Miilut maanalaiset

15.8.2023 klo 19.49, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Mainitsin atomikellojen yhteydessä ohimennen Oklossa kaksi miljardia vuotta sitten toimineesta ydinreaktorista. Kirjoitan nyt tästä luonnonilmiöstä tarkemmin.

Aine koostuu atomeista, joissa on atomiydin ja sen ympärillä elektroneja. Ytimet rakentuvat protoneista ja neutroneista. Suurin osa ytimistä on epävakaita, eli ne hajoavat jonkun ajan kuluttua. Jos hajoamisessa irronnut neutroni osuu toiseen ytimeen, se voi pistää tämänkin palasiksi.

Vuonna 1938 Joseph Rotblat ja muut fyysikot ymmärsivät, että jos ytimiä on tarpeeksi tiheässä, voi syntyä ketjureaktio, missä jokainen hajoaminen johtaa uusiin hajoamisiin. Puun palaminen toimii samalla tavalla: kun atomista irtoaa elektroneita, tästä vapautuva energia hajottaa lisää atomeita, ja reaktio jatkuu.

Yksi merkittävä ero on se, että protoneita ja neutroneita toisiinsa sitova ydinvuorovaikutus on noin miljoona kertaa vahvempi kuin elektroneja atomiytimessä pitävä sähkömagneettinen vuorovaikutus. Tämän takia ydinten hajottamisesta saa noin miljoona kertaa enemmän energiaa kuin atomien rikkomisesta.

Jos ydinten tiheys on iso, ytimet kuluvat loppuun nopeasti eli energia vapautuu lyhyessä ajassa. Jos ytimet ovat kauempana toisistaan, reaktio voi jatkua pitkään. Ydinpommin ja ydinvoimalan erona on lähinnä reaktion nopeus.

Äärimmäisin esimerkki hitaasta hajoamisesta on löydetty Oklon kaivoksesta Gabonissa. Vuonna 1972 havaittiin, että Oklosta louhitussa malmissa oli tiettyä uraaniydintä vähemmän kuin mitä Maapallolla yleensä. Pian tajuttiin, että syynä on se, että uraaniytimiä oli hajonnut ketjureaktioissa kaksi miljardia vuotta sitten.

Oklosta on paikallistettu 15 ydinreaktoria 10-400 metrin syvyydestä. Ne olivat linssinmuotoisia, noin kymmenen metriä leveitä ja keskeltä vajaan metrin paksuja alueita, joihin oli pakkautunut uraania. Lisäksi maaperässä kallioperässä oli sopivasti vettä. Vettä käytetään myös ihmisten valmistamissa ydinreaktoreissa hidastamaan neutroneita, jotta nämä ehtivät hajottaa ytimiä ennen kuin lentävät pois.

Oklossa ydinten hajoamisesta syntyvä lämpö on lämmittänyt vettä muutamaan sataan asteeseen, kunnes vesi höyrystyy ja reaktori sammuu. Tämä kestää puoli tuntia. Sitten lämpötila laskee ja vesi valuu takaisin reaktoriin, ja kahden ja puolen tunnin kuluttua ketjureaktio alkaa uudelleen. Tätä luonnonkiertoa jatkui 100 000-300 000 vuotta, kunnes tarvittavat uraaniytimet kuluivat loppuun.

Oklo on ainoa tunnettu alue Maan pinnalla Maassa, missä on ollut ydinmiiluja ennen joulukuuta 1942, jolloin ihmiset käynnistivät Chicagossa reaktorin osana joukkotuhoaseiden valmistamista. Mutta muualtakin on löydetty merkkejä siitä, että ytimiä on pakkautunut niin tiheään, että ketjureaktio on ollut lähellä. On siis mahdollista, että luonnon ydinreaktoreita löydetään lisää.

Tällaiset reaktorit tarjoavat havaintoja siitä, millaisia luonnonlait ovat olleet kaksi miljardia vuotta sitten. Sähkömagneettisen vuorovaikutuksen takia protonit hylkivät toisiaan, joten sen voimakkuus vaikuttaa ydinten kokoon ja sitä kautta hajoamiseen. Protonit ja neutronit koostuvat kvarkeista, joten kvarkkien massat vaikuttavat nekin siihen, miten ydinreaktiot tapahtuvat.

