Logiikasta ruuveihin

30.9.2022 klo 15.21, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Yläasteella tai lukiossa opiskelevat kysyvät minulta joskus miten tullaan fyysikoksi. Tähän on helppo vastata: suorittamalla koulun fysiikan ja matematiikan kurssit (koodaamisesta on myös apua) huolella ja hakemalla yliopistoon opiskelemaan fysiikkaa. Yliopistossa saa selville, mistä fysiikassa oikeastaan on kyse ja onko se oma ala.

Jatkokysymys miten tullaan hyväksi fyysikoksi on sitten vaikeampi. Yliopisto-opintojen osalta ehkä tärkein asia mihin voi itse vaikuttaa on se, että on innostunut, omistaa opinnoille niille tarvittavan ajan, ja valitsee gradu- ja väitöskirjaohjaajansa huolella. Fysiikan teorioiden sisällön omaksumisen (mihin yliopiston kurssit lähinnä keskittyvät) lisäksi tutkijan työssä tarvitaan erilaisia taitoja, joista monet oppii vain tekemällä kuten käsityössä.

Hiukkasfysiikassa ja kosmologiassa (saati fysiikassa laajemmin) on erilaisia aloja, joissa tarvitaan eri taitoja ja ajattelutapoja.

On matemaattisen fysiikan nimellä kulkevaa tutkimusta, joka on matemaattisesti huolellista ja kehittynyttä, mutta usein kaukana havainnoista. Yhdestä suunnasta se sulautuu matematiikkaan. Jotkut matemaattiset fyysikot ovatkin matematiikan laitoksilla töissä, ja yhteisössä lähempänä matemaatikkoja kuin muita fyysikoita.

Toisessa suunnassa matemaattinen fysiikka muuttuu vähemmän täsmälliseksi teoreettiseksi fysiikaksi, jonka pääpaino on teorioiden ja mallien kehittämisessä määrättyjen ilmiöiden kuvaamiseen. Lähemmäs havaintoja mentäessä teoreettinen fysiikka puolestaan lomittuu fenomenologiaksi kutsuttuun fysiikan haaraan. Fenomenologiassa keskitytään siihen, millaisia havaintoja mallit tarkalleen ennustavat ja selittävät, ja verrataan niitä kokeiden tuloksiin. Siinä on tärkeämpää hallita teoreettisia menetelmiä sekä tuntea kokeita ja osata verrata niitä teoriaan kuin ymmärtää hienostuneen matematiikan yksityiskohtia.

Fenomenologia on silta teoriasta kokeelliseen fysiikkaan. Kokeellisessa fysiikassa pitää tuntea teorioiden lisäksi laitteiden rakentamista, toimintaa ja käytäntöä. Jos matemaattisen fysiikan rajalla on matematiikka, missä pitää hahmottaa loogisia yhteyksiä vailla kosketusta todellisuuteen, niin kokeellisen fysiikan rajalla on insinööritaito, missä pitää tietää miten ruuvit pannaan paikalleen.

Sen lisäksi, että eri aloilla tarvitaan erilaisia taitoja, niiden sisällä voi tehdä tutkimusta eri tyyleillä. Osassa teoreettista fysiikkaa kehitetään parempia menetelmiä ja teorioita, vaikkapa esitetään uudenlaisia pimeän aineen hiukkasia tai tapoja kuvata kosmisen inflaation kvanttivärähtelyjä. On myös tutkimusta, joka on hyvin spekulatiivista eikä pohjaa vankasti sen enempää havaintoihin kuin teoriaankaan. Siinä heitellään kaikenlaisia ideoita, ja alkuun ne voivat olla puolivillaisia ja käsittely epätäsmällistä; tärkeintä on uusien yhteyksien ja näkökulmien kehittäminen.

Koska tutkimusta ja taitoja on niin erilaisia, on vaikea arvioida tutkijoita yksiulotteisella hyvä-huono-akselilla. Tutkijoiden välillä on kyllä merkittäviä tasoeroja, ja on syytä myös hyväksyä se, että osa eroista on luontaisia, kuten urheilussa ja musiikissa. Olipa syynä perintötekijät tai lapsuuden kehitys, minusta ei voisi tulla yhtä taitavaa fyysikkoa kuin vaikkapa säieteoreetikko Edward Wittenistä, vaikka olisin kuinka omistautunut.

Kaikessa fysiikan tutkimuksessa on hyödyksi peräänantamattomuus yhdistettynä kykyyn arvioida omia ideoita kriittisesti ja luopua niistä. Teoreettisessa kosmologiassa onkin vahva kyseenalaistamisen ja väärässä olemisen kulttuuri. Yksi tärkeä taito on se, että osaa muodostaa selkeän käsityksen siitä, mitä tietää ja miksi, mitä ei tiedä, ja pystyy esittämään kantansa selkeästi. Ja sanottakoon että oman työn markkinoiminen rahoitushakemuksissa on nykyään yhä tärkeämpi taito.

Uutta tutkimusta julkaistaan joka päivä, ja on tärkeää pysyä ajan tasalla. Tieteellisiä artikkeleita pitää osata lukea sekä pintapuolisesti että syvään pureutuen. Kaikkeen edes oman alan tutkimukseen ei ole aikaa perehtyä, joten pitää pystyä saamaan käsitys siitä, mistä on kysymys, vaikka ei ymmärrä artikkelia tarkkaan. Toisaalta omaan tutkimukseen läheisesti liittyvien asioiden kohdalla on tärkeää osata käydä asiat läpi yksityiskohtaisesti.

Tärkeitä taitoja voisi listata enemmänkin. Niitä oppii tekemällä, eikä kukaan tiedä tai osaa kaikkea. Siksi on tärkeää osata tehdä yhteistyötä ja paikata omia heikkouksia muiden vahvuuksilla. Itse en esimerkiksi osaa koodata (on kauan siitä, kun olen edes oikolukenut toisten koodia) enkä hallitse data-analyysin yksityiskohtia. Muiden kanssa työskennellessä olen oppinut arvostamaan sitä mitä he osaavat, ja samalla näkemään sekä yhteistyökumppanien että itseni rajoitukset.

2 kommenttia “Logiikasta ruuveihin”

  1. Erkki Kolehmainen sanoo:

    Fysiikka on inhimillistä toimintaa ja tulla hyväksi fyysikoksi on ainakin osittain samaa kuin tulla hyväksi ihmiseksi. Siihen liittyy tiettyjä moraali- ja eettisiä kriteerejä, jotka eivät poikkea mitenkään muista asioista kiinnostuneiden ihmisten vaatimuksista. Fysiikan tutkimuksen kannalta ongelmallista on rahoituksen hankkiminen hakumenettelyn kautta. Rahoituspäätöksiä nimittäin tekevät esim. vallitsevan hiukkasfysiikan ns. standardimallin kannattajat. Eli ei kannata mennä heille kertomaan, ettei pimeää ainetta ole olemassa. Se on varmin tapa tehdä turhaa työtä! Mikä tahansa idea, millainen pimeän aineen hiukkanen voisi olla, on parempi. Skaalan laajentamien WIMPien aksonien ulkopuolelle sallitaan, mutta ei kieltämistä. Tilanne on verrattavissa urheiluun. Jos sanot, että Putin on rikollinen, niin saat ehkä kilpailla (tosin ilman kansallistunnuksia) muuten et saa. Tällaista on ”mielipiteen vapaus”, jonka väitetään kuuluvan demokratiaan!

    1. Syksy Räsänen sanoo:

      En viitannut tässä yhteydessä sanalla ”hyvä” tieteen tekemisen etiikkaan, vaikka sekin on tärkeä asia. Se, että joku tekee hyvätasoista tutkimusta ei valitettavasti tarkoita (tai edellytä) sitä, että hän olisi erityisen moraalisesti hyvä ihminen.

      Vaihtoehtoa pimeälle aineelle (muokattu gravitaatio) tutkitaan yhä, mutta se on ollut paljon selitys- ja ennustusvoimaisempi idea kuin kilpailijansa. Siksi sitä tutkitaan enemmän.

      Ks. esim. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/luodin-jaljet/

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Vinouman korjaamista

27.9.2022 klo 23.14, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Kirjoitin Helsingin opettajien ammattiyhdistyksen HOAY lehteen Rihveli 2/2022 siitä, miksi fysiikassa on niin vähän naisia. Artikkeli Vinouman korjaamista on luettavissa tässä. Ote jutusta:

”Yhdysvalloissa vuonna 2012 tehty tutkimus havainnollistaa asiaa. Siinä 127 yhdysvaltalaiselle matemaattis-luonnontieteellisen tiedekunnan jäsenelle eri yliopistoissa lähetettiin samanlainen hakemus, johon oli laitettu joko miehen tai naisen nimi. Arvioijat pitivät hakijaa pätevämpänä ja tarjosivat tälle korkeampaa palkkaa kun paperissa oli miehen nimi. Sillä ei ollut eroa, oliko arvioija mies vai nainen.”

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Rajoituksia monesta suunnasta

26.9.2022 klo 00.11, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Luultavasti noin 80% maailmankaikkeuden aineesta on pimeää ainetta, joka on havaittu vain gravitaation kautta. Yksi vanhimpia ehdotuksia pimeäksi aineeksi on mustat aukot. Koska pimeä aine on vanhempaa kuin tähdet, nämä mustat aukot eivät ole voineet syntyä tähtien romahduksessa, vaan niiden täytyy olla peräisin muinaisesta maailmankaikkeudesta. Tämän takia ne voivat olla paljon tähtiä kevyempiä tai raskaampia.

Vaikka mustat aukot eivät säteile valoa, niitä voi havaita monella tapaa. Havaintokanavista juhlituin on kahden mustan aukon toisiaan kiertäessään ja toisiinsa sulautuessaan synnyttämät gravitaatioaallot, joista myönnettiin vuonna 2017 Nobelin palkinto. Gravitaatioaaltoja on havaittu nyt 90 kappaletta. Suurimmassa osassa ei ole mitään viitteitä siitä, että lähteenä olisi muuta kuin tähtien romahduksessa syntyneitä mustia aukkoja ja neutronitähtiä. Jokusessa havainnossa on näkynyt kappaleita, joiden alkuperä oudoksuttaa, mutta ei ole selviä todisteita siitä, että ne olisivat muinaisilta ajoilta.

Mutta sekin, että mitään ei ole löydetty on hyödyllistä tietoa. Jos kaikki pimeä aine olisi sen massaisia mustia aukkoja, että niiden lähettämät gravitaatioaallot osuvat gravitaatioaaltokokeiden LIGO ja Virgo havaintoalueelle, niin nämä kokeet olisivat ne nähneet. Tästä voi päätellä, että mustien aukkojen massan pitää olla pienempi kuin sadasosa Auringon massaa tai isompi kuin tuhat Auringon massaa.

Gravitaatioaaltojen lisäksi (oletettavasti) tähtien romahduksessa syntyneitä mustia aukkoja on havaittu niitä kiertävän aineen lähettämän kirkkaan säteilyn kautta. Koeryhmä Event Horizon Telescope julkaisi vuonna 2019 kuvan galaksin M87 keskustan jättimäisestä mustasta aukosta, jonka massa on kuusi miljardia Auringon massaa. Tämän vuoden toukokuussa oli vuorossa kuva sen lajitoverista Linnunradan keskustassa, jonka massa on neljä miljoonaa Auringon massaa.

Myös kevyempien mustien aukkojen ympärille kertyy säteilevää ainetta. Jos kaikki pimeä aine olisi mustia aukkoja, kertymäkiekkojen säteilyä tulisi niin paljon joka puolelta että se olisi havaittu, jos aukkojen massa on yhden ja tuhannen Auringon massan välillä. Jos massa on pienempi, kiekot ovat liian pieniä havaittavaksi. Jos massa on isompi, mustia aukkoja on liian harvassa.

Yksi todistusaineiston palanen pimeän aineen olemassaolon puolesta on se, että galaksit ja galaksiryppäät taivuttavat valoa enemmän kuin mitä näkyvä aine selittää. Myös pienemmät kohteet taivuttavat valoa. Jos meidän ja tähden välistä kulkee pienikokoinen mutta raskas kappale, se keskittää tähden valoa polttolasin lailla, joten tähden kirkkaus hetkeksi kasvaa. Se, että tällaista ylimääräistä tuiketta ei ole nähty, asettaa isoja rajoituksia sille, että kaikki aine koostuisi mustista aukoista. Näiden havaintojen puute sulkee pois massat Auringon massan miljardisosan tuhannesosasta tuhanteen Auringon massaan.

Mustat aukot häiritsevät tähtien ratoja paljon enemmän kuin sellainen pimeä aine, joka koostuu harvasta hiukkaskaasusta. Kun musta aukko kulkee tähden läheltä, se linkoaa tähden korkeampaan nopeuteen, siirtäen sille omaa liike-energiaansa. Tämän takia erityisesti kääpiögalaksit venyvät, kun niiden tähdet pääsevät liikkumaan yhä kauemmaksi keskustasta. Mustan aukon ohikulku voi myös hajottaa kaksoistähtijärjestelmän, kun yksi tähti mustan aukon vetämänä irtoaa toisen otteesta. Koska tällaista ei ole havaittu, mustat aukot eivät voi olla pimeää ainetta, jos niiden massa on Auringon massan ja kymmenen tuhannen Auringon massan välissä.

Mitä isompi on mustien aukkojen massa, sitä vähemmän ja sitä harvemmassa niitä on – ja sitä tehokkaammin tavallinen aine klimppiytyy mustien aukkojen ympärille. Siitä, että tällaista kasautumista ei nähdä, voidaan päätellä, että mustien aukkojen massan pitää olla pienempi kuin sata Auringon massaa, yhä olettaen, että kaikki pimeä aine koostuu niistä.

Jos mustien aukkojen massa on tarpeeksi pieni (alle 10-12 eli tuhannesmiljardisosa Auringon massasta), niitä ei olisi vielä havaittu. Mutta Stephen Hawkingin esittämän ennusteen mukaan mustat aukot säteilevät kvanttimekaanisesti sitä voimakkaammin mitä pienempiä ne ovat.

Jos muinoin syntynyt musta aukko olisi kevyempi kuin 10-16 (eli kymmenesmiljoonasmiljardisosa) Auringon massasta, niin se olisi ehtinyt säteillä kaiken energiansa pois. On tosin mahdollista, että kun aukon massa laskee alle mikrogramman, niin Hawkingin säteily lakkaa ja jäljelle jää pysyvä nokare. Mitkään havainnot eivät poissulje sitä, että pimeä aine koostuu tällaisista nokareista, ja minäkin olen sitä mahdollisuutta tutkinut.

Joka tapauksessa 10-16 ja 10-12 Auringon massan välissä on ikkuna, jossa kaikki pimeä aine voisi olla mustia aukkoja. Tämä vastaa asteroidien massaa, ja tällaiset mustat aukot olisivat suunnilleen atomin kokoisia.

Monet mainituista rajoista mustien aukkojen massoille menevät päällekkäin. Tämä on eduksi, koska kullakin havainnolla on omat epävarmuutensa.

Esimerkiksi mustien aukkojen tähtien ratoihin aiheuttaman häiriön suuruuteen vaikuttaa se, miten mustat aukot klimppiytyvät. Jos ne kerääntyvät keskenään kimpuiksi, kimppuja on harvemmassa kuin yksittäisiä mustia aukkoja, joten niiden aiheuttamat häiriöt ovat harvinaisempia. Lisäksi yllä on oletettu, että kaikilla pimeän aineen mustilla aukoilla on sama massa. Mustien aukkojen alkuperän selittävien mallien mukaan kuitenkin samalla syntyy monia erimassaisia mustia aukkoja.

Yksityiskohdista kiistellään, mutta vaikuttaa siltä, että ainoat mahdollisuudet ovat tosiaan asteroidien massaiset mustat aukot tai Hawkingin säteilystä jäljelle jääneet nokareet. Edelliset voisi havaita etsimällä röntgensädelähteiden tuiketta tähtien sijaan. Havaintoa tuskin tehdään –tai kaikkia asteroidimassoja saadaan poissuljettua– ennen kuin aikaisintaan 2030-luvulla. Vaikka sopivia havaintolaitteita on jo, kuten intialainen AstroSat-röntgensatelliitti, tällaisia mahdollisia mustia aukkoja ei taideta pitää niin tärkeänä kohteena, että niihin pian pantaisiin tarpeeksi havaintoaikaa.

Mustien aukkojen jahti osoittaa miten aivan erilaisia havaintoja voi käyttää saman asian luotaamiseen, eikä kannata keskittyä vain yhteen suuntaan. Se myös muistuttaa siitä, että löytöjen puute on itsessään arvokasta tietoa, joka ohjaa teoreettista tutkimusta kertomalla miten asiat eivät ainakaan ole.

30 kommenttia “Rajoituksia monesta suunnasta”

  1. Eusa sanoo:

    Tätä korjausviestiä ei tule julkaista.

    3. viimeisessä kappaleessa ei liene tarkoitus mainita ”mustien tähtien ratoihin aiheuttaman…” vaan ”mustien aukkojen tähtien ratoihin aiheuttaman…” Samassa kappaleessa ”pimeä aineen” –> ”pimeän aineen”.

    Voimia popularisointiin!

    1. Syksy Räsänen sanoo:

      Kiitos kiitos, korjattu.

  2. Seniorikosmologi sanoo:

    Pimeän energian (ja aineen) uskotaan selittävän maailmankaikkeuden laajenemisen kiihtymisen. Tämän kiihtymisen on sanottu alkaneen noin 5 miljardia vuotta sitten. Voisiko ajatella, että siihen mennessä kuluneen vajaan 9 miljardin vuoden aikana mustia aukkoja (eli pimeää energiaa ja ainetta) oli syntynyt riittävän paljon kiihtyvän laajenemisen synnyttämiseksi?

    Eikö olisi loogista, että näkyvän aineen, käytännössä tähtien, määrä vähenee ja mustien aukkojen määrä kasvaa ajan myötä, jolloin pimeän aneen määrä ja maailmankaikkeuden kiihtyminen lisääntyvät?

    1. Syksy Räsänen sanoo:

      Pimeä aine ei ole vastuussa laajenemisen kiihtymisestä, eikä mustilla aukoilla ole kiihtyvän laajenemisen kanssa tiettävästi mitään tekemistä.

  3. Seniorikosmologi sanoo:

    Aine ja energia ovat mustissa aukoissa erottamattomia. Eli mustat aukot ovat sekä pimeää ainetta että pimeää (painovoima)energiaa, eikö?

    1. Syksy Räsänen sanoo:

      Pimeällä aineella ja pimeällä energialla ei ole tiettävästi mitään tekemistä keskenään. Pimeä energia ei siis ole pimeään aineeseen liittyvää energiaa.

      Ei tiedetä, koostuuko pimeä aine mustista aukoista vaiko hiukkasista.

  4. Erkki Kolehmainen sanoo:

    ”Se myös muistuttaa siitä, että löytöjen puute on itsessään arvokasta tietoa, joka ohjaa teoreettista tutkimusta kertomalla miten asiat eivät ainakaan ole.”

    Löytöjen puute saattaa olla arvokasta, mutta eihän se tietoa ole? Jos mahdollisia tapoja, miten asiat voidaan tehdä, on hyvin paljon, niin ei se paljoa auta, jos olemme toteuttaneet yhden toimimattoman idean! Kansallismuseossa on hankasalmelaisen kylähullun tekemä ikiliikkuja, joka olisi toiminut, jos siinä olisi ollut ”kylymä ilima laahutin” eli lämmitin. Vaikka kaikki maailman kylähullut väsäisivät oman ikiliikkujansa, niin ei asia muutu, koska heiltä puuttuu tieto, miksi ikiliikkuja ei voi toimia.

    1. Syksy Räsänen sanoo:

      Kommentti ei koskenut ”kylähulluja”, vaan tieteen tekemistä.

      Esimerkiksi se, että eetterituulta (tai muita eetterin ennustamia ilmiöitä) ei 1800-luvun lopulla havaittu oli tärkeä havainto, koska se viittasi siihen, että oikea ratkaisu löytyy muualta, siinä tapauksessa suppeasta suhteellisuusteoriasta.

  5. Martti V sanoo:

    Jos mikrogramman auko osuu maapalloon, mitä käy?

    1. Syksy Räsänen sanoo:

      Se matkaa Maan läpi sitä juuri häiritsemättä. Tuollaiset mustat aukot ovat niin pieniä ja kevyitä, että niiden havaitseminen on vaikeaa.

      1. Martti V sanoo:

        Detektointissa taitaa olla mahdollisuutena vain gravitaation vuorovaikutus. Onko törmäys niin epätodennäköinen ettei aukkoon tipu juuri mitään eikä se näin kasva?

        1. Syksy Räsänen sanoo:

          Joo. Mikrogramman massainen kappale ei paljoa gravitoi, ja koska tällaisen mustan aukon koko on 10^(-35) m luokkaa, suora törmäys mihinkään on äärimmäisen epätodennäköinen.

          On esitetty, että tällaisia mustia aukkoja voisi havaita tiheällä verkolla tarkkoja pieniä gravitaatiomittareita. Tarkemmin täällä: https://arxiv.org/abs/2203.07242

      2. Martti V sanoo:

        Puoltaako teoriat esim. Hawking säteily sitä, että mustat aukot eivät hörysty kokonaan vaan jää nökäre jäljelle?

        1. Syksy Räsänen sanoo:

          Tämänhetkinen tietomme ei sano mitään asiasta suuntaan tai toiseen.

  6. Seniorikosmologi sanoo:

    Miten musta aukkko voi olla keveä? Siinähän aine on kasaantunut lähes äärettömän tiiviiksi ja samalla siis painavaksi. Jostain olen lukenut, että atomiytimen kokoinen musta aukko painaa 1000 000 000 000 kg.

    1. Syksy Räsänen sanoo:

      Ensinnäkin tiheys on eri asia kuin massa. Jos kappale on pieni, se voi olla kevyt vaikka on tiheä.

      Toisekseen musta aukko muodostuu, kun tarpeeksi massaa tietyn säteen (ei siis tilavuuden) sisällä. Koska massa/säde on kiinnitetty, tiheys eli massa/tilavuus on sitä pienempi, mitä isompi musta aukko on.

      Kyllä, protonin kokoinen musta aukko (jos niitä on olemassa) painaa tosiaan noin 10^12 kg eli 10^(-19) Auringon massaa.

  7. Jari Toivanen sanoo:

    Mustista aukoista kysyisin, että onko niihin teoriassa liitetyt madonreiät kaksisuuntaisia? Olisiko mahdollista havaita mustista aukoista meillepäin virtaavaa liikennettä?

    1. Syksy Räsänen sanoo:

      Ei. Lisäksi olemassa oleviin mustiin aukkoihin ei luultavasti liity madonreikiä. Ne ovat ikuisten pyörivien mustien aukkojen yksinkertaistetun kuvauksen piirre, joka luultavasti ei päde todellisille mustilla aukoille.

  8. Tietämätön sanoo:

    Mihin perustuu väittämä ”Koska pimeä aine on vanhempaa kuin tähdet,”?

    1. Syksy Räsänen sanoo:

      Yksi parhaita todistusaineiston palasia pimeästä aineesta on sen vaikutus kosmiseen mikroaaltotaustaan kun maailmankaikkeus oli 380 000 vuoden ikäinen.

      Tähdet ovat syntyneet vasta 100-200 miljoonan vuoden iässä.

      1. Tietämätön sanoo:

        Hyvä ja ytimekäs perustelu.
        380000 vuotta vanhan maailmankaikkeuden ainejakaumasta voidaan siis päätellä myös pimeän aineen gravitaation vaikutus? Ja jakaumaa ei voida perustella pelkästään näkyvän aineen massalla?

        1. Syksy Räsänen sanoo:

          Kyllä. Ilman pimeää ainetta kosmisen mikroaaltotaustan läiskät näyttäisivät aivan erilaisilta. Kosmisesta mikroaaltotaustasta näkyy, että fotonit ovat velloneet paljon syvemmissä gravitaatiopotentiaalikuopissa kuin mitä näkyvä aine pystyy selittämään.

          1. Tietämätön sanoo:

            Kiitos vastauksesta. Voisiko tuota mikroaaltotaustan analysointia avata maallikolle tarkemmin jossain tulevaisuuden kirjoituksessa? Lähinnä kosmologin näkökulmasta, eli ei tarvitse mennä mittausmenetelmiin syvemmin.

          2. Syksy Räsänen sanoo:

            Tuopa onkin hyvä blogikirjoituksen aihe. Kirjoitan siitä myöhemminä tänä vuonna.

  9. Cargo sanoo:

    Pimeä aine lienee jollakin tavalla lokalisoitunutta energiaa johon voidaan liittää omanlaisensa kvanttikenttä? Mutta voisiko tämä massaenergiatiheytenä havaittu pimeä aine olla vain ilmentymä Standardimallin kvanttikenttien sisältämästä energiasta, kun siis oletetaan ettei kaikki sellainen aaltomainen energia ole kasaantunut ja muuttunut näkyviksi hiukkasiksi? Tällöin ei olisi myöskään mitään pimeitä hiukkaisia, jotka voisivat vuorovaikuttaa toistensa kanssa jollakin pimeällä tavalla.

    1. Syksy Räsänen sanoo:

      Ellei pimeä aine koostu mustista aukoista, se oletettavasti koostuu hiukkasista, kuten kaikki muukin aine. Kyseisillä hiukkasille ei vain ole sähkövarausta, siksi niitä ei nähdä valon avulla eikä voi koskea. Kaikki hiukkaset ovat kvanttikenttien tihentymiä.

      Pimeä aine ei voi koostua mistään Standardimallin hiukkasista. Ainoat Standardimallin stabiilit hiukkaset, joilla ei ole sähkövarausta ovat neutriinot, ja niitä on liian vähän.

      1. Cargo sanoo:

        Pahoittelen, että kysyn asiaa uudestaan. Mutta jos siis oletetaan tyhjä avaruus, jossa ei ole näkyvän aiheen hiukkasia, niin sellainen alue sisältää kuitenkin Standardimallin erilaisten kvanttikenttien nollapistefluktuaatioita, joihin on latautunut nollapiste-energiaa. Voisiko olla mahdollista, että galaksin gravitaatio vaikuttaa tuohon tyhjiön energiatiheyteen suurilla etäisyyksillä ja vetää olemassaolevaa energiaa puoleensa? Siitähän luulisi seuraavan sen, että tyhjiön energiatiheys on suurempi galaksien ympärillä kuin galaksien välisessä avaruudessa – ja se tulkittaisiin pimeäksi aineeksi.

        1. Syksy Räsänen sanoo:

          Ei.

  10. Mikko sanoo:

    Voisiko muinaisten mustien aukkojen massajakauma olla tasainen esim. 10^-16 – 10^10 auringon massan alueella ja näin kattaa koko puuttuvan pimeän aineen massan? Tällöin niitä olisi vaikea testeillä, jotka keskittyvät yhteen kapeaan massa-alueeseen kerrallaan, kun siinä alueella olisi vain murto osa muinaisten mustien aukkojen kokonaismassasta.

    1. Syksy Räsänen sanoo:

      Hyvä kysymys. Yleensä tosiaan oletetaan, että kaikilla mustilla aukoilla on jokseenkin sama massa. Teoreettisten mallien mukaan kuitenkin kevyimpien ja raskaimpien mustien aukkojen massat tyypillisesti eroavat ainakin tekijällä sata, joskus enemmänkin.

      Jos kaikilla on sama massa, niin välillä 10^(-16)…10(-12) Auringon massaa mikä tahansa massa kelpaa. Siitä ylöspäin raja nousee aika jyrkästi, 10^(-10) Auringon massan kohdalla mustat aukot voivat olla noin sadasosa pimeästä aineesta.

      Jos mustilla aukoilla on hyvin erilaisia massoja, rajat massoille pitää selvittää havainnoista erikseen, ei voi vain käyttää yksimassaisen tapauksen rajoja ja soveltaa niitä samaan aikaan usealle eri massalle.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Viisareina tähdet

27.8.2022 klo 22.29, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kirjoitin kesäkuussa maailmankaikkeuden iän määrittämisestä. Mainitsin, että jos ”tiedetään miten jotkut kappaleet –vaikkapa tähdet tai galaksit– kehittyvät, niin sellaisen iän voi arvioida ulkonäön perusteella”. Palaan nyt tähän iän arviointiin.

Maailmankaikkeudessa on galakseja, joiden kehityksen avulla mitataan aikaa. Kosmologeille on tullut tavaksi kutsua niitä kosmisiksi ”kronometreiksi” eli aikamittareiksi. Tälle on kyllä arkisempikin sana: kello.

Viisarikello kertoo, montako kertaa viisari on liikkunut sovitun nollakohdan jälkeen (eli viimeisimmän keskiyön tai keskipäivän). Kun tiedetään, kauanko yksi viisarin liike kestää, tämä lukumäärä kertoo paljonko aikaa on kulunut.

Kun aikaa mitataan galakseista, viisareina ovat tähdet. Tähtien elämänkaari tunnetaan hyvin: tähti muodostuu kaasupilvien romahtaessa ja kehittyy eri vaiheiden läpi valkoiseksi kääpiöksi, neutronitähdeksi tai mustaksi aukoksi, riippuen siitä kuinka massiivinen se on.

Niinpä galaksin iän voi määrittää katsomalla missä kehitysvaiheessa olevia tähtiä siinä on. Erityisesti vanhimmat tähdet ovat tärkeitä, koska ne antavat alarajan galaksin iälle. Galaksien valo sisältää valtavan otoksen erilaisten tähtien valosta – esimerkiksi Linnunradassa noin 100 miljardia tähteä.

Tässä on se hyvä puoli, että ei ole niin väliä mitä joillekin yksittäisille tähdille on tapahtunut – poikkeamat hukkuvat isoon otokseen. Varjopuoli on se, että tähtien kehityksen lisäksi pitää tietää, miten tähtien jakauma kehittyy galaksissa.

Tämän takia yritetään keskittyä galakseihin, jotka eivät ole yhtyneet toisiin galakseihin. Galaksien sulautuminen sekoittaa niiden tähdet keskenään, minkä takia on vaikeampi selvittää millainen tähtien jakauma oli alun perin ja miten se on kehittynyt. Lisäksi pyritään valitsemaan galakseja, joissa ei enää juuri muodostu uusia tähtiä, tähtiväestö vain vanhenee tasaisesti.

Sen lisäksi, että yhdessä galaksissa on paljon tähtiä, vaihtelua suitsitaan käyttämällä kellona yhden galaksin sijaan tuhansia galakseja eri puolilla taivasta. Tällöin mahdollisesti poikkeuksellisten yksittäisten galaksien vaikutus on vähäinen, ja satunnaisten vaihtelujen merkitys pienenee otoksen koon kasvaessa.

Galaksin valosta on helppo mitata punasiirtymä, joka kertoo paljonko avaruus on laajentunut sen jälkeen kun valo lähti matkaan. Kun verrataan sitä, miten eri galaksien punasiirtymä riippuu niiden iästä, saadaan selville, miten maailmankaikkeus laajenee ajan kuluessa. Tämä on yksi suorimpia tapoja mitata avaruuden laajenemisnopeutta ja sen muutosta.

Usein laajenemisnopeus sen sijaan päätellään mittaamalla galaksien punasiirtymiä ja etäisyyksiä. Etäisyyden ja punasiirtymän suhdetta verrataan jonkin kosmologisen mallin ennusteeseen, ja mallista sitten lasketaan miten avaruus on laajennut. Tällainen päätelmä laajenemisnopeudesta on epäsuora ja riippuu käytetystä kosmologisesta mallista. Isoin epävarmuus liittyy siihen, millaista olettaa pimeän energian olevan.

Laajenemisnopeuden määrittäminen kosmisten kellojen avulla ei riipu siitä millaista pimeä energia on, mutta se on herkkä sille, miten tähtisisällön kehitystä mallinnetaan. Galaksit ovat monimutkaisempia kappaleita kuin tähdet, ja niiden tähtiväestön synnystä ja kehityksestä on kilpailevia malleja. Mallit johtavat erilaisiin tuloksiin galaksien iästä ja siten maailmankaikkeuden laajenemisnopeudesta.

Jotkut suositut kehitysmallit ennustavat maailmankaikkeuden iän aivan pieleen. Voi sanoa, että laajenemisnopeuden kannalta tällä ei ole väliä, koska se riippuu vain siitä, miten ikä muuttuu punasiirtymän myötä, ei iän nollakohdasta. Kello voi mitata ajan kulumista tarkasti, vaikka se olisi väärässä ajassa. Mutta se, että malli ennustaa yhden asian väärin herättää epäilyksen siitä, osuuko oikeaan muissa asioissa.

Yksi kosmologian pohdituimpia kysymyksiä tällä hetkellä on se, että kosmisesta mikroaaltotaustasta päätelty avaruuden laajenemisnopeus on pienempi kuin lähellä olevien supernovien avulla mitattu. Kosmiset kellot sopivat paremmin yhteen supernovien tulosten kanssa kuin kosmisen mikroaaltotaustan, mikä viittaa siihen, että ristiriitaa ei voi ratkaista peukaloimalla mikroaaltotaustaa. Tilastolliset virherajat sekä tähtiväestön kehitysmallien epävarmuus ovat tosin vielä liian isoja, jotta tästä voisi tehdä varmoja päätelmiä.

Eteenpäin pääsemiseksi ei riitä että mitataan lisää galakseja, tarvitaan parempi ymmärrys niiden tähtiväestön kehityksestä. Tämä on esimerkki kosmologian ja tähtitieteen (hienommin sanottuna astrofysiikan) erosta. Tähtitieteilijät tutkivat galakseja niiden itsensä takia, kosmologit käyttävät niitä kelloina.

18 kommenttia “Viisareina tähdet”

  1. Pallomaiset tähtijoukot saattaisivat olla yksinkertaisempia kohteita mallintaa kuin galaksit. Olisikohan niiden havaitseminen mahdollista tulevaisuudessa jopa kosmologisilta etäisyyksiltä? Jollei suoraan, niin ehkä käyttäen painovoimalinssejä apuna(?)

    1. Syksy Räsänen sanoo:

      En osaa sanoa – nehän ovat merkittävästi himmeämpiä kuin galaksit (koska niissä on vähemmän töhtiä).

      Painovoimalinsseistä ei ole sikäli apua, että tällaisiin havaintoihin tarvitaan suuri määrä kohteita. On harvinaista, että meidän ja kohteen väliin sattuu tarpeeksi iso linssi tarpeeksi keskelle, että kirkkaus kasvaa merkittävästi.

      1. Lasse Reunanen sanoo:

        Olen nähnyt tulkintoja, että Linnunradan pallomaisissa tähtijoukoissa tähdet olisivat vanhimpia tunnettuja tähtiä – siis useita miljardeja valovuosia sitten muodostuneina.
        Jotenkin niin, että niissä olisi sitä alkuperäistä vetyä runsaasti ja siksi eivät olisi räjähdelleet niin usein supernovina.
        Mietin, että jos silloin alkuaikoina muodostuneena olisi pienehköt mustat aukot kerryttäneet pallomaisia muotoja keskimäärin tiheämmästä tähtimäärästä ja siten niitä pallomuodostelmia kehittynyt paljon – jääden sitten kiertämään myöhemmin isompien galaksimuodostelmien kehille – niiden painovoimien nopeudet riittäneet pysyttäytymiseen etäällä.
        Vaikka vielä ei tarkoin tiedettänekään mitä niiden palomuodostelmien keskuksiin kehittynyt – lienevät kuitenkin samankaltaisiksi lähtöasetelminaan kehittyneet, pitkäikäisiksi kertymiksi.

        1. Syksy Räsänen sanoo:

          Kyllä, pallomaisissa tähtijoukoissa on vanhoja tähtiä. Mustia aukkoja ei tarvita pallomaisten tähtijoukkojen synnyn selittämiseen.

  2. Martti V sanoo:

    Onko mahdollista, että mikroaaltotaustan syntyaikana laajeneminen oli hitaampaa kuin myöhemmin galaksien syntymisen jälkeen?

    1. Syksy Räsänen sanoo:

      Ei. Maailmankaikkeuden laajeneminen hidastuu siihen asti, kunnes pimeä energia (tai mikä sitten onkaan vastuussa kiihtyvästä laajenemisesta) ottaa vallan vajaan 10 miljardin vuoden iässä. (Lukuun ottamatta kosmista inflaatiota ensimmäisen sekunnin perukoilla.)

      Maailmankaikkeuden laajenemisnopeus kosmisen mikroaaltotaustan syntyessä oli paljon isompi kuin nyt.

      1. Jani sanoo:

        Siitäkö johtuu, että kosminen taustasäteily on mikroaalto säteilyä, mutta Jjames Webb teleskoopin näkemät vanhimmat galaksit, jotka ovat lähes yhtä vanhoja mitä taustasäteily näkyvät infrapuna alueella?

        1. Syksy Räsänen sanoo:

          Aallonpituuden määräytyy siitä, kuinka paljon maailmankaikkeus on kaikkiaan venynyt, ei siitä hidastuuko laajenemisnopeus.

      2. Martti V sanoo:

        Havainnot mikroaaltotaustasta näyttää siltä, että laajeneminen oli hitaampaa. Uskotaanko edelleen, että kyse on systemaattisesta mittausvirheestä?

        1. Syksy Räsänen sanoo:

          Ei oikein tiedetä mitä ajatella. Monia mahdollisia virheitä on tutkittu, eikä mitään ole löytynyt. Toisaalta myöskään vakuuttavaa teoreettista selitystä, joka sopisi kaikkiin havaintoihin, ei ole löytynyt.

  3. robert ekman sanoo:

    ei varsinaisesti liity aiheeseen, nöyrät pahoittelut;

    voivatko eräissä teorioissa mainitut lisäulottuvuudet olla aikaulottuvuuksia, tilaulottuvuuksien sijaan? Esim 10-ulottuvuutta muodostuisi 3 tila- & 7 aikaulottuvuudesta? Matemaattisesti tällä ei liene eroa; mutta käytännön erona se, ettei lisää tilaulottuvuuksia tarvitse ”etsiä”
    Entä voiko olla muun tyyppisiä ulottuvuuksia kuin aika- tai tilaulottuvuudet?

    kiitos

    1. Syksy Räsänen sanoo:

      Teorioita, joissa on useampi kuin yksi aikaulottuvuus on tutkittu. Käsittääkseni tosin säieteorian ulottuvuuksien luku 10 on oikeasti 1+9, eli mukana on oletus siitä, että on tasan yksi aikaulottuvuus.

      On iso matemaattinen ero siinä onko kyseessä aika- vai paikkaulottuvuus (tai ainakin sillä on isot matemaattiset seuraukset). Erosta suppeassa suhteellisuusteoriassa: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/yhden-merkin-varassa/

      Aika- ja paikkasuuntien lisäksi on olemassa valonkaltaisia suuntia, mutta valonkaltaisia ulottuvuuksia ei kaiketi ole olemassa. (Valonkaltainen suunta tarkoittaa karkeasti sitä, että liikutaan yhtä paljon aika- ja paikkasuunnassa yhtä aikaa. Valonkaltaiset suunnat voi siis ymmärtää yhdistelmänä paikka- ja aikasuuntia.)

      Kun ei liity merkinnän aiheeseen, niin ei tästä sen enempää.

  4. Cargo sanoo:

    Jos oletetaan, että kiihtyvä laajeneminen johtuu kosmisen rakenneverkon tiivistymisestä, niin saisiko eritavalla mitattujen laajenemisnopeuksien ero jonkin luonnollisen selityksen, vai olisiko asia edelleen mysteeri?

    1. Syksy Räsänen sanoo:

      Pitää olla kädessä tarkka lasku, ennen kuin voi verrata sen ennusteita havaintoihin.

  5. Seppo Kolehmainen sanoo:

    Utamin kysymyksiä: Muuttuuko asia lisäämällä ulottuvuuksia olettamalla aika yhdeksi niistä? Miten ns. suunnat poikkeavat ulottuvuuksista? Miten paljon on yhtä paljon aika- ja paikkasuunnassa? Liikutaanko aika- ja paikkasuunnassa yhtä aikaa, siis mitä yhtä aikaa? Einsteinin aika-avarusjatkumo lienee koordinaatisto, missä hiljaista on kuin huopatossutehtaassa.

    1. Syksy Räsänen sanoo:

      Kun kysymykset eivät liity merkinnän aiheeseen, niin ei niistä sen enempää.

  6. Mikko JUssila sanoo:

    Voiko universumin muoto olla epähomogeeninen, jolloin ΛCDM malli antaisi eri vastauksen Hubblen vakiolle mikroaaltotaustasta ja supernovista mitattuna. Eli jos mikroaaltotaustasta mitattu avaruuden muoto on lievästi postiviinen, voi se olla hieman erilainen supernova mittausten alueessa.

    1. Syksy Räsänen sanoo:

      Avaruuden epähomogeenisuuden vaikutusta on tutkittu, mutta siitä ei ole löytynyt tyydyttävää selitystä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Fysiikkaa runoilijoille ja kosmologiaa

17.8.2022 klo 13.47, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Luennoin taas tänä syksynä kurssin Fysiikkaa runoilijoille Helsingin yliopistolla. Sen voi suorittaa myös Avoimessa yliopistossa. Ilmoittautuminen kurssille on auki.

Luennot ovat paikan päällä maanantaisin kello 14-16 ja tiistaisin kello 12-14, alkaen tiistaina 6. syyskuuta. Luennoille ovat tervetulleita myös yliopiston ulkopuoliset. Luentoja ei nauhoiteta eikä striimata.

Kurssilla kuvataan fysiikan teorioiden kehitystä ja sisältöä fyysikon näkökulmasta, ja avataan niiden käsitteitä ja maailmankuvallista merkitystä. Aiheina ovat Newtonin klassinen mekaniikka, suhteellisuusteoria, kvanttifysiikka, kosmologia, ja lopussa muutama lyhyesti yritykset kohti kaiken teoriaa. Kurssi ei edellytä esitietoja fysiikasta eikä sisällä laskemista.

Kurssin sivuilla on palautetta edellisten vuosien opiskelijoilta sekä neuvoja kurssin käymiseen, tässä poiminta:

”Kurssi oli todella antoisa, kiitos! Tällaisia tieteenalojen välisiä kädenojennuksia kaivattaisiin enemmän. Tuntuu, että noin yleisesti ottaen fysiikasta kiinnostunut humanisti voi joko tyytyä populaarikirjallisuuteen tarjoamaan pintaraapaisuun tai vaihtoehtoisesti aloittaa fysiikan opiskelun aivan a:sta; välimuotoa on vaikea löytää. Tämä kurssi täytti tämän puutteen erinomaisesti.

Luennoin syksyllä myös Ursalle kosmologiasta kurssin kerran paikan päällä Tieteiden talolla ja kerran etänä. Edellisinä vuosina liput on myyty loppuun nopeasti, eli jos haluaa mukaan, niin kannattanee ostaa pian. Kurssien sisältö on sama, Ursan sivujen kuvauksen mukaan kumpikin kurssi

”tarjoaa napakan katsauksen moderniin kosmologiaan, sen oleellisimpiin teorioihin sekä hieman myös kosmologian historiaan. Kurssilla käsitellään mm. maailmankaikkeuden historia, ison mittakaavan rakenteet, kosmisen mikroaaltotausta, pimeä aine, pimeä energia ja kosminen inflaatio.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Yhteyksiä ja unelmia

11.8.2022 klo 21.53, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Olin heinä-elokuun vaihteessa matemaatikkojen ja fyysikoiden yhteisessä konferenssissa Palestiinassa. Konferenssi jatkoi vuonna 2008 alkanutta sarjaa, jossa järjestetään tapaaminen joka toinen vuosi eri yliopistossa Miehitetyillä palestiinalaisalueilla. Nyt vuorossa oli Birzeitin yliopisto, missä luennoin syksyllä 2018 kosmologiaa. Konferenssia edelsi järjestön Scientists for Palestine järjestämä opiskelijoille suunnattu kesäkoulu koneoppimisesta.

Konferenssiin osallistui palestiinalaisia Länsirannalta ja Gazasta –jälkimmäisestä etänä, koska Gaza on Israelin 15 vuotta kestäneen saarron alla– ja ulkomailta, sekä parikymmentä muuta ulkomaista kutsuttua puhujaa. Olin kutsuttujen joukossa ja konferenssin tieteellisessä komiteassa.

Kuten minulla on tullut tavaksi todeta, konferenssien tärkein anti on kohtaamiset ja keskustelut. Sen lisäksi, että kohtaa uusia tutkijoita ja kuulee odottamattomia näkökulmia, myös tapaa vanhoja tuttuja. Tohtoriksi valmistumisen ja pysyvän työpaikan saamisen välisinä vuosina tutkijat matkaavat maasta toiseen kisällien tapaan, joten kollega- ja ystäväpiiri kasvaa ja hajaantuu ympäri maailmaa; konferenssit kokoavat väkeä yhteen.

Palestiinalaisten kohdalla tämä korostuu, koska miljoonat heistä ovat pakolaisina ympäri maailmaa, ja Israel estää heitä muuttamasta kotimaahansa, koska he kuuluvat väärään etniseen ryhmään. Fysiikassa yksi ongelma on se, että Länsirannan yliopistoissa ei ole alan tohtoriohjelmaa, joten pitää lähteä ulkomaille jos haluaa tehdä väitöskirjan. Oli mukava tavata taas opiskelijoita, jotka olivat käyneet kosmologiakurssini vuonna 2018 ja kuulla mitä he ovat tehneet valmistuttuaan maisteriksi, mutta ikävä havaita, että kaikki jotka olisivat halunneet jatkaa opintojaan eivät olleet niin tehneet.

Nuoremmat opiskelijat kysyivät, koska tulisin luennoimaan kurssin uudelleen. Israel on tehnyt siitä entistä vaikeampaa tiukentamalla rajoituksia, joilla se eristää miehitettyä Länsirantaa muusta maailmasta. Luennoitsijan täytyy jättää hakemus Israelin miehityshallinnolle, jonka sotilaat päättävät, onko luentojen aihe oleellinen palestiinalaisille ja onko luennoitsija pätevä. Lisäksi ulkomaisille luennoitsijoille on 100 hengen yläraja: useampi ei saa tulla opettamaan, vaikka Länsirannalla asuu kolme miljoonaa palestiinalaista.

Miehityshallinnon sallimissa puitteissa osassa Länsirantaa paikallishallintona toimivan Palestiinalaishallinnon opetusministeri Marwan Awartani avasi konferenssin. Awartani piti epämuodollisen puheen, missä hän muisteli menneitä ja patisti yliopistolaisia yhteistyöhön kouluopettajien kanssa. Opettajille on yliopistoissa järjestetty kesäkouluja tietojen päivittämiseksi, ja hän kehotti fyysikkojen ja matemaatikkojen seuroja perustamaan omia jaostoja opettajille, jotta näillä olisi tiiviimpi yhteys yliopistoihin ja tieteeseen.

Tämä ei ollut ulkopuolisen lausunto: Awartani on taustaltaan matemaatikko, ja hän oli perustamassa ensimmäistä palestiinalaisten matemaatikkojen seuraa ja järjestämässä ensimmäistä palestiinalaista matematiikan konferenssia. Awartani myös valitti, että useampia opiskelijoita pitäisi saada kiinnostumaan matematiikasta ja luonnontieteistä ja niihin liittyvästä kriittisestä ajattelusta.

Tieteellisen ohjelman avasi Cambridgen yliopiston ja Texas A&M -yliopiston Edriss Titi, joka puhui siitä, miten turbulenssin tutkiminen yhdistää fysiikkaa ja matematiikkaa. Turbulenssi on nesteissä ja kaasuissa esiintyvä kaoottinen ilmiö, jossa energiaa siirtyy isosta mittakaavasta pieneen ja syntyy pyörteitä. Turbulenssi on tärkeä osa monia fysiikan käytännön sovelluksia (esimerkiksi polttomoottorien palamisessa ja lentokoneiden liikkeissä), ja sen ymmärtämisessä on vielä merkittäviä aukkoja.

Matemaatikko kun on, Titi kuitenkin käsitteli turbulenssia esimerkkinä ilmiöstä, jota tutkittaessa löydetyt matemaattiset rakenteet ovat kiinnostavampia kuin sovellukset, joita varten asiaa mallinnetaan. Hän vertasi tätä siihen, miten persialainen matemaatikko Muhammad ibn Musa al-Khwarizmi kehitti 800-luvulla algebran ratkaistakseen islamilaiseen perintölakiin liittyviä ongelmia.

Muussa ohjelmassa fysiikan ja matematiikan puheet olivat erikseen. Fysiikan aiheissa oli laaja kirjo: säieteorian uudesta muotivirtauksesta kaksiulotteisiin materiaaleihin, joita voidaan käyttää muuttamaan hiilidioksidia metanoliksi; uusista Higgsin hiukkasista tuulivoimaloiden tehokkuuden arviointiin. Oli mukava huomata, että mukana oli paljon gradun tai väitöskirjan tekijöitä puhumassa työstään. Konferensseihin osallistuminen ja oman työn esittäminen on tärkeä oppimisen väline.

Eri aloja yhdistävissä konferensseissa (myös Suomen Fysiikan päivillä) on usein se ongelma, että suurin osa puheista on laadittu oman alan tutkijoille. Koska tutkimus on hyvin erikoistunutta, on raskasta ja vaikeaa yrittää seurata kaukana omasta alasta olevia esityksiä, vaikka aihe kiinnostaisikin. Toisaalta joskus voi ilmetä hyödyllisiä yhteyksiä. Esimerkiksi konferenssissa oli kokeellisten fyysikkojen puheita perovskiitti-mineraalin käytöstä tehokkaampien ja ympäristöystävällisempien aurinkokennojen valmistamisessa, ja paikalla olleiden teoreetikkojen osaamisesta voi olla hyötyä tuon paljolti kokeisiin perustuvan tutkimuksen viemisessä eteenpäin.

Jocelyn Bell Burner Oxfordin yliopistosta puhui etänä otsikolla ”Naisena (astro)fysiikassa”. Bell Burner löysi ensimmäiset pulsarit vuonna 1967 ollessaan Antony Hewishin jatko-opiskelija. Löydöstä myönnettiin Nobelin palkinto vuonna 1974, mutta Bell Burner ei ollut palkinnonsaajien joukossa. Muun muassa tähtitieteilijä Fred Hoyle, joka ensimmäisten joukossa ymmärsi että pulsarit ovat supernovien jäänteitä, arvosteli päätöstä. Bell Burner on itse ollut sitä mieltä, että päätös johtui ennemmin siitä, että hän oli opiskelija kuin siitä että hän on nainen, ja on sanonut ymmärtäneensä sen. Bell Burnerin taustasta ja pulsarien löytämisestä voi kuulla enemmän New York Timesin minidokumentista, mihin häntä haastateltiin vuonna 2018.

Konferenssissa Bell Burner ei puhunut tuosta menneisyydestä, mutta kävi läpi siitä, miten hänen aikanaan naiset kasvatettiin palvelemaan muita ja arvioimaan menestymistään aviomiehensä kautta, ja millaisia esteitä naispuolisten tieteilijöiden tiellä vieläkin on. (Lisää aiheesta täällä, täällä, täällä, täällä, täällä, täällä, täällä ja täällä.)

Puheessaan Bell Burner esitteli kansainvälisen tähtitieteellisen järjestön IAU:n tilastoja naisten osuudesta tähtitieteilijöistä ei maissa. Hän totesi osuuden kasvaneen hitaasti ajan myötä. Hän myös kiinnitti huomiota siihen, että monet maat joissa naisten osuus on isoin ovat etelässä. Maista, joissa on yli 100 IAU:n jäsentä eniten naisia on Argentiinassa (41%), Italiassa (31%), Etelä-Afrikassa (29%) sekä Indonesiassa ja Ranskassa (26%). Suomessa osuus on 20%, Ruotsissa 16%, ja Bell Burnerin asuinmaassa Iso-Britanniassa 18%.

Mahdollisiksi syiksi Bell Burner ehdotti sitä, että näissä maissa tähtitiede olisi vähemmän arvostettua, eikä siksi kiinnostaisi miehiä niin paljon, ja että lastenhoitoon olisi helpommin saatavilla palkattua apua ja tukea isovanhemmilta. Hän suositteli vasta ilmestynyttä kirjaa The Sky Is for Everyone, johon on koottu naistähtitieteilijöiden kertomuksia urastaan. (Tähän blogiin saattaa jossain vaiheessa ilmestyä arvostelu kirjasta.)

Ilmiö ei rajoitu tähtitieteeseen. Esimerkiksi tässä palestiinalaisessa konferenssissa naisten osuus oli isompi kuin yleensä vastaavissa eurooppalaisissa konferensseissa, ja Birzeitin yliopiston matemaattis-luonnontieteellisen tiedekunnan dekaani ja konferenssin pääjärjestäjä Wafaa Khater on nainen. (Birzeitissakin kyllä ylivoimainen enemmistö professoreista ja muista korkeamman aseman fyysikoista on miehiä.)

Toinen asia mitä Bell Burner korosti oli se, että tieteen esittämisessä jää yleensä liian pieneen rooliin se, miten tärkeitä ovat mielikuvitus, intuitio ja unelmat, jotka auttavat kehittämään ideoita siitä mitä tehdä ja miten.

4 kommenttia “Yhteyksiä ja unelmia”

  1. Merry sanoo:

    Monet noista maista, joissa naisten osuus on suurempi, ovat sellaisia, joissa vain varakkaiden vanhempien lapsilla on mahdollisuus kouluttautua pitkälle. Voisiko olla, että stereotypia ”miesten ja naisten aloista” ei elä niin vahvana maassa, jossa pienemmällä osuudella ihmisistä on ylipäätään mahdollisuus edetä akateemisella uralla? Onkohan tätä tutkittu ja millaisin tuloksin? (Ja minkä tieteenalan alle kysymys edes kuuluu? Antropologia vai sosiologia?)

    1. Syksy Räsänen sanoo:

      En tiedä onko asia ihan noin. Ainakaan Miehitetyillä palestiinalaisalueilla korkeakoulutus ei ole vain rikkaiden ylellisyys: yli neljännes 18-24-vuotiasta on korkeakoulussa (vaikka niissä on ongelmallinen lukukausimaksujärjestelmä), ja koulutusta arvostetaan yleisesti.

      Yksi syy naisten isoon osuuteen fysiikan opiskelijoiden joukossa Palestiinassa on se, että osa heistä opiskelee fysiikkaa tullakseen opettajaksi – ja koska fysiikkaan ei ole tunkua, sinne on helppo päästä (kuten Helsinginkin yliopistossa).

      Mutta en tunne tutkimusta asiasta, varmaan sosiologia, antropologia tai pedagogiikka olisi oikea tutkimusala.

  2. Erkki Kolehmainen sanoo:

    Nobel-komitean ehkä suurin möhläys oli Lise Meitnerin jättäminen ilman fysiikan palkintoa silloin kun Otto Hahn sen sai. Syy oli Meitnerin väärä sukupuoli! Nyt Israelissa on Meitnerin nimeä kantava tutkimuslaitos. Somessakin vaikutti huomattava tähtitietelijä prof. Liisi Oterma, jonka ansioita kannattaisi tähtitietelijöiden tuoda enemmän esiin. Oterma oli vaatimaton ja kiinnostunut myös kielistä. Tanskalainen kollega luonnehti häntä, että Oterma vaikenee yhdellätoista kielellä!

  3. Jernau Gurgeh sanoo:

    Tässä hyviä ja mielenkiintoisia pätkiä turbulenssista (kun mainittiin merkinnässä) meille maallikoille. Tompassa on ehkä hieman sellaista Syksymäistä habitusta.

    Navier-Stokes

    https://www.youtube.com/watch?v=ERBVFcutl3M

    Reynolds Number

    https://www.youtube.com/watch?v=wtIhVwPruwY

    Käytäntö, Tompan PhD.

    https://www.youtube.com/watch?v=5mGh0r3zC6Y

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Kello tähden pinnalla

29.6.2022 klo 21.35, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kun mainitsin että kosminen mikroaaltotausta muodostui maailmankaikkeuden ollessa 380 000 vuotta vanha, kommenteissa kysyttiin miten tämä ajankohta tiedetään niin tarkasti, kun maailmankaikkeuden nykyinen ikä tunnetaan paljon huonommin.

Maailmankaikkeudessa ei ole yhtä kelloa, jonka viisarien asennosta voisi suoraan katsoa paljonko aikaa on kulunut. Jos tiedetään miten jotkut kappaleet –vaikkapa tähdet tai galaksit– kehittyvät, niin sellaisen iän voi arvioida ulkonäön perusteella. Jos pystyy lisäksi päättelemään, kuinka kauan maailmankaikkeuden alusta kesti siihen, että kappale muodostui, saa selville kuinka vanha maailmankaikkeus oli silloin kun siitä meille nyt saapuva valo lähti matkaan.

Usein iän määrittäminen on kuitenkin epäsuorempaa, eikä varhaisina aikoina ennen tähtien ja muun rakenteen muodostumista ole mitään kappaleita nähtäväksi. Niinpä yksi keskeinen tapa ajan mittaamiseen on maailmankaikkeuden lämpötilan ja iän suhde. Koska aine jäähtyy avaruuden laajetessa, kahden tapahtuman lämpötilan vertailu kertoo paljonko maailmankaikkeus on niiden välillä laajentunut.

Esimerkiksi kosmisen mikroaaltotaustan lämpötila on nykyään 2.7 K. Kosminen mikroaaltotausta syntyi kun aine oli jäähtynyt niin paljon, että atomit muodostuvat, minkä tiedetään tapahtuvan 3000 kelvinin lämpötilassa. Tästä voidaan päätellä, että avaruus on venynyt 1 100-kertaiseksi mikroaaltotaustan matkaan lähdöstä tähän päivään.

Jos tiedetään, millaista ainetta maailmankaikkeudessa on, niin yleinen suhteellisuusteoria ennustaa miten maailmankaikkeus laajenee. Tällöin siitä paljonko avaruus on venynyt voidaan lukea maailmankaikkeuden ikä.

Myöhäisinä aikoina tulee vastaan se ongelma, että tällainen iänmääritys on vain yhtä varma kuin tietomme siitä, miten avaruus laajenee. Harmillisesti suurin mysteeri kosmologiassa on se, mikä aiheuttaa muutaman viimeisen miljardin vuoden aikana tapahtuneen kiihtyvän laajenemisen, ja miten laajenemisnopeus on tismalleen muuttunut.

Varhaisina aikoina ainesisältö kuitenkin tunnetaan, joten lämpötilan ja iän yhteys on selvä. Koska hiukkasfysiikan pohjalta tiedetään tarkasti, mitä kussakin lämpötilassa tapahtuu, voidaan maailmankaikkeuden vaiheet ajoittaa tarkasti.

Esimerkiksi neutriinot vuorovaikuttavat muiden hiukkasten kanssa sitä heikommin, mitä vähemmän niillä on energiaa, eli mitä alhaisempi niiden lämpötila on – lämpötilahan mittaa hiukkasten liike-energiaa. Kun hiukkaspuuron lämpötila laskee alle kymmenen miljardin asteen, neutriinojen vuorovaikutuksista tulee niin heikkoja, että ne kytkeytyvät irti maailmankaikkeuden muusta aineesta ja matkaavat vapaasti. Teoriasta voimme laskea, että tämä lämpötila vastaa yhden sekunnin ikää.

Ensimmäisten noin kahden ja kolmenkymmenen minuutin välillä kevyiden alkuaineiden –vedyn, heliumin ja litiumin– ytimet syntyvät protoneista ja neutroneista. Protonien, neutronien ja ydinten käytöksen määräävä ydinfysiikka riippuu herkästi lämpötilasta ja maailmankaikkeuden laajenemisesta.

Jos maailmankaikkeudessa ei olisi neutriinoita, avaruus laajenisi verkkaisemmin, jolloin lämpötila laskisi hitaammin ja helium-4:ää syntyisi vähemmän. Toisaalta jos olisi olemassa tuntemattomia neutriinojen kaltaisia hyvin heikosti vuorovaikuttavia hiukkasia, laajenemisnopeus olisi isompi, ja syntyisi enemmän helium-4:ää. Samoin jos olisi tuntemattomia protonien ja neutronien kanssa vuorovaikuttavia hiukkasia, ne voisivat sotkeutua ydinten muodostumiseen. Ensimmäiset minuutit ovat hiukkasfysiikan laboratorio.

Erilaisten ydinten määrä muuttuu ensimmäisten minuuttien hiukkaskeitossa kun ne syntyvät, törmäilevät ja hajoavat. Kun ydinreaktiot lämpötilan laskiessa sammuvat, ydinten määrät pysähtyvät kuin kellojen viisarit. Jos nyt mitatut ydinten pitoisuudet kaikki vastaavat ennusteita, voimme todeta, että käsityksemme tapahtumien ajoituksesta pitää paikkansa. Jos pitoisuudet näyttävät eri lukemaa, on syytä miettiä uudelleen, mitä on oikein tapahtunut.

Tällä hetkellä on mahdollista mitata kevyen neljän ytimen (deuterium, helium-3, helium-4 ja litium-7) pitoisuudet. Vedyn ja heliumin määrän voi selvittää tiiraamalla kaasupilviä, joissa on vain vähän raskaampia alkuaineita. Raskaammat ytimet syntyvät tähdissä: niiden puute on merkki siitä, että kaasua ei ole juuri prosessoitu, joten ydinten pitoisuudet ovat jokseenkin samat kuin mitä ne olivat ensimmäisen puolen tunnin jälkeen. Litiumin määrä mitataan vanhojen tähtien pinnoilta.

Muut luvut sopivat ennusteisiin, mutta litium-7:ää on vain kolmannes odotetusta määrästä. Syynä voi olla uudet hiukkaset tai muu toistaiseksi tuntematon fysiikka. Arkisemmin tämä voi johtua siitä, että litiumia tuhoutuu tähdissä odotettua tehokkaammin. Toissaviikon konferenssissa Physics of the Early Universe esittämässään katsauksessa kevyiden alkuaineiden syntyyn Oleg Ruchayskiy korosti sitä mahdollisuutta, että ydinfysiikan mittaukset siitä, miten ytimet vuorovaikuttavat ovat olleet epätarkkoja, ja voi olla että ongelma poistuu kun ne kaikki päivitetään.

Olipa ratkaisu mikä tahansa, johtopäätöksemme varhaisten aikojen tapahtumista ja niiden ajoituksesta ovat samaan aikaan epäsuoria ja täsmällisiä: luemme tähtien pinnan koostumuksesta, mitä ensimmäisten minuuttien aikana tapahtui sekuntien tarkkuudella.

37 kommenttia “Kello tähden pinnalla”

  1. Erkki Kolehmainen sanoo:

    Kiitos! Tämä oli hyvin selventävä esitys ydinmagneettista resonanssia ikänsä tehneelle!

    1. Syksy Räsänen sanoo:

      Kiitos, mukava kuulla!

  2. Miguel sanoo:

    Tämä on varmaan kysytty moneen kertaan, mutta 380 000 vuotta kuulostaa nykykorvaan käsittämättömän pitkältä ajalta. Oliko 380 000 vuotta ajan alusta sama, kuin minkä me nykyään käsitämme 380 000 vuodeksi?

    1. Syksy Räsänen sanoo:

      Kyllä.

  3. Kas sanoo:

    Miten pimeän aineen oletetaan vaikuttaneen maailmankaikkeuden alkuvaiheen kehitykseen? Oletettavasti ainakin painovoiman kautta, mutta onko mitään muuta ilmiöitä maailmankaikkeuden alkuajoista, joiden selittäminen edellyttää pimeää ainetta?

    1. Syksy Räsänen sanoo:

      Pimeästä aineesta ei tällä hetkellä ole mitään muita todisteita kuin sen gravitaatio.

      1. Kas sanoo:

        Tämä tekee pimeästä aineesta erityisen mielenkiintoisen. Ainoa mitä siitä tiedetään on, että se on olemassa (tai ainakin sen aiheuttama gravitaatio), se ei ole tasaisesti jakautunut ja sillä on varsin rajattu nopeus (selkeästi alle valonnopeuden). Ja, että pimeää ainetta ei varsinaisesti edes tarvita alkuräjähdyksen ja sen jälkeisten aikojen selittämiseen.

        Mikäli pimeän aineen osalta ei yksinkertaisesti löydetä mitään selitystä, niin odotan mielenkiinnolla voiko selitys olla niin yksinkertainen, että pimeä aine vaikuttaa vain pelkän painovoiman kautta Oletettavasti tällainenkin teoria on jo valmiina.

        1. Syksy Räsänen sanoo:

          Pimeää ainetta tarvitaan monien havaintojen selittämiseen, alkaen 380 000 vuoden iästä nykypäiviin.

  4. Joksa sanoo:

    Koska maailmankaikkeuden ikä on kaikkialla sama niin se vaikuttaisi muodostavan eri havainnoijille heidän liike- tai gravitaatiotiloistaan riippumattoman universaalin aikareferenssin. Mahdolliset aikojen kuluessa tahtuneet kellon käynnin muutoksethan ei vaikuta tältä osin asiaan vaikka iän tarkka mittaaminen käyttämissämme aikayksiköissä jääkin epätarkaksi.

    ST ei sisällä yleistä aikareferenssiä vaan käyttää pelkästään suhteellisia havainnoijien liike- tai gravitaatiotiloista riippuvia aikoja. Ilmiö ei tietenkään ollut tunnettukaan teorian syntyaikana.

    Mutta, olisikohan näin ollen syytä käsittää aika dualistiseksi ilmiöksi, kuten muutamat muutkin asiat kosmologiassa?

    1. Syksy Räsänen sanoo:

      Aika kulkee lähes samalla tavalla lähes kaikkialla (ei mustien aukkojen ja neutronitähtien lähellä), koska aineen jakauma on tilastollisesti samanlainen kaikkialla.

      Se, että teorian yhtälöiden ratkaisulla (yleisen suhteellisuusteorian tapauksessa aika-avaruudella) on enemmän symmetriaa kuin yhtälöillä on tavallista. Esimerkiksi Newtonin gravitaatioteoriassa kaikki avaruuden suunnat ja paikat ovat samanarvoisia, mutta Aurinkokunnassa näin ei ole, koska on ainetta, joka ei ole jakautunut tasaisesti.

      Tällä ei ole dualismin kanssa mitään tekemistä.

      1. Martti V sanoo:

        Onko maailmankaikkeuden ikä riippumaton havaitsijasta esim. maanpinnalta katsottuna tai mustan aukon läheisyydessä?

        1. Syksy Räsänen sanoo:

          Vaihtelu ajan kulussa on pientä muualla kuin mustien aukkojen lähellä, missä se on suuri.

      2. Joksa sanoo:

        Suuressa mittakaavassa maailmankaikkeus ikääntyy yhtäläisesti kaikkialla vaikka paikallisesti yksittäisten havainnoijien/prosessien kesken näin ei olekaan. Dualismilla tarkoitetaan yleisesti kaksijakoisuutta, tästä syystä termi on tarkoituksenmukainen ajankin osalta.

        Maailmankaikkeus ei ole yhtälöiden tai niiden ratkaisujen tuotosta vaikka toiset kuvaavat sitä paremmin kuin toiset.

        Tämä riittäköön tästä.

  5. Lasse Reunanen sanoo:

    Maailmankaikkeuden alun täsmälliset aikamääritelmät saatu hämmästyttävän tarkoin selvitettyä.
    Kertomasi auttaa hieman asiaan perehtymättömänäkin ymmärtämään sitä.
    Kellojen viisareista sain tänään uuden oivaltavan havainnon:
    Viime viikolla oli kerrostalomme kierrätykseen jätettynä isohko viisarikello (+ 0,5 metriä halkaisija),
    jonka otin ja rikkoutuneen paristokielekkeen väliin laiton väännetyn pienen hakaneulan.
    Kello alkoi toimia. Huomasin, että iso minuuttiviisarin liike näkyi katsoen ja hieman tuntiviisarinkin.
    Mietin, josko maailmankaikkeuden laajentumisen kasvukin jotenkin näkyisi nopeuteen…

    1. Syksy Räsänen sanoo:

      Maailmankaikkeuden laajeneminen ei vaikuta ajan kulkuun Maapallolla mitenkään, jos sitä tarkoitit. Linnunrata ei laajene.

      1. Lasse Reunanen sanoo:

        Kiitos vastauksestasi.
        Kerroit avaruuden venyneen 1 100-kertaiseksi 3000 kelvinin lämpötilasta, nykyiseen 2,7 kelviniin
        (2,7 x 1 100 = 2970). Samalla mitalla olisi 1 venyminen 13 milj. vuotta (13 x 1 100),
        vaikka venymisnopeus onkin muuttuvaa.
        Keskimäärin 65 milj. v. / 5 venymää, 200 milj. v. / 15,38, 250 milj. v. / 12,23 jne.
        Käytit kelloa verraten: ”ydinten määrät pysähtyvät”, ja ”ei ole yhtä kelloa,
        jonka viisarien asennosta voisi suoraan katsoa paljonko aikaa on kulunut.”
        Vertasin kellon viisarin liikkeen havaitsemiseen – pituuden kasvaessa,
        pitkän viisarin pään liike nopeampaa kuin lyhyellä viisarilla.
        Mietin siis, että maailmankaikkeus ns. pitkän viisarin päässä nyt – jonka liikenopeus
        kasvavaa, verrattuna varhaisempaan aikaan (ns. viisari lyhyempi).
        En tosin tiedä olisiko kiihtyvyys muutoksineen ns. viisarivertaukseeni soveltuva.
        Kerroit; ”Linnunrata ei laajene.”
        Kierroksia Aurinko Linnunradassa tekee siis liki samoin etäisyyksin,
        ehkä hieman soikeasti kuten Maakin Aurinkoa kiertäen
        (4.7. paikkeilla oltiin etäisimmillään Auringosta, noin 152 milj. km).
        Tosin: kun galakseja Linnunrataan osunut niin laajentumista lienee ollut,
        ja sitten enemmin kun Andromedan galaksi Linnunradan galaksin kohtaa…

        1. Syksy Räsänen sanoo:

          Aika ei veny, ainoastaan avaruus.

          1. Lasse Reunanen sanoo:

            Kiitos, sanoit asian täsmällisesti.
            Itse em. oletuksessani laitoin laskelmaani vahingossa luvun 19,23 tilalle 12,23 (9 oli väärin 2)..

          2. Martti V sanoo:

            Intuitiivisesti tämä käy järkeen.. Kuitenkin YST mukaan aika-avaruus venyy raskaan kappaleen ympärillä, mistä päätelleen aika venyy myös.

  6. Jyri T. sanoo:

    Joskus viime vuosituhannella kaksoisparadoksi ”selitettiin pois” siten, että kiihtyvässä liikkeessä (kuten painovoimankin tapauksessa) kello hidastuu (eivätkä kaksoset siten vanhene eri tahtia).

    Nyt vallitseva selitys on se, että nopealla avaruusraketilla matkustava kaksonen vanhenee hitaammin, vaikka alus kiihdyttäisi matkallaan kuinka paljon.

    Eikö tämä riko Einsteinin ekvivalenssiperiaatetta? Jo rikkoo, onko sillä mitään käytännön merkitystä?

    1. Syksy Räsänen sanoo:

      Kaksosparadoksista, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/denialismi-luonnontieteiden-edistyksen-oheisvahinko/

      Koska menee vähän kauas merkinnän aiheesta, niin ei tästä enempää.

  7. Joksa sanoo:

    Varhaisten aikojen vaiheisto aineen laajentuessa alkusingulariteetista on selvitetty kiitettävän tarkoin. Päinvastaisen tapahtuman, aineen tiivistyminen singulariteetiksi mustien aukkojen ytimissä olettaisi kulkevan kutakuinkin vastaavissa vaiheissa, vaikka siinä tapahtuman skaala on pienempi niin pienempikin ääretön on kuitenkin ääretön. Singulariteettien tiivistymisvaiheiden selvittämisen osalta kosmogit tuntuvat heittäneen fysiikan ja faktat roskikseen ja tukeutuvan mediaseksikkäisiin fiktioihin.

    Toivoisi hieman enemmän jalat maassa analysointia singulariteettien tiivistymisestä sekä ajan luonteesta voimakkaan gravitaation (sm-)tapahtumahorisontissa. Gerochin on kerrottu laskeneen että tasaisesti tiivistyvän linnunradan ympärille muodostuisi (sm-)tapahtumahorisontti linnunradan jatkaessa olemassaoloaan normaalin tapaan hyvinkin pitkään. Sisällä siis vallitsisi sama normaalisti toimiva aika-avaruus ilman mitään science-fiction lajin ilmiötä. Horisontin sisällä vallitsevan ajan toimiva yhtälö ulkopuoliseen nähden olisi varsin mielenkiintoinen.

    1. Syksy Räsänen sanoo:

      Asia on jokseenkin päinvastoin. Nykyiset teoriamme eivät pysty kuvaamaan mitä tapahtuu kun aineen tiheys kasvaa rajatta – ne pätevät vain johonkin rajaan asti. Niinpä aivan maailmankaikkeuden alusta (jos sellainen on) meillä on vain spekulaatioita.

      Mustien aukkojen muodostuminen sen sijaan osataan kuvata, koska siinä muodostuu tapahtumahorisontti, joka peittää alueen, missä tiheys kasvaisi äärettömäksi. Koska tapahtumahorisontin takaa ei tule informaatiota, sen sisäisillä tapahtumilla ei ole mitään vaikutusta ulkopuolisiin tapahtumiin.

      Tämä riittäköön tästä.

  8. Olli sanoo:

    Hei,

    Voisiko aika-avaruuden laajeneminen synnyttää ajan? Tai voisiko laajeneminen olla aika? Voisiko olla että rajallisilla aivoillamme vain havaitsemme/koemme laajenemisen aikana

    Sanotaanhan, että entropialla ja ainakin ajan suunnalla on yhteys. Mitä jos yhteys on vielä syvempi ja laajenemisen entropian kasvu on aika?

    1. Syksy Räsänen sanoo:

      On syytä erottaa kaksi käsitettä: aika ja kokemus ajan kulumisesta. Tarkemmin, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaksi-tarinaa-ajasta/

    2. Martti V sanoo:

      Suurin osa fysiikan laeista on aikasymmetrisiä. Poikkeus on termodynamiikan toinen sääntö, joka ennustaa entropian ikuisen kasvun. Ilman avaruuden laajenemista, entropia ei olisi voinut kasvaa ja ajan käsite olisi merkityksetön.

      1. Syksy Räsänen sanoo:

        Entropian kasvu ei tiettävästi edellytä maailmankaikkeuden laajenemista. Ja myös yleisen suhteellisuusteorian lait, jotka kuvaavat maailmankaikkeuden laajenemista, ovat aikasymmetrisiä.

      2. Lentotaidoton sanoo:

        Jollei-kysymykset tuntuvat vähän hulluilta (”ilman laajenemista”, kun lukuisat aihetodisteet puhuvat muuta). Tuo tuntuu sikälinskin oudolta, että eihän avaruuden laajeneminen näy kuin vasta galaksiryppäiden välisenä etäisyyden kasvuna. Siis ”ajan käsite olisi merkityksetön” täällä maapallolla/aurinkokunnassa/omassa galaksissamme? Emmehän me ”tunne” laajenemista. Me tunnemme vain entropian kasvun (= meille tutun ajan kulumisen ”suunnan”). Aivan varmasti entropia (termodynamiikan toisen pääsäännön mukaan) jyllää täällä paikallisesti, ja kunnolla. Ja kuten Räsänen selvästi huomauttaa, yleinen suhtis on myös aikasymmetrinen. Fysiikan suuri kysymys onkin: miksi/miten kosmoksen entropia oli erittäin alhainen (ei välttämättä nolla) ns BB:ssä. Hankaluus tässä on tietää aivan varhaisesta kosmoksesta koska inflaatio putsasi mennessään koko kosmoksen sitä edeltäneen historian (jos sitä ylipäätään edes oli). Inflaatioteorioitahan on liuta (ja joissa voidaan jossain määrin yhdistää suhtista ja kvanttifysiikkaa). Fysiikkamme joltisenkin varmempi tulkinta alkaa kuitenkin vasta inflaation loppuvaiheissa ns HBB:ssä.

        Palataan siis asiaan muutaman googolin (100^100) vuoden jälkeen. Sitten voimme (varovasti) ehkä lausua jotain entropian ”ikuisuudesta”.

  9. Martti V sanoo:

    Kosmoksen ikää olisi vaikea määrittää ilman sen laajenemista. Toki pimeä energia voi heiketä ja kosmos rysähtää kasaan. Kulkeeko aika silloin taaksepäin ja entropia laskee?

    1. Syksy Räsänen sanoo:

      Ei. Maailmankaikkeudessa joissain alueissa laajeneminen kääntyy romahdukseksi (joka sitten rauhoittuu niin, että alue ei laajene eikä romahda). Näin käy kun muodostuu galaksiryppäitä tai galakseja. Aika kulkee niissä eteenpäin kuten muuallakin.

      1. Martti V sanoo:

        Big Crunch skenaariossa aika jatkaa eteenpäin, mutta entropia alkaa vähentymään?

        1. Syksy Räsänen sanoo:

          Ei ala.

          1. Martti V sanoo:

            Kiitos vastauksesta . Joissain syklisissä malleissa on l hidas ekpyrotic contracting jossa entropia laskee inflaation lukemiin

        2. Lentotaidoton sanoo:

          Jo vuosikymmeniä sitten osoittivat fyysikot matematiikan laskelmilla (Standarditeorian termodynamiikan lait), että myös mahdollisessa ”takaisinkelautumisessa” entropia ei toki ala vähentymään, vaan lisääntyy normaalisti. Tämä muodostaakin yhden pulmakohdista syklisissä malleissa, koska nykyisen entropiamme tulisi tietysti olla ikuisessa kierrossa ääretön, mitä se mitä ilmeisimmin ei ole. Myös syklien iän pituuden tulisi kasvaa äärettömyteen. Toki on teorioita joissa tämä ääretön entropia kierretään (esim säieteoriat, joissa entropiaa ”piilotetaan” toisiin ulottuvuuksiin samoin kuin osa gravitaatiosta vuotaa pois = älyttömän heikko gravitaatio).

          Siis ennemmin kuin syklinen olisi multiversumiajatus järkevämpi (vaikka esim inflaation aikana tapahtunut kausaaliyhteyden ”pätkiminen”).

          1. Martti V sanoo:

            Entropian pyyhkiytymisestä syklisessä mallissa https://iopscience.iop.org/article/10.1088/1475-7516/2022/06/011

  10. Anttti sanoo:

    Eikö tuo avaruuden laajentumine/venyminen johdu siitä että
    galaksit vaan painaa avaruudessa?
    onko se mahdollista suhteellisuusteorian mukaan?
    sori jos on joutava kysymys.

    1. Syksy Räsänen sanoo:

      Ei. Galaksien gravitaatio hidastaa laajenemista, ei saa siitä aikaan. Laajenemisest enemmän, ks. https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Ravistelu ja romukoppa

23.6.2022 klo 19.46, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Osallistuin viime viikolla etäkonferenssiin Physics of the Early Universe. Alun perin tapahtuman oli tarkoitus olla kosmologiaosuus isossa venäläisten yliopistojen ja tutkimusinstituuttien järjestämässä etäkonferenssissa Quarks-22. Venäjän hyökättyä Ukrainaan järjestäjät ilmoittivat peruvansa Quarks-22:n, koska tämänhetkisessä tilanteessa niin isoa kansainvälistä konferenssia ei voi järjestää.

Kosmologiaosion järjestäjät erikseen tuomitsivat Venäjän hyökkäyksen. He järjestivät osuutensa omana (venäläisistä instituuteista erillisenä) tapahtumanaan, jossa minäkin mielelläni puhuin tutkimuksestani. Jotkut puhujat aloittivat esityksensä tuomitsemalla Venäjän aloittaman sodan ja ilmaisemalla tukensa sen ukrainalaisille uhreille sekä sen venäläisille vastustajille.

Konferenssissa näkyi kosmologian kirjo. Ensimmäinen päivä alkoi puheilla maailmankaikkeudesta vailla alkua, madonreikinä tunnettujen aika-avaruuden ohituskaistojen mahdollisesti aiheuttamista ongelmista, entropian maksimoimisesta selityksenä maailmankaikkeuden tasaisuudelle (vaihtoehtona kosmiselle inflaatiolle), ja muilla spekulatiivisilla ideoilla.

Suurin osa tutkimuksesta on pientä säätämistä toimiviksi todettujen teorioiden liepeillä. On tervettä, että kaikki eivät tyydy tähän, vaan pohtivat myös vähemmän suosittuja ideoita ja esittävät vaihtoehtoja, vaikka niissä olisikin ratkaisemattomia ongelmia. Havaintovetoisilla aloilla kuten kosmologiassa on yleensä hyvät perusteet sille, miksi joistakin ideoista on tullut yleisesti hyväksyttyjä, mutta hyvätkin syyt voivat olla väärin, joten ajatuksia on syytä ravistella.

Spekulatiivisia ideoita kuunnellessa tuntuu siltä, että täytyy olla valppaana, että osaa pitää mielen yhtä aikaa avoimena ja epäilevänä. Samalla ne muistuttavat siitä, miten tärkeää on, että havainnot pitävät teoreetikot oikeassa kurssissa.

On vaikea sanoa, mitkä ideat johtavat edistykseen, etenkin kun samalla ihmisellä voi olla sekä oivaltavan hyödyllisiä että umpikujaan vieviä ideoita. Älykkyys tai kokemus eivät takaa oikeellisuutta. Lisäksi virheellistä ideaa varten kehitetty laskennallinen menetelmä tai fysikaalinen idea voi osoittautua oikeaksi, eli pitää varoa heittämästä pois pesuvettä lapsen mukana.

Suurin osa konferenssista oli lähellä havaintoja ja tunnettua fysiikkaa. Kaikkia kosmologian keskeisiä aiheita käsiteltiin: inflaatiota, pimeää ainetta, pimeää energiaa, baryogeneesiä, galaksien jakaumaa isossa mittakaavassa, mutta enimmäkseen liikuttiin hiukkasfysiikan tienoilla.

Paljon puhuttiin siitä mahdollisuudesta, että Higgsin kenttä on vastuussa kosmisesta inflaatiosta ja siten maailmankaikkeuden rakenteen siemenistä. Tämä yksinkertainen malli on noussut kosmologian keskiöön, semminkin kun se sopii vuosi vuodelta parantuviin havaintoihin yhtä erinomaisesti kuin 15 vuotta sitten, jolloin Fedor Bezrukov ja Mikhail Shaposhnikov sen esittivät. Monet kilpailevat mallit on sen sijaan jouduttu heittämään romukoppaan uusien havaintojen myötä.

Mainittakoon myös Christof Wetterichin työ asymptoottisen turvallisuuden nimellä tunnetun idean parissa. Wetterich pyrkii selittämään samaan aikaan inflaation ja pimeän energian yhdistämällä gravitaation ja hiukkasfysiikan melko yksinkertaisella tavalla. Idea ei ole saanut yhtä suurta suosiota kuin Higgs-inflaatio, mutta on vaikuttavaa, että sen perusteella Wetterich yhdessä Shaposhnikovin kanssa ennusti oikein Higgsin hiukkasen massan ennen sen löytymistä.

Mustat aukot ja gravitaatioaallot, yhdessä tai erikseen, ovat kuuma aihe ja hyvin edustettuina. Nostan esille ystäväni ja yhteistyökumppanini Daniel Figueroan työn siitä, miten eri alkeishiukkaset saattavat varhaisina aikoina jättää ainutlaatuisen jäljen gravitaatioaaltotaustaan. Niinpä gravitaatioaaltoja mittaamalla voitaisiin löytää uusia hiukkasia energioilla, joihin hiukkaskiihdyttimet eivät yllä. Idea yhdistää hiukkasfysiikan pienen ja kosmologian ison mittakaavat hieman samaan tapaan kuin kosminen inflaatio.

Ongelmana on sopivien havaintolaitteiden puute. Vuonna 2037 taivaalle nousevaksi kaavailtu gravitaatioaalto-observatorio LISA voi havaita osan varhaisen maailmankaikkeuden gravitaatioaalloista, mutta monien niistä aallonpituus voi olla liian pieni LISA:n miljoonien kilometrien käsivarsille.

Näiden ideoiden sortteeraamisessa ja uusien kehittelemisessä ovat oleellisia konferensseissa käytävät epämuodolliset keskustelut, joita jää etätapaamisista kaipaamaan, kuten myös vanhojen ja uusien ystävien tapaamista. Tiede etenee yhtä lailla henkilökohtaisen jutustelun kuin tarkan laskemisen ja huolellisten havaintojen kautta.

3 kommenttia “Ravistelu ja romukoppa”

  1. Martti V sanoo:

    Onko inflaation yhdistäminen higgsiin tai pimeään energiaan kilpailevia teorioita? Taoi toisensa poissulkevia?

    1. Syksy Räsänen sanoo:

      Eivät.

  2. Eusa sanoo:

    Teoriankehittely on ihmisen työtä ja edellyttää rohkeutta, nöyryyttä ja vuoropuhelua. Mikäli jokin noista jää vajaaksi, tulos kärsii keskinkertaisuudesta, henkilökohtaisista mieltymyksistä tai näkökulmavääristymistä.

    Kun luovuus ajatellaan taidoksi toimia taitavasti uudessa tilanteessa, näemme, että teoreettinen fysiikka vaatii myös luovuutta. Toisaalta luonto, jonka johdonmukaisuutta pyritään kuvaamaan, ei jätä ollenkaan sijaa taiteelliselle luovuudelle.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Äänen jalanjäljet

31.5.2022 klo 15.55, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kosminen mikroaaltotausta on yksi tärkeimpiä kosmologisia havaintoja. Se näyttää millainen maailmankaikkeus oli 380 000 vuoden ikäisenä, 14 miljardia vuotta sitten.

Varhaisina aikoina lämpötila oli niin korkea, että atomit eivät pysyneet kasassa: kun negatiivisesti varattu elektroni ja positiivisesti varattu ydin yhtyivät, fotoni heti rikkoi niiden siteen. Fotoneista, elektroneista ja ytimistä koostuvassa keitossa kulki värähtelyjä –eli ääniaaltoja– noin kolmanneksella valonnopeudesta. Kun maailmankaikkeus laajenee, lämpötila laskee, ja 380 000 vuoden iässä lämpötila oli niin matala, että fotonit eivät enää pystyneet estämään atomien muodostumista. Kun aineesta tuli sähköisesti neutraalia, se ei enää ollut kytköksissä valoon, joka on siitä pitäen matkannut lähes esteettä halki maailmankaikkeuden.

Valo ja aine olivat tiukasti kytköksissä toisiinsa, ja niiden ero oli nopea. Niinpä siellä mistä näemme tulevan enemmän mikroaaltoja oli fotonien lisäksi myös enemmän elektroneja ja ytimiä. Aineen vapauduttua valon ikeestä nämä tihentymät kasvoivat gravitaation takia, ja niihin muodostui galakseja ja muita rakenteita. Tämän takia kosmisessa mikroaaltotaustassa näkyvistä aalloista pitäisi jäädä jälki myös galaksien jakaumaan.

Yksi hankaluus on se, että suurin osa aineesta ei koostu elektroneista ja ytimistä, vaan on pimeää ainetta. Pimeä aine vuorovaikuttaa hyvin heikosti valon kanssa. Siksi sen jakauma varhaisina aikoina on erilainen kuin näkyvän aineen: näkyvä aine liikkuu yhdessä valon kanssa, pimeä aine tiivistyy yksinään. Näkyvän aineen erottua valosta pimeä aine vetää näkyvää ainetta puoleensa, ja galaksit muodostuvat pimeän aineen tihentymiin. Niinpä aaltokuvio ei näy galaksien jakaumassa yhtä selkeänä kuin kosmisessa mikroaaltotaustassa.

Toisin kuin valo, joka kulkee lähes suoraan avaruudessa, ainehiukkaset klimppiytyvät, mikä sumentaa kuvaa niiden alkuperäisistä paikoista. Galaksien sisällä aine on myllertynyt niin perinpohjaisesti, että on mahdotonta selvittää, mistä kukin hiukkanen on tullut.

Mutta koska maailmankaikkeuden ikä on äärellinen ja aine liikkuu äärellisellä nopeudella, ainehiukkaset ovat ehtineet kulkea vain äärellisen matkan. Ainehiukkasten ja galaksien tyypillinen nopeus on noin tuhannesosa valonnopeudesta, joten ne ovat ehtineet siirtyä alkuperäisiltä paikoiltaan muutama miljoonaa valovuotta. Isommilla etäisyyksillä galaksien jakauma on säilyttänyt alkuperäisen muotonsa.

Tätä voi verrata valokuvaan, jonka kaikkia pikseleitä siirretään sattumanvaraisesti muutaman millimetrin. Pienet yksityiskohdat sumentuvat, mutta isossa mittakaavassa kuvasta saa selvää.

Ennen kuin aineen aaltoilu lakkasi valon ja aineen irrotessa, aallot ehtivät matkata noin 400 000 valovuotta. Sittemmin galaksien etäisyydet ovat maailmankaikkeuden laajenemisen takia venyneet vähän yli tuhatkertaisiksi. Galaksien jakaumassa pitäisi siis näkyä renkaita, joiden halkaisija on noin viisisataa miljoonaa valovuotta, sekä lyhyempiä renkaita, jäänteinä aalloista jotka ovat matkanneet isoimman etäisyyden tai vain osan siitä.

Nämä aallot tunnetaan nimellä baryoniset akustiset oskillaatiot (baryon acoustic oscillations). Sana baryoninen viittaa atomiytimistä ja elektroneista koostuvaan aineeseen, ja akustinen oskillaatio on hieno tapa sanoa ääniaalto. Ne havaittiin ensimmäisen kerran vuonna 2005, ja niiden ominaisuudet sopivat yhteen kosmisen mikroaaltotausten kanssa.

Näistä ääniaaltojen jalanjäljistä galaksien jakaumassa tuli pian tärkeä kosmologian työkalu. Niillä voi tehdä enemmän kuin vain tarkistaa, saako saman tuloksen kuin kosmisesta mikroaaltotaustasta. Vaikka signaali on sumeampi kuin kosmisessa mikroaaltotaustassa, galaksien jakaumassa on se etu, että sitä voi mitata kolmessa ulottuvuudessa.

Valo ja aine irtosivat 380 000 vuoden aikaan niin nopeasti ja kosminen mikroaaltotausta muuttuu niin hitaasti, että se on meille oleellisesti kaksiulotteinen taivaankartta. Galakseja voimme sen sijaan havaita eri etäisyyksillä.

Kun maailmankaikkeus laajenee, galaksien jakaumaan painautuneet aallot venyvät. Vertaamalla sitä, miltä aallot näyttävät lähellä ja kaukana meistä voi siksi mitata, miten maailmankaikkeuden laajenemisnopeus on muuttunut.

Galaksien jakauman ääniaaltojen jäljet kantavat tietoa sekä varhaisesta maailmankaikkeudesta että myöhemmistä vaiheista. Tämän takia niillä on tärkeä rooli yrityksissä selvittää, mistä johtuu se, että eri havainnot vaikuttavat antavan ristiriitaisia tuloksia siitä, miten nopeasti maailmankaikkeus laajenee nyt. Tämä on tällä hetkellä merkittävin ennusteiden ja havaintojen ero kosmologiassa. Joko havaintojen tulkinnassa on jokin systemaattinen virhe tai sitten on olemassa jotain tuntematonta fysiikkaa, jota ei ole osattu ottaa huomioon.

Havainnot kosmisesta mikroaaltotaustasta ja galaksien jakaumasta ovat sopusoinnussa keskenään, mutta ristiriidassa joidenkin muiden havaintojen kanssa. Jotkut ovat pitäneet tätä vihjeenä siitä, että ristiriidan voi ratkaista peukaloimalla sitä, miten aallot kulkevat varhaisessa maailmankaikkeudessa. Mikroaaltotausta ja galaksien jakauma eivät nimittäin mittaa laajenemisnopeutta suoraan, vaan suhteessa varhaisten aikojen aaltojen pituuteen. Jos aallot silloin kulkivat lyhyemmän matkan, niin nykyisen laajenemisnopeuden pitää olla isompi, jotta taivas näyttäisi samalta.

Toistaiseksi mikään selitys ei ole vakuuttanut kosmologien enemmistöä, ja apua odotetaan ennemmin tarkemmista havainnoista kuin teoreetikkojen pohdinnoista. Avainasemassa on Euroopan avaruusjärjestö ESAn Euclidsatelliitti, jonka on määrä nousta taivaalle ensi vuonna. Sen ohjelmaan kuuluu gravitaatiolinssien lisäksi galaksien jakauman ja erityisesti ääniaaltojen jäljen mittaaminen.

12 kommenttia “Äänen jalanjäljet”

  1. Eusa sanoo:

    Eikö hierarkisesti ja fraktaalisesti kaareutunut avaruusaika voisi selittää laajenemisnopeuden muutoshistorian näennäiseksi?

    Voisiko mielikuva avaruudellisesta isotropiasta ollakin erehdys?

    1. Syksy Räsänen sanoo:

      Fraktaalisia malleja maailmankaikkeuden rakenteelle on tutkittu, mutta havaintojen mukaan maailmankaikkeudella on äärellinen homogeenisuusskaala (noin 500 miljoonaa valovuotta), eli kaikki sitä isommat palaset ovat tilastollisesti jokseenkin samanlaisia.

      1. Eusa sanoo:

        Aika tulkinnanvaraista on homogeenisuus-isotrooppisuus-postulaatin päätteleminen havainnoista 70…500 miljoonan valovuoden ylittävissä mittakaavoissa. Olen tähän asti törmännyt vain kehäpäätelmiin, esim. liittyen BAO-analyysiin. Onko jokin sinut parhaiten vakuuttanut havainto yksilöitävissä?

        Yritin syvennellä tuntemusta viime aikaisiin tutkimuksiin.
        https://arxiv.org/pdf/1505.00794.pdf
        https://arxiv.org/pdf/2108.11083.pdf
        https://arxiv.org/pdf/2106.05284.pdf
        https://arxiv.org/pdf/2112.04134.pdf

        Aihe näyttää antavaan sijaa järjelliselle epäilylle ja kirvoittaa eri lähestymistavoin tutkimaan johdonmukaisuuksia.

        1. Syksy Räsänen sanoo:

          Kosmisen mikroaaltotaustan isotrooppisuus, galaksien jakauman fraktaalidimensio ja homogeenisen ja isotrooppisen mallin monet onnistuneet ennusteet.

          1. Eusa sanoo:

            Tuohon fraktaalidimension johdatukseen olenkin luottanut, mutta isotropiasta aikakaarevuudessa se ei näyttäisi kertovan mitään.

          2. Syksy Räsänen sanoo:

            Yleisessä suhteellisuusteoriassa ei ole sellaista asiaa kuin ”aikakaarevuus”. Tämä riittäköön tästä.

  2. Cargo sanoo:

    Voiko näistä kosmisista aaltokuvioista päätellä maailmankaikkeuden topologisia ominaisuuksia, esim. onko avaruus reunallinen vaiko reunaton? Jos nämä varhaiset aallot kiertäisivät kuin reunatonta pallopintaa, niin sen luulisi jättävän säännöllisen sekä avaruuden laajetessa vaimenevan jäljen, tai sitten laittavan koko kuvan niin sekaisin, ettei siitä ota erkkikään selvää.

    1. Syksy Räsänen sanoo:

      Kyllä voi. Jos maailmankaikkeus on äärellisen kokoinen (ja siksi sillä on erityinen topologia), niin se on isompi kuin havaitsemamme alueen koko, koska mitään tällaisia merkkejä ei ole näkynyt.

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/muotoja-ilman-mittanauhaa/

  3. Erkki Kolehmainen sanoo:

    Minulle George de Godzinskyn säveltämä Äänisen aallot on paljon ymmärrettävämpi kuin tämä Syksyn ”sovitus” hiukkasfysiikan ns. standardimallista. Jos maailmankaikkeuden ikä on n. 14 miljardia vuotta, niin miten voidaan sanoa, että jotakin muuttui sen ollessa 380 000 v. vanha. Minä sanoisin, että n. 400 000 v. tai alle puoli miljoonaa vuotta!

    1. Syksy Räsänen sanoo:

      Maailmankaikkeuden varhaisten tapahtumien ajankohta tunnetaan paljon tarkemmin kuin myöhäisten. Esimerkiksi kevyiden alkuaineiden synnyn tapahtumat tiedetään sekuntien tarkkuudella. Eri ajankohdat määritetään havainnoista epäsuorasti eri tavoin – maailmankaikkeudessa ei ole kelloa, joka mittaisi alusta loppuun paljonko aikaa on kulunut.

  4. Martti V sanoo:

    Aikahan on suhteellista. Oliko 380 000 vuoden ikäinen universumi hyvin homogenista mikroskooppisessa skaalassa ja gravitaation vaikutus saman hetkisyyteen pientä? Toisaalta onko ajankulku ollut erilainen nykyisin kokemaamme?

    1. Syksy Räsänen sanoo:

      Kyllä, 380 000 vuoden aikaan aineen tiheys oli sama kaikkialla tuhannesosan tarkkuudella. Myöhemminkään, kun rakenteet muodostuvat ja tiheyseroista tulee valtavia, niiden gravitaation vaikutus ajan kulkuun on pieni muualla kuin neutronitähtien ja mustien aukkojen reunalla.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Toinen donitsi

16.5.2022 klo 12.06, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Viime torstaina Event Horizon Telescope (EHT) -tutkimusryhmä julkisti ensimmäisen kuvan Linnunradan keskustassa lymyävästä mustasta aukosta. Samalla julkaistiin ryhmän ensimmäiset tutkimustulokset siitä. Vuonna 2019 ryhmä oli tuonut julki kuvan ja tulokset galaksin M87 keskustan mustasta aukosta. Molemmat kuvat perustuvat vuonna 2017 tehtyihin havaintoihin.

Linnunradan keskustaa kiertävän kuuman aineen keskellä lymynnee musta aukko. (Kuva: EHT Collaboration.)

EHT-ryhmän jäsen Heino Falcke puhuu etänä havaintojen tekemisestä ja merkityksestä Helsingin yliopiston Exactumin Linus Torvalds -salissa (Pietari Kalmin katu 5). Tapahtumaa voi seurata myös etäyhteyksin. (Tiedote täällä, Zoom-linkki tässä.) Paikan päällä ovat Kaj Wiik Tuorlan observatoriosta Turun yliopistosta ja Esko Keski-Vakkuri Helsingin yliopistosta. Wiik on EHT-ryhmän jäsen ja puhuu suomalaisten yliopistojen osuudesta projektissa, Keski-Vakkuri on tutkinut mustien aukkojen kvanttifysiikkaa ja puhuu niiden teoriasta. Puhujat myös vastaavat yleisön kysymyksiin. Minä juonnan tilaisuuden.

(Päivitys: Tilaisuuden nauhoitus on tässä. En juontanutkaan tilaisuutta sairastumisen takia.)

EHT:n kuvan rakentaminen ja analysoiminen Linnun radan mustasta aukosta kesti kolme vuotta kauemmin kuin galaksin M87 tapauksessa, koska Linnunradan musta aukko on pienempi. Sen massa on noin neljä miljoonaa Auringon massaa ja säde noin 12 miljoonaa kilometriä. Galaksin M87 keskustan mustan aukon massa on seitsemän miljardia Auringon massaa. Mustien aukkojen säde on verrannollinen niiden massaan, joten galaksin M87 musta aukko on vastaavasti noin tuhat kertaa niin paksu kuin Linnunradan lajitoverinsa. Linnunradan musta aukko on kuitenkin myös noin tuhat kertaa lähempänä meitä, vain noin 26 000-27 000 valovuoden päässä.

Molempien mustien aukkojen koko taivaalla on siis Maasta katsottuna suunnilleen sama: yhtä iso kuin Kuussa olevan donitsin reikä. Linnunradan mustan aukon kuvan kokoaminen kesti kauemmin siksi, että sen ympäristö muuttuu nopeammin. Mustan aukon lähellä aine kiertää lähes valonnopeudella. Mitä pienempi aukko, sitä lyhyemmässä ajassa aine pyörii sen ympäri ja sitä nopeammin kuva muuttuu. Galaksissa M87 tyypillinen aika muutokselle on viidestä päivästä kuukauteen, Linnunradan aukon tapauksessa 4-30 minuuttia. Nyt julkaistut tulokset perustuvat 32 tunnin havaintoihin. Tässä ajassa galaksin M87 jättiläinen ei juuri muutu, mutta aine ehtii kiertää Linnunradan mustan aukon monta kertaa.

Se, että mustan aukon tienoo käy läpi monta kierrosta havaintojen aikana vaikeuttaa tarkan kuvan ottamista. Toisaalta sen takia saadaan edustavampi otos systeemin kehityksestä. Näin voidaan olla varmempia siitä, että kuvassa näkyvät rakenteet ovat tyypillisiä eivätkä ohimeneviä piirteitä, joita vain sattui olemaan näköpiirissä kun kuva otettiin.

Uusi kuva näyttää päällepäin samanlaiselta kuin kolme vuotta sitten paljastettu: hohtava donitsi, jonka keskellä on musta alue. Näennäisen yksinkertaisen kuvan takana on monimutkainen prosessi.

EHT koostuu ympäri maailmaa olevista antenneista, jotka mittaavat Linnunradan keskustasta tulevaa sähkömagneettista säteilyä millimetrin aallonpituudella. Antennien havainnot nivotaan yhteen niin että ne toimivat kuin yksi Maapallon kokoinen teleskooppi. Mitä isompi teleskooppi, sitä tarkempi kuva – jos haluttaisiin nähdä vielä pienempiä yksityiskohtia, osa havaintolaitteista pitäisi lähettää avaruuteen.

Koska EHT-teleskooppeja on vain muutamassa paikassa eikä kaikkialla Maapallolla, ne kuvaavat vain osan kohteestaan. Kun Maa pyörii, teleskooppien katsoma kohta taivaalla muuttuu, ja kunkin teleskoopin näköala piirtää viivan taivaalle. Näiden viivoja pohjalta pitää sitten tehdä paras mahdollinen arvaus siitä, miltä kohde näyttää. Tieteellisessä artikkelissa on esitetty erilaisia vaihtoehtoja kuvalle, joista julkisuustarkoituksia varten on valittu yksi.

Havaintoa tulkitaan vertaamalla sitä malleihin siitä, miten hiukkaskeitto liikkuu ja vuorovaikuttaa mustan aukon ympärillä, ja miten ympäristön tähdistä vuotaa ainetta mustaan aukkoon. Linnunradassa on se etu verrattuna galaksiin M87, että Linnunradan keskustasta on paljon havaintoja eri aallonpituuksilla. Esimerkiksi tähtien liikkeet mustan aukon ympärillä on mitattu huolella, ja sen massa on määritetty niistä tarkasti. Näistä havainnoista myönnettiin vuonna 2020 Nobelin palkinto. Lähimmän tähden pienin etäisyys mustasta aukosta on noin tuhat kertaa mustan aukon säde, kun taas EHT:n erotuskyky riittää havaitsemaan noin neljän säteen kokoisia tapahtumia.

EHT:n analyysi alleviivaa sitä, miten tärkeää on yhdistää eri havaintoja samasta kohteesta, mikä on yksi nykyisen astrofysiikan ja kosmologian tärkeitä piirteitä. Tässä tapauksessa eri havaintoja on niin paljon että yksikään EHT-ryhmän tutkimista malleista mustalle aukolle ja sen ympäristölle ei pysty selittämään niitä kaikkia. EHT:n ja muiden havaintolaitteiden havainnot sopivat mallien ennusteisiin erikseen, mutta eivät yhdessä. Keskeinen ongelma on se, että mustan aukon ympäristö on rauhallisempi kuin mitä mallit ennustavat.

Toisin kuin galaksissa M87, Linnunradan mustalla aukolla ei ole näkyvää hiukkassuihkua, ja se syö vain sadasmiljoonasosan Auringon massaa vuodessa. Koska aukon ympäristössä on vähemmän ainetta, se on läpinäkyvämpi ja helpompi mitata. Toisaalta ilman suihkua aukon pyörimissuuntaa ei saada erikseen mitattua.

Mallien kyvyttömyys selittää havaintoja ei ole sikäli vakavaa, että EHT-ryhmä ei ole käynyt kaikkia mahdollisuuksia läpi, esimerkiksi läheisten tähtien ja mustan aukon kiekon vuorovaikutusta on käsitelty varsin yksinkertaisesti.

Kuten galaksin M87 kuvaa, myös uusia havaintoja voi käyttää yleisen suhteellisuusteorian testaamiseen. Yksi keskeinen kysymys on se, onko donitsin reikä todella musta aukko. Lehdistötiedotteen ja tieteellisen artikkelin vertaaminen havainnollistaa tieteellisen esityksen ja myyntipuheen välistä eroa.

Tiedotteen mukaan ryhmän tulokset tarjoavat ”ylivertaista” todistusaineistoa siitä että kyseessä on musta aukko. Tieteellisessä artikkelissa taasen kerrotaan, että vaikka on ”ylivertaista” todistusaineistoa siitä, että Linnunradan keskustassa on paljon massaa hyvin pienessä tilassa, se onko kyseessä musta aukko on vielä auki.

On hieman vaikea sanoa, milloin kysymyksen voisi sanoa ratkaistuksi. Havainnot ovat täysin sopusoinnussa yleisen suhteellisuusteorian kanssa, mutta mihin tarkkuuteen pitäisi yltää?

Yleisen suhteellisuusteorian mustan aukon ennusteiden vertaaminen kilpailijan ennusteisiin kertoo, milloin havainnot pystyvät erottamaan ne toisistaan. Onkin esitetty kokonainen eläintarha vaihtoehtoja mustille aukoille. EHT:n havaintojen perusteella voidaan sulkea pois ainakin se, että Linnuradan keskustassa olisi bosonitähti mustan aukon sijaan, ja joitakin muitakin eksoottisia vaihtoehtoja, mutta ei kaikkia. Yksikään kilpailijoista ei kuitenkaan nouse yli muiden.

Toinen mahdollisuus on testata mustien aukkojen yleisiä ominaisuuksia ja todeta jossain enemmän tai vähemmän mielivaltaisessa vaiheessa, että nyt mahdolliset poikkeamat ovat niin pieniä, että kyseessä on musta aukko.

Mustien aukkojen keskeinen ominaisuus on se, että niillä on tapahtumahorisontti, eli pinta josta voi sujahtaa ongelmitta sisään, mutta jonka takaa ei voi koskaan palata. Tavallisten kappaleiden pinta sei sijaan joko heijastaa säteilyä, tai sitten imee sitä ja säteilee toisella aallonpituudella takaisin. Linnunradan keskustan kappaleesta ei näy sen enempää heijastunutta kuin mitään muutakaan säteilyä, vaikka siihen valuu koko ajan hiljakseen ainetta. EHT:n havainnot sulkevat pois sen vaihtoehdon, että tuo kappale imisi ja säteilisi sitten eri aallonpituudella kaiken säteilyn. Ne myös sulkevat pois sen, että se heijastaisi yli 30% siihen tulevasta säteilystä.

Kaikkiaan uusista havainnosta saadut rajat poikkeamille yleisestä suhteellisuusteoriasta ovat suunnilleen kaksi kertaa niin hyvät kuin galaksin M87 mustasta aukosta ja samaa luokkaa gravitaatioaaltohavainnoista saatujen rajojen kanssa. Tosin gravitaatioaallot testaavat yleistä suhteellisuusteoriaa monipuolisemmin, koska niiden yksityiskohtiin vaikuttaa sekä se miten niitä synnyttävät kappaleet kiertävät toisiaan että se millaisia aallot ovat ja miten ne etenevät. Valokuvat mustista aukoista eivät testaa jälkimmäistä.

Vuonna 2017 EHT kuvasi Linnunradan keskustaa viisi yötä, ja nyt tehty analyysi perustuu vain kahteen. Yhtenä havaintoyönä, jota ei ole vielä analysoitu,  Linnunradan mustan aukon ympäristössä näkyi lieska, mikä on erityisen kiinnostavaa. Ryhmä teki havaintoja valon kirkkauden lisäksi myös sen polarisaatiosta, mikä kertoo mustan aukon tienoon magneettikentästä. (Galaksin M87 polarisaatiohavainnot onkin jo julkaistu.) Ryhmä on myös vuoden 2017 jälkeen tehnyt lisää havaintoja paremmilla laitteilla.

Uusien havaintojen avulla on tarkoitus saada selville mustan aukon rakenteen kehitys ajassa. Toisin sanoen kuvan sijaan on luvassa elokuva, joka näyttää, mitä noilla tienoilla oikein tapahtuu – tai siis tapahtui 26 000-27 000 vuotta sitten, vähän sen jälkeen kun neandertalilaiset olivat Maassa kuolleet sukupuuttoon.

Kaikenlaisiin aihetta koskeviin kysymyksiin saa vastauksia 30. toukokuuta.

Päivitys (17/05/22): Tuotu tiedote tilaisuudesta näkyvämmin esille ja lisätty Zoom-linkki.

Päivitys (22/06/22): Lisätty linkki Heino Falcken luennon nauhoitukseen.

16 kommenttia “Toinen donitsi”

  1. Eusa sanoo:

    Aika yllättävä yhteensattuma tuo, että aukko näkyy suuntaamme renkaana – eikö olisi voinut odottaa, että keskiön lävistäisi kertymäkiekon valonlähde?

    1. Syksy Räsänen sanoo:

      Kiekko on ohuempi kuin miltä kuvassa näyttää. Se näyttää paksulta siksi, että EHT:n tarkkuus ei riitä sen yksityiskohtien erottamiseen. En tiedä, peittäisikö kiekko mustaa aukkoa vaikka katsoisimme sitä suoraan kiekon suunnasta (mikä on epätodennäkäistä).

      Ks. kuva 5 tässä EHT-ryhmän artikkelissa: https://iopscience.iop.org/article/10.3847/2041-8213/ac6674#apjlac6674f5

      1. Eusa sanoo:

        Elokuussahan jo Webb Telescope kääntää katseensa kohteeseen ja saanemme lisää valaistusta asiaan.

  2. miguel sanoo:

    Toisin, kuin M87 kuvassa, jossa ”kirkastumat” ovat keskityneet aukon alapuolelle, niin tässä uudessä ne ovat vähän kuin kolmiona aukon ympärillä. Onko sille joku selitys?

    1. Syksy Räsänen sanoo:

      Tosiaan. Tuo piirre näyttää vieläpä olevan suhteellisen stabiili (se näkyy eri versioissa kuvasta). En tiedä sen merkitystä.

      1. Eusa sanoo:

        Mitään ainettahan ei äärellisessä havaintohistoriassa voi havainnossa päästä sulkeutuneen tapahtumahorisontin läpi. Kaikkina aikoina kertynyt materiaali näkyy kuvassa säteillen eri asteisesti punasiirtyneenä.

        Voisi arvella, että kyse on tuon aineksen järjestymisestä – vrt. Jupiterin napa-alueen kuusikulmiomuodostelma.

      2. Cargo sanoo:

        Voisiko tuo kirkkausvaihtelu antaa vihiä tapahtumahorisontin geometriasta? Jos kuvan keskellä möllöttäisi vain symmetrinen musta pallo, niin sellainen symmetria voisi periytyä kiertävän aineen kiekkoon?

        1. Syksy Räsänen sanoo:

          Linnunradan musta aukko pyörii, kuten muutkin mustat aukot. Tämän takia sen tapahtumahorisontti ei ole pallomainen. Yleisessä suhteellisuusteoriassa se ei kuitenkaan saa aikaan tällaisia rakenteita. EHT-ryhmä on tutkinut erilaisia vaihtoehtoja yleisen suhteellisuusteorian mukaiselle horisontille, mutta tuolla tavalla epäsymetristä horisonttia ei ole tutkittu. On kuitenkin luultavampaa, että kyseinen rakenne liittyy kiertymäkiekon ominaisuuksiin.

          1. Cargo sanoo:

            Voisiko sellainen ominaisuus olla vaikkapa se, että kiertonopeudessa on vaihtelua, mikä saa aineen jossakin kohtaa tiivistymään ja sitä kautta kasvattaa säteilyn intensiteettiä? Sitten tuosta kuvasta tuli assosiaatio atomien orbitaaleihin, ja googlettamalla löytyi mm. ”Modelling astrophysical discs reveals the emergence of Schrödinger’s equation”.

          2. Syksy Räsänen sanoo:

            En tunne kiekon fysiikkaa, mutta tuskin.

            Orbitaaleilla ei ole asian kanssa mitään tekemistä, tässä on kyse klassisesta fysiikasta.

          3. Cargo sanoo:

            Tuli mieleen, että eikö kiekon meille näkyvä intesiteetti kasva, jos gravitaatiolinssi painottaa kiekon kuvaa juuri kyseisissä kohdissa? Jos esimerkiksi kiekko pyörii meille näkyen yksinkertaisen horisontaalisesti, niin gravitaatiolinssi lisää vertikaalisen kuvan mustan aukon takaa, ja kahdessa reunakohdassa, joissa horisontaalinen ja vertikaalinen kiekko kohtaavat, on valon intensiteetti kasvanut?

          4. Syksy Räsänen sanoo:

            Kysyin Heino Falckelta, ja hänen mukaansa ei ole selvää, mistä kolminainen rakenne syntyy, ja koska se on erilainen eri versioissa kuvasta (kirkkauden maksimit ovat esimerkiksi eri kohdissa), ei ole edes selvää, vastaako se kiekon todellista piirrettä.

  3. Jari Lilja sanoo:

    Olisiko tähän luentoon saatavilla linkki?

    1. Syksy Räsänen sanoo:

      Linkki on tiedotteessa. Linkkaan sen selvemmin, kiitos kysymästä.

      https://www.helsinki.fi/fi/uutiset/avaruus/linnunradan-musta-aukko-pystytty-kuvaamaan-heino-falcke-luennoi-305

  4. Cargo sanoo:

    Voisiko Dr. Keski-Vakkurilta kysyä, että jos entropian kasvu on universaali laki, niin millaisen mekanismin kautta se nakertaa mustia aukkoja hajalle? Tai voisiko jokin kvanttimekaaninen epätarkkuusperiaate estää epäfysikaalista singulariteettia muodostumasta, ja jos se olisi kuviteltavissa, niin millainen tämä periaate voisi olla? Ja jos ainehiukkasten kvanttimekaniikan epätarkkuusperiaate pyörii käänteisten Fourier-muunnosten ympärillä, niin millainen matemaattinen malli voisi kuvata aika-avaruuden epätarkkuutta?

    1. Syksy Räsänen sanoo:

      Kannattaa mennä paikan päälle (tai Zoomin linjoille) ja esittää Keski-vakkurilla tämä kysymys, jos se ei tule hänen puheenvuorostaan esille.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *