Esitelmä HR-diagrammista

Tähtitieteellinen yhdistys Kirkkonummen Komeetta järjesti yleisöesitelmän, jossa professori Tapio Markkanen kertoi aiheesta Hertzsprungin-Russellin diagrammi 100 vuotta. Esitelmä oli Kirkkonummen koulukeskuksessa ja sillä oli 25 kuulijaa. Helsingin yliopiston Vapaan sivistystyön toimikunta rahoitti esitelmän.

Tieteessä tutkimuskohteiden luokittelu on usein osoittautunut avaimeksi luonnon syvälliseen ymmärtämiseen. Tunnetuin esimerkki lienee alkuaineiden jaksollinen järjestelmä.

Tähtien tutkimuksessa Ejnar Hertzsprungin ja Henry Norris Russellin 1905 luoma tähtien kaksiulotteinen luokittelu on vaikuttanut keskeisesti tähtien rakenteen ja kehityksen ymmärtämiseen. Siihen liittyy myös kysymys, kuinkaovat syntyneet alkuaineet, joihin elämä ja myös ihmisen olemassaolo perustuu.

Klikkaa kuvaa!
Professori Tapio Markkanen esitelmöi Kirkkonummella. Kuva Seppo Linnaluoto.

Professori Tapio Markkanen on tähtitieteilijä, joka on toiminut runsaan vuosikymmenen yliopistojen rehtorien neuvoston pääsihteerinä.

Esitelmöitsijä otti ensimmäiseksi esille Linnén järjestelmän. Carl von Linné luokitteli 1700-luvulla kasvi- ja eläinkunnan. 1800-luvulla luotiin alkuaineiden jaksollinen järjestelmä. Siinä jätettiin paikat myös niille alkuaineille, joita ei ollut vielä löydetty.

Tähtien tutkimus 1800-luvulla

Tähtien olemukseen ei päästy pitkään aikaan kiinni, koska edes niiden etäisyyksiä ei tiedetty. Maan täytyi kiertää Aurinkoa, näin määräsivät Keplerin ja Newtonin työt 1600-luvulla. Ja Maan kiertoliikkeen Auringon ympärillä täytyi näkyä ympäristön tähtien paikoissa, mutta sitä ei kyetty saamaan selville. Tähtien täytyi siis olla tavattoman kaukana. Vasta 1838 onnistui ensimmäinen tähden etäisyyden mittaus. Bessel sai selville tähden 61 Cygni etäisyyden. Se oli kaksoistähti, joten samalla hän sai selville myös tähtien massat.

1800-luvulla kehittyi myös tähtien spektraalianalyysi. Jo Newton oli 1672 huomannut, että valo hajosi eri väreiksi prismassa. 1814 Joseph von Fraunhofer löysi Auringon viivaspekrin ja 1823 hän löysi saman tähtien spekreistä. Robert Bunsen ja Gustav Kirchhoff huomasivat spektriviivojen yhteyden 1859 eri alkuaineisiin. Se mullisti kemiallisen analyysin.

Esitelmöitsijä kertoi, että Helsingin Senaatintorilla olevassa Aleksanteri II:n patsaassa olevalla tieteen hengettärellä on kädessään spektroskooppi tieteen vertauskuvana.

Ludwig Boltzmann löysi mustan kappaleen säteilylain 1884 ja Max Planck selitti teoreettisesti mustan kappaleen säteilyn spektrin vuonna 1900.

Klikkaa kuvaa!
Professori Markkasen esitelmää kuunteli 25 kuulijaa. Kuva Seppo Linnaluoto.

Yleensä tähtien spektreissä on jatkuvan säteilyn kontinuumi sekä alkuaineiden tummia absorptioviivoja. Kuitenkin spektrin ulkonäkö riippuu pääasiassa tähden lämpötilasta, sillä tähtien alkuainekoostumukset ovat suurinpiirtein samat.

Spektrien luokittelu

Spektrien luokittelun aloitti Angelo Secchi 1860- ja 1870-luvuilla. Nykyisessä muodossaan tähtien spektriluokittelun aloitti Henry Draper noin 1885. Harvardin yliopistossa Edward Pickering ja Annie J. Cannon valmistivat 1918-24 Henry Draperin kunniaksi nimetyn luettelon, jossa oli 225 000 tähteä.

Harvardin luokittelun päätyyppejä merkitään isoilla kirjaimilla laskevan lämpötilan mukaan: O, B, A, F, G, K ja M. Spektriluokkien muistamiseksi on kehitetty englanninkielinen hokema: Oh, Be A Fine Girl, Kiss Me. Luokat jaetaan vielä alaluokkiin, joita merkitään numeroilla 0...9.

Jonathan Lane, A. Ritter ja Robert Emden esittivät 1869, että tähdet ovat hydrodynaamisessa tasapainossa. Tämä tarkoittaa sitä, että jokaisessa kohdassa tähteä ulospäin pullistavan kaasun paine on yhtä suuri kuin sisäänpäin suuntautuva painovoima. Tähden kirkkaus on verrannollinen tähden pinta-alaan ja pintalämpötilan 4. potenssiin. Tästä saadaan tähden koko.

Ejnar Hertzsprung

Ejnar Hertzsprung syntyi 1873 Kööpenhaminassa, ja hän opiskeli siellä insinööriksi ja työskenteli Pietarissa kaasuvalotekniikan yrityksessä 1898-1901. Hän opiskeli kemiaa Leipzigissa 1902, josta hän palasi Kööpenhaminaan. Hän toimi harrastajatutkijana kotonaan, Uraniassa ja Kööpenhaminan tähtitornissa.

Hän julkaisi tutkimuksia stereokuvauksen ja spektrofotometrian alalta. Vuonna 1905 hän julkaisi lehdessä Zeitschrift für wissenschaftliche Photographie (Tieteellisen valokuvauksen aikakauslehti) tutkimuksen Zur Strahlung der Sterne (Tähtien säteilystä), josta voidaan laskea Hertsprungin-Russellin diagrammin saaneen alkunsa. Siinä hän esittää, että myöhäisten spetriluokkien (G, K, M) tähdet jakautuvat kahteen ryhmään, absoluuttisesti kirkkaisiin ja himmeisiin. Kirkkaiden täytyy olla suuria. Niiden pieni määrä kertoo, että ne ovat kehittymässä nopeasti. Hertzsprung olettaa, että spektrin ja kirkkauden välillä on riippuvuus.

Hertzsprung esitti 1907 tutkimuksen valokuvauksellisesta tähden kirkkauden mittauksesta. Karl Schwarzschildt kutsui hänet Göttingeniin, josta hän siirtyi 1909 Potsdamiin. 1910 Hertzsprung matkusti Yhdysvaltoihin ja tapasi siellä Henry Russellin. 1919-45 hän työskenteli Leidenin observatoriossa Hollannissa, ja 1935-45 sen johtajana. Hän kuoli 1967 Tanskassa.

Henry Russell

Henry N. Russell syntyi 1877. Hän opiskeli Princetonissa ja väitteli tohtoriksi 1899. Hän mittasi Cambridgessa A.R. Hinksin kanssa tähtien trigonometrisia etäisyyksiä. Hän julkaisi tutkimuksia vuodesta 1910 lähtien tähtien spektriluokan ja kirkkauden suhteesta. Ja vuonna 1913 käydyssä tähtien absoluuttisia kirkkauksia koskevassa keskustelussa hän käytti asiaa selventävää diagrammi-esitystä, joka sitten sai nimen Hertzsprungin-Russellin diagrammi tai lyhyemmin HR-diagrammi.

Klikkaa kuvaa!
Russellin vuonna 1913 esittämä diagrammi.

HR-diagrammi

Hertzsprungin-Russellin diagrammissa tai lyhyemmin HR-diagrammissa vaaka-akselina on tähden spektriluokka, lämpötilan logaritmi tai väri. Pystyakselina on absoluuttinen kirkkaus.

Suurin osa tähdistä asettuu HR-diagrammin lävistäjälle siten että kirkkaat ja kuumat tähdet ovat vasemmalla ylhäällä sekä viileät ja heikkovaloiset oikealla alhaalla. Tämän pääsarjan yläpuolella olevia tähtiä sanotaan jättiläisiksi. Pääsarjan alapuolella ovat valkoiset kääpiöt.

HR-diagrammi kertoo tähtien kehityksestä. Tähtien rakenteen ja kehityksen teoria alkoi kehittyä 1920-luvulla. Silloin mm. Arthur Eddington yhdisti termodynaamisen, hydrodynaamisen ja atomi-ilmiöiden tarkastelun. 1938 C. von Weizsäcker ja Hans Bethe selvittivät tähtien energiatuotannon. Ja 1950-luvulla Martin Schwarzschild ja Fred Hoyle selvittivät, miten tähdet kehittyvät.

Klikkaa kuvaa!
Kaavamainen HR-diagrammi. Piirros Ville Koistinen/Wikipedia.

Tähtien kehitys HR-diagrammissa

Kun tähti syntyy, se siirtyy HR-diagrammissa alaspäin. Tähden sisäosat kuumenevat, niin että vety alkaa yhtyä heliumiksi. Tällöin tähti on pääsarjassa. Se missä kohtaa tähti on pääsarjassa, riippuu tähden massasta. Suurimassainen tähti on pääsarjan yläosassa, eli tähti on kuuma ja kirkas. Oma Aurinkomme on suunnilleen pääsarjan puolivälissä. Pienimassaiset tähdet ovat pääsarjan alaosassa.

Tähti on pääsarjassa ylivoimaisesti suurimman osan elinajastaan, sillä vety on yleisin aine ja se yhtyy heliumiksi hitaasti. Lopulta tähden sisäosista vety kuitenkin loppuu. Tällöin tähden sisäosat supistuvat ja ulko-osat paisuvat valtavasti. Tähdessä alkavat uudenlaiset ydinreaktiot. Tähti siirtyy pääsarjan yläpuolelle, siitä tulee jättiläinen.

Kevyt tähti (esim. Aurinko) puhaltaa harvat ulko-osat ympäröivään avaruudeen. Näemme kohteen planetaarisena sumuna. Jäljelle jää valkoinen kääpiö, joka on HR-diagrammissa huomattavasti pääsarjan alapuolella.

Raskaat tähdet päättävät päivänsä näyttävässä supernovaräjähdyksessä. Syntyneet uudet alkuaineet leviävät ympäristöön n. 10 000 km/s. Näistä alkuaineista syntyy sitten mm. kiviplaneettoja ja vaikkapa ihmisiä. Mm. me ihmiset olemme supernovien lapsia. Kaikki heliumia raskaammat alkuaineet ovat syntyneet supernovissa.

Klikkaa kuvaa!
Professori Markkanen kertoi HR-diagrammista. Kuva Seppo Linnaluoto.

Seuraava Kirkkonummen Komeetan yleisöesitelmä pidetään tiistaina 2.5. klo 18.30 alkaen Kirkkonummen koulukeskuksen auditoriossa. Johanna Torppa Helsingin yliopistosta kertoo pikkuplaneetoista.

Seppo Linnaluoto