Oklon kivistä voi mitata kuinka paljon erilaisia ytimiä syntyi. Vertaamalla havaintoja ennusteisiin saa selville, että kaksi miljardia vuotta sitten sähkömagneettisen vuorovaikutuksen voimakkuus ja kevyiden kvarkkien massat poikkesivat nykyisistä korkeintaan miljoonasosan sadasosan verran.

Kosmologiassa havaitaan menneisyyttä kahdella tavalla: suoraan ja arkeologisesti. Oklon reaktorit, kuten kevyiden alkuaineiden pitoisuudet avaruudessa, ovat esimerkkejä jälkimmäisestä. Ne ovat jäänteitä, joista voi lukea mitä menneinä aikoina on tapahtunut. Toinen vaihtoehto on katsoa menneisyyteen suoraan. Koska valo kulkee äärellisellä nopeudella, mitä kauemmas katsoo, sitä varhaisempaan aikaan näkee.

Vuonna 2011 väitettiin, että miljardien valovuosien takaa tuleva valo näyttää, että sähkömagneettisen vuorovaikutuksen voimakkuus oli muinoin sadastuhannesosan nykyistä pienempi. Tämä olisi mullistava tulos, mutta koska muutos on tuhat kertaa Oklosta pääteltyä rajaa isompi, on syytä suhtautua siihen epäilyksellä. Aiheesta on kiistelty, eivätkä sittemmin tehdyt suoratkaan havainnot tue väitettä.

Tiede ei ole torni, vaan päättelyn ja havaintojen verkko, joten yksi havainto harvoin riittää teorian hylkäämiseen, ja on tärkeää hyödyntää erilaisia tapoja tutkia samoja asioita.

Päivitys (17/08/23): Korjattu kieliasua.

10 kommenttia “Miilut maanalaiset”

  1. Erkki Kolehmainen sanoo:

    ”Tämän takia ydinten hajottamisesta saa noin miljoona kertaa enemmän energiaa kuin atomien rikkomisesta.”

    NL:n fuusiopommin, Tsar Bomban, teho oli n. 50 megatonnia eli yli kaksituhatkertainen verrattuna esim. Hiroshiman ja Nagasakin fissiopommeihin. Selitäpä tavalliselle kaduntallaajajle, miten fuusiopommilla saadaan tällainen teho?

    1. Syksy Räsänen sanoo:

      En tunne ydinaseiden suunnittelua, mutta oleellista on se, kuinka monesta ytimestä saadaan sidosenergiaa irti (ja se, kuinka isoja niiden sidosenergiat ovat). Mitä enemmän sopivia ytimiä saadaan mukaan, sitä isompi räjähdys.

    2. MM sanoo:

      Uraani- ja plutoniumpommien käytännön teho määräytyy noiden isotooppien kriittisen massan mukaan: Ei ole käytännössä eikä ehkä teoriassakaan mahdollista tehdä pommeja, joissa fissioydin olisi kauheasti kriittistä massaa suurempi tai pienempi.

      Fuusiopommin vedyllä ei ole samassa mielessä kriittistä massaa, sitä voi ladata pommiin melkeinpä niin paljon kuin haluaa, paljon Tsar Bombaa enemmänkin. Vetypommin käytännön tehoa kuitenkin rajoittaa sekä koko, että se että valtavien räjähdysten teho katoaa enimmäkseen avaruuteen.

      Käsittääkseni johtaville ydinasevaltioille ei olisi mitenkään erityinen ponnistus tehdä paljon Tsar Bombaa isompia pommeja. Niille ei vain ole edes teoreettista käyttöä.

    3. Jnes sanoo:

      Varsinaiseksi pommiasiantuntijaksi en itseäni miellä, mutta jonkin verran on tullut asiasta luettua ja parhaani mukaan yritän vastailla..

      Vaiheistamalla pommia siitä saadaan enemmän räjähdysvoimakkuutta (kton) tilavuus. Periaatteessa näitä vaiheita voidaan lisätä loputtomiin, mutta käytännössä tila rajoittaa vaiheiden lukumäärän. Wikipediassa on hyvin tietoa tästä vaiheistamisesta, sekä yleensä lämpöydinräjähteestä. Teller-Ulam design.
      Nykyisissä ydinaseissa on mahdollista säätää latauksen tehoa useilla kilotonneilla. Myös monikärkilataukset kuuluvat ydinasevalikoimaan eri valtioilla.

      On totta, että pommin tehoa/kokoa kasvatettaessa sen tuhovaikutus jää ”pieneksi” tai se katoaa ilmakehään/avaruuteen, kuten Tsar Bomban tapauksessa. Toki räjäytys korkeudella on vaikutusta tähän.

      Mielenkiintoinen artikkeli, kiitokset siitä.

  2. Niilo Paasivirta sanoo:

    Hiroshiman pommi oli niin alkeellinen ja tehoton, että vain 2 % sen uraanimäärästä fissioitui, noin 1280 g. Räjähdysvoimakkuus 18-20 kt (TNT-ekvivalenttia).

    Fissiopommin yläraja on vaatimattomat 500 kt (TNT) käsittääkseni siksi että on vaikea saada aikaan suurta kriittistä massaa.

    Fuusiopommista voidaan tehdä ainakin 200 kertaa voimakkaampi mutta sellaisella ei ole mitään käyttöä.

  3. Lola Montez sanoo:

    Hyvä artikkeli

  4. Martti V sanoo:

    Oli näköjään tämä juttu ylittänyt Iltalehden uutiskynnyksen.

  5. Ville Rintala sanoo:

    ”Vettä käytetään myös ihmisten valmistamissa ydinreaktoreissa hidastamaan neutroneita, jotta nämä ehtivät hajottaa ytimiä ennen kuin lentävät pois.”

    Tämä ei ole mitenkään tärkein syy käyttää hidastetta ydinreaktorissa. Mikäli asia olisi väitetysti, niin helposti voi päätellä, että suurentamalla reaktorin kokoa asian voisi kompensoida. Näin ei kuitenkaan ole vaan hidastamalla muutetaan, tässä artikkelissa käytetyin termein, tiettyjen uraaniytimien keskinäisiä vuorovaikutustodennäköisyyksiä.

    ”Ydinpommin ja ydinvoimalan erona on lähinnä reaktion nopeus.”

    Tämähän on hauska heitto, mutta taidettu ihan tosissaan kirjoittaa. Yhteistä on, että molemmissa vapautetaan raskaiden atomiydinten sidosenergiaa, mutta siinä se onkin sitten.

    1. Syksy Räsänen sanoo:

      Olen kirjoittanut asiasta näin:

      ”Tiedettä popularisoidessa ei ainoastaan tarvitse yksinkertaistaa asioita, vaan niitä pitää myös vääristellä. Asian selittäminen oikein, summittaisesti ja varauksella, antaa usein heikomman käsityksen kuin sen selittäminen selkeästi, yksinkertaisesti ja virheellisesti. Popularisoijan onkin valittava valheensa: ei ole aina helppoa päättää, mikä on oleellista kertoa oikein, ja mistä on parempi tarinoida siten, että mielikuva on oikein, vaikka juttu on väärin.”

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/suureellinen-fantasiaeepos/

      Yksittäisiä valintoja voi toki aina arvostella (kuten tuossa jutussa teenkin).

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Maanmittauksen perusteet

29.6.2023 klo 17.34, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Olin viime viikolla Tarton yliopiston konferenssissa Geometric Foundations of Gravity. Vierailin ensimmäisen kerran Tartossa vuonna 2004 Margus Saalin vastaväittäjänä. Nyt Margus on apulaisprofessori (vai liekö jo täysi professori), ja on osallistunut vuosien ajan gravitaatiokokousten järjestämiseen Tartossa. Nämä tapaamiset ovat kasvaneet pienistä keskikokoisiksi, ja paikalle tulee tutkijoita ympäri maailmaa. Osanottajia oli paikan päällä noin 70 ja etänä saman verran.

Konferenssin avasi Roberto Percaccin katsaus yleisen suhteellisuusteorian erääseen muotoiluun. Yleisestä suhteellