat
Suuri osa, jopa yli puolet, potentiaalisesti elinkelpoisista kiviplaneetoista saattaa olla niin sanottuja aavikkoplaneettoja (2). Ne ovat karuja, kuivia planeettoja, joiden pinnalla ei esiinny vettä suurina valtamerinä, kuten Maapallolla. Aavikkoplaneettojen arvellaan voivan olla jopa elinkelpoisia. Silloin veden ja vesihöyryn merkkien puute kivisistä, pienikokoisista eksoplaneetoista tehdyissä havainnoissa, ei tee niistä automaattisesti täysin elinkelvottomia. Ne voivat säilyttää joitakin maankaltaisia ominaisuuksia jopa niinkin lähellä auringonkaltaisia tähtiä kuin Aurinkokunnan planeetta Merkurius, jonka etäisyys Auringosta on vain 0.38 AU. Sellaisessa tilanteessa aavikkoplaneettojen elinkelpoisuuden edellytys tosin on niiden voimakas heijastavuus, joka estäisi planeettoja kuumenemasta pinnoiltaan liikaa. Toisessa ääripäässä pienet planeetat, jotka eivät aivan kykene ylläpitämään paksua kaasukehää, ovat kylmiä aavikkoplaneettoja. Oman järjestelmämme planeetta Mars on hyvä esimerkki sellaisesta. Eksoplaneetoista kaikkein lähin naapurimme, Proxima b, voi olla samalla lähin esimerkki lämpimästä aavikkoplaneetasta kiertämässä toista tähteä.
Monet tähtiään lähellä kiertävät kiviplaneetat kuuluvat aavikkoplaneettojen luokkaan. Mutta ollessaan liian lähellä tähtiään, voimakas säteily ja hiukkastuuli voivat miljoonien vuosien kuluessa riisua pienet planeetat kaasukehistään, puhaltaen ne avaruuteen ja jättäen jäljelle vain kuumat ja elottomat pinnat. Ne ovat todellisia aavikkoplaneettoja — planeettoja, joiden paljailla, karuilla pinnoilla vain voimakas säteily ja hiukkastuuli hiljalleen hajottaa pinnan mineraalien rakennetta. Ne eivät kärsi eroosiosta, koska tuulen ja veden vaikutusta ei ole. Vain satunnaiset meteorit iskeytyvät paahtuneelle pinnalle jättäen jälkeensä ikuisesti törmäyksistä muistuttavat kraaterit kuten Merkuriuksen tai Kuun pinnoilla. Sellaisilla planeetoilla ei varmasti elä mikään.
Meriplaneetat
Toinen mielenkiintoinen planeettojen kategoria on syvän, yhtenäisen valtameren peittämät meriplaneetat. Sellaisten planeettojen pienoismalleja esiintyy Aurinkokunnassa, joskin ne ovat kaikki kaukana Auringosta ja kiertoradalla jättiläisplaneettojen ympäri Aurinkokunnan ulko-osissa. Esimerkiksi Jupiterin kuista Europa, Ganymedes ja Kallisto ovat kuin pikkuisia meriplaneettoja, vaikka eivät varsinaisesti planeettoja olekaan. Niitä kuitenkin peittää kymmenien, jopa satojen kilometrien paksuinen vesikerros, joka tosin on pinnaltaan jäässä kaukana Auringon lämmöstä.
Meriplaneettojen kanssa yhteensopivia keskitiheyksiä tunnetaan useilta eksoplaneetoilta. Yksi parhaista esimerkeistä on vain noin 47 valovuoden etäisyydellä Aurinkokunnasta sijaitseva punaista kääpiötähteä Gliese 1214 kiertävä planeetta. Gliese 1214 b on massaltaan noin 6.6 kertaa Maapallon kokoinen ja halkaisijaltaan noin 2.7 kertainen. Se on siten keskitiheydeltään vain noin kolmanneksen Maapallon keskitiheydestä, mikä tarkoittaa, että suuri osa planeetasta koostuu kiveä kevyemmästä aineksesta. Vaikka Gliese 1214 b:n kaasukehä voikin olla paksu, mikä osaltaan selittäisi sen pientä tiheyttä, planeettaa peittävä, syvä valtameri on erittäin todennäköinen syypää sen matalaan tiheyteen.
Gliese 1214 b on luultavasti paksun vesipitoisen kaasukehän peittämä mutta sen valtavassa paineessa, syvällä planeetan sisäosissa, vesi esiintyy jokseenkin erikoisessa olomuodossa ionisoituna plasmana. Elämän edellytykset eivät siis täyty Gliese 1214 b:n pinnalla muta se osoittaa, että vesiplaneettoja on olemassa jo aivan kosmisessa lähinaapurustossamme. Jos ne olisivat Gliese 1214 b:tä pienempiä, niiden meressä voisi hyvinkin uiskennella omituisia valtamerielämään sopeutuneita elämänmuotoja.
Jääplaneetat
Tähden säteily heikkenee kääntäen verrannollisena etäisyyden toiseen potenssiin. Se on vain matemaattinen tapa ilmaista, että kauempana on kylmempää. Jotkut planeetat ovat niin kaukana kiertämistään tähdistä, että niiden pinnalla ei voi virrata nestemäistä vettä, koska se on kaikki jäätynyt. Ainuttakaan eksoplaneettaa, jolla olisi jäinen pinta, ei ole onnistuttu havaitsemaan ja varmistamaan jääpeitteiseksi mutta niitä on varmasti runsaasti Linnunradassa.
Jääplaneetat ovat varmuudella yleisiä. Niiden miniatyyriversioita on runsaasti jo omassa Aurinkokunnassamme, jättiläisplaneettojen kuina ja Pluton kaltaisina jäisinä kääpiöplaneettoina, Neptunuksen radan tuolla puolen. Vesi on maailmankaikkeuden yleisin yhdiste ja sitä esintyy aivan kaikkialla — lukuunottamatta aivan planeettakuntien kuumia sisäosia, joista tähtien säteily on haihduttanut sen pois. Pienet planeetat taas muodostuvat herkästi ja esiintyvät yleisesti tiukkaan pakatuissa planeettakunnissa, jossa kappaleiden radat ovat vieri vieressä. Monet näistä planeetoista koostuvat suurista määristä vettä ja osa niistä on niin kaukana tähdestään, että vesi jäätyy. Mitään muuta ei tarvita.
Jääplaneetoilla voi olla kaasukehä mutta niitä yhdistävä piirre on paksu jääkuori, jonka alla velloo syvä valtameri. Sellaiset valtameret pysyvät nestemäisinä planeetan metalleista ja silikaateista koostuvassa ytimessä tapahtuvan radioaktiivisen hajoamisen tuottaman lämmön ja läheisten taivaankappaleiden vuorovesien aiheuttaman kitkalämmön avulla. Elämää voisi esiintyä sellaisissa merissä.
Olemme saattaneet jo löytää useita jääplaneettoja — emme vain voi varmistua niiden ominaisuuksista ja koostumuksesta riittävällä varmuudella. Lähin jääplaneetta saattaa löytyä läheisestä Kapteynin tähden planeettakunnasta vain vajaan 13 valovuoden päästä — se on tähti, joka on luultavasti peräisin toisesta, Linnunrataan kauan sitten sulautuneesta galaksista. Meillä ei kuitenkaan ole vielä keinoja tutkia järjestelmän supermaapalloiksi luokiteltavien planeettojen ominaisuuksia.
Silmäplaneetat
Eräs Maan pyörimisliikkeeseen tottuneille vieras planeettatyyppi on niiden planeettojen joukko, joiden pyöriminen ja kiertoaika on synkronoitu. Sellaisia on suunnilleen jokainen niistä pienistä planeetoista, jotka kiertävät tähtensä vain muutamassa tai muutamassa kymmenessä päivässä. Tähden voimakkaat vuorovesivoimat saavat satojen miljoonien vuosien kuluessa sitä lähellä kiertävien planeettojen pyörimisen lukkiutumaan kiertoaikaan siten, että ne näyttävät aina saman puolen tähdelleen. Vuorovesivoimat muokkaavat hiljalleen pyörimistä kunnes se lukkiutuu — kyse on vain siitä, että järjestelmä hakeutuu tasapainotilaan. Planeetan lukkiuduttua, vuorovesivoimat eivät jatkuvasti muokkaa sen pintaa, vaan tähden vetovoima pysyy likimain vakiona planeetan eri puolilla ja on saavutettu aiempaa stabiilimpi tila. Esimerkiksi Kuu tarjoaa ilmiöstä mainion esimerkin, vaikkei planeetta olekaan.
Mielenkiintoiseksi tilanne muuttuu, jos kyseessä on meriplaneetta. Silloin tähden säteily lämmittää planeetan toisen puolen ja pitää sen sulana saaden veden haihtumaan voimakkaasti, kun taas toisella puolella voi esiintyä paksulti jäätä. Puoliskojen väliin saattaa silloin muodostua lauhkea vyöhyke, jossa elämä pääsee kukoistamaan. Planeetta näyttää kuin jättiläismäiseltä avaruudessa vaeltavalta silmältä, jonka katse on kiiinnittynyt tähteensä.
Pallonpuoliskojen valtaisat lämpötilaerot kuitenkin pyrkivät tasautumaan, ja voimakkaat tuulet kuljettavat kuumaa vesihöyryä lauhkealle vyöhykkeelle. Jäähtyessään, höyrystä syntyy sadetta ja lauhkea vyöhyke voikin olla jatkuvien monsuunisateiden kourissa. Lämpötilaerot aiheuttavat myös voimakkaita merivirtoja, jotka tasaavat lämpötilaa eri puolilla planeettaa. Valon määrä ei kuitenkaan muutu. Silmäplaneettojen toinen puoli on ikuisessa valossa ja toinen ikuisesti pimeä. Siinä välissä, lauhkealla vyöhykkeellä, taas on ikuinen aamuhämärä, jos tähden näkeminen vain on kaikkien sadepilvien alta mahdollista.
Monet aavikkoplaneetat voivat myös olla silmäplaneettoja. Aavikkoplaneetan voi tehdä elinkelpoiseksi juuri se, että lauhkealla vyöhykkeellä voi esiintyä hiukan nestemäistä vettä, vaikka planeetan päivän puolella kuumuus olisikin jatkuvasti liian polttavaa nestemäisen veden, ja siten elämän, esiintymiselle.
Planeettojen metsästäjiä on jo kauan kiehtonut ajatus mahdollisuudesta löytää ominaisuuksiltaan maankaltaisia planeettoja. Vaikka maan kokoista ja massaista planeettaa ei olekaan löytynyt kiertämässä maankaltaisella radalla auringonkaltaista tähteä, tunnemme runsaasti mielenkiintoisia eksoplaneettoja, joita voidaan pitää ainakin jonkinasteisina kandidaatteina eläviksi planeetoiksi.
Pohjimmiltaan kaikki pienet planeetat koostuvat vain raudasta, silikaateista ja vedestä. Kaasuplaneetat puolestaa ovat haalineet vetovoimansa avulla itselleen vedystä ja heliumista koostuvan paksun kaasuvaipan. Pohjimmiltaan pienet planeetat jakautuvat kivisiin maapalloihin ja supermaapalloihin sekä paksun kaasuvaipan omaaviin minineptunuksiin ja neptunuksiin. Ne ovat luultavasti fysikaalisestikin erillisiä luokkia, koska havainnoissa näkyy kaksi kokoluokkaa, joiden välillä on vähemmän planeettoja. Luokkien välinen raja on noin kaksi kertaa Maan kokoisissa planeetoissa, joita on vähemmän kuin sitä suurempia minineptunuksia ja pienempiä supermaapalloja (Kuva 3.). Mutta mitään tarkkoja rajoja planeettojen eri luokilla ei ole. On vain erilaisia ominaisuuksia, joiden jatkumon johokin osaan kaikkien planeettojen ominaisuudet osuvat (Kuva 3.). Aurinkokunnan planeetat tarjoavat näytille vain pienen murusen siitä planeettojen kirjosta, joka löytyy jo aivan lähimpien tähtien kiertoradoilta.
Ei ole olemassa vain yhtä tapaa luokitella eksoplaneettoja. Luokitukset ovat aina tarkoituksenmukaisia ja subjektiivisia, ja ne tehdään jostakin tietystä näkökulmasta. Voi olla hyödyllistä luokitella planeettoja niiden koon mukaan, koska koko on ylikulkumenetelmällä mitattavissa oleva parametri. Toisinaan planeettoja luokitellaan koostumuksen mukaan, kuten kuvassa 3., jossa eri käyrät kuvastavat erilaista keskimääräistä koostumusta. Itse olen käyttänyt luokitusta, jossa määrittävänä tekijänä on planeetan massa — se on parametri, joka on saatavilla radiaalinopeushavainnoista.
Eksoplaneetat ovat kuitenkin todellisuudessa vielä oudompia kuin niiden yleisimpien tyyppien tarkastelu antaa odottaa. On lähes puhtaasta raudasta koostuvia, jopa kolme kertaa Maata tiheämpiä planeettoja, kuumia, yli 6000°C lämpötilaan tähden voimakkaassa säteilyssä kuumenneita kappaleita, planeettoja joiden kaasukehässä sataa rautaa ja planeettoja, jotka ovat matkanneet aivan naapuriimme toisesta galaksista. Niiden joukossa on varmasti myös Maapallon planetaarisiin olosuhteisiin sopeutuneille ihmisapinoille tutulta näyttäviä maailmoja, joissa elämä voisi kukoistaa, jos sitä vain on päässyt syntymään.
3 kommenttia “Erilaiset maailmat: eksoplaneettojen hämmästyttävä diversiteetti”
-
Pitkä blogisi monta kohtaa sisältäen, joita kaikkea ei kommentointiini. Eksoplaneettojen luokittelun mahdollisuuksiin kuitenkin ennakoisin vaikka vielä havainnot vähäisinä rajaavat näkemästä kokonaisuuksia:
Maan melko pyöreiden planeettaratojen jakautuminen noudattaa melko tarkoin tunnettua jaksollista etäisyysjakaumaa. Myös Jupiterin radalla kiertävät pienkappaleiden seuralaiset ns. tasajakoisille radoilleen asettuneena. Olettaa siis voinee eksoplaneettojenkin ratatasojen hakeutuneen tai hakautuvan vastaavasti omilla ratatasoillaan säännönmukaisuuksiin, joissa kiinteät pitkäkestoiset rataetäisyydet mahdollistuu – kertoimet tosin erilaiset voinee olla kuin Aurinkoa kiertävillä planeetoilla.
Vasta useampien samaa tähteä kiertävien eksoplaneettojen muodostelmista tätä ns. jaksollisuutta voidaan laskea ja kenties varmentaakin – tosin soikeat radat tuo omat lisätulkinnat…Eilen Yle Radio Puhe / Juuso Pekkinen ohjelmassa haastateltiin professori Heikki Ojaa, jolta uusi kirja; Eksoplaneetat (olen vasta selaillut sitä kirjakaupassa). Olit myös ohjelman loppupuolella haastateltavana, jossa otit esiin lisääntyvien satelliittien ja valosaasteen haitat havaita oikeaa tähtitaivasta.
Tässä tähtitaivaan lisääntyvissä satelliiteista voinee tuottaa videoita, joissa suodatettuina tähdet pois ja sitten vastaavasti vain satelliitteja näkyen… -
Alussa oli Big Bang ja universumi äärettömään kuuma. Koska universumi oli niin paljon jäähtynyt, että planeetat ja vesi saattoivat yhdistyä vetiseksi planeetaksi?
National Geographic -TV kanavalla pyörinyt upea, moniosainen sarja, Ihmeellinen Planeettamme Maa, kosketteli myös maapallon ulkopuolisen, älykkään elämän mahdollisuutta. Yksi sarjassa kommentoijina esiintyneistä astronauteista totesi: todennäköisyys on sama, kuin jos heittäisi noppaa miljardi kertaa ja saisi joka kerta ykkösen. Minä olen asiasta samaa mieltä enkä uhraisi aikaa ja resursseja Maan ulkopuolisen elämän etsimiseen varsinkaan, kun meillä on täällä maapallollamme tunnetusti megaluokan ongelmia ratkaistavanamme.
😀
Astronauttiko siis paljasti tietävänsä, että E.T. on olemassa? Kyetessään määrittämään noinkin tarkan arvon planeettamme ulkopuolisen älykkään elämän todennäköisyydelle, astronautilla olisi oltava tietoa jopa niiden olinpaikasta (tai olinpaikoista) — muutoin hänen toteamuksensa on ontompi kuin noppavertauksensa.
Signaali ei ole moduloitu alkuperäisen artikkelin mukaan: ”First, the signal bears no trace of modulation” päinvastoin kuin tähän kirjoitettu ”Signaali on myös ”moduloitu”.”
Olet oikeassa. Tuossa meni kirjoittaessa tieto sekaisin. Kiitos, kun huomasit.
Painovoima-aallot niitä on viime aikoina saatu esille kun on rakennettu muutamia tunnistimia. Tämä on kiinnostavaa kun löydetään uusia asioita. Mihin perustuvat nuo aallot onko niillä jonkinlaista energiaa tai massaa kuin vesiaalloilla . Voisiko painovoima aalloilla viestiä ja kuinka nopeasti ne liikkuvat universumin halki. Liikkuvatko nopeammin kuin radioaallot. Jos voisi tehdä painovoima-aaltoja eri pituisina jaksoina voisiko tietoa välittää siten. Ehkä muut sivilisaatiot viestivät painovoima-aalloilla.Jos Ligo-aalto tunnistimet voisi puristaa kännykän sisään tulevaisuudessa .Ehkä joku jossakin on jo pohtinut samaa kuin ”aprikoiva”.
Taitaa mennä vähän scifin puolelle tuo spekulointi gravitaatio aalloilla kommunikoinnista. Menee vähän samaan kastiin kun spekuloisi maanjäristyksillä kommunikoimisella, paitsi että havaittujen gravi-aaltojen syntymekanismit ovat neutronitähdissä, mustissa aukoissa ja galaksien törmäilyissä, niin aika massiivista lähetintä olet viestijärjestelmääsi puuhaamassa.
Periaatteessahan reaktionopeus tyhjiössä on valon nopeus ja kaikki massattomat tai lähes massattomat asiat kuten signaalit liikkuvat työhjiössä valonnopeudella, eikä tätä nopeutta normaalioloissa voida ylittää. On kuitenkin muutamia erikoistapauksia joissa tietystä pisteestä tarkkailemalla valonnopeus voidaan ylittää, kuten kahden vastakkaiseen suuntaan kulkevan fotonin näkökulmasta vastakkainen fotoni vaikuttaisi kulkevan valoa nopeammin. Gravi-aaltojen on spekuloitu venyttävän ja kutistavan avaruutta liikkuessaan, joten hetkittäin gravi-aallon aallonpituutta (tai puoli-aallonpituutta) lyhyemmillä matkoilla lienee mahdollista että aallot voisivat vaikuttaa kuljettavan informaatiota valoa nopeammin, mutta tämä tasaantuisi kyseistä jaksoa pidemmillä matkoilla etäisyyden venyessä normaalia pidemmäksi.
Energiaa kaikilla aalloilla on, mutta vesiaallollahan ei ole itsessään massaa, vaan massa on vedellä jossa aalto itsessään liikkuu. Ajattele asiaa näin: Kun pisara tipahtaa veden pintaan ja synnyttää aaltoja, pisaran massaan varautunut energia vapautuu veteen ja muodostaa aallon joka alkaa kulkea väliaineena toimivassa vedessä. Aallolla on siis se energia mikä pisarasta vapautui ja joka taivuttaa veden pintaa aiheuttaen vesimolekyylien liikkumista, mutta aallolla itsellään ei siltikään ole massaa, vaan se ainoastaan liikkuu vedessä jolla on massa.
Sama pätee radioaaltoihin ja kaikkiin muihinkin aaltoihin, joilla on siis se energiapotentiaali joka niihin on niiden muodostuksessa siirtynyt ja niiden väliaineella (joka voi olla myöskin tyhjiö) jossa ne liikkuvat voi olla massa, mutta ne itsessänsä ovat massattomia ja ainoastaan saattavat aiheuttaa massan edestakaista liikettä.
Näin, vaikkei varsinaisesti kuulukkaan jutun SMG-signaalien aihepiiriin.
Kiitoksia opettavaisesta vastauksesta liittyen painovoimaaaltoihin. Kysyisin ammattilaisilta painovoimasta, onko jossakin menossa tutkimuksia painovoiman kumoamismenetelmästä. Mikähän oli aikanaan ns.Philadelfiakoe magnetismilla Amerikassa ja liittyikö se jotenkin painovoiman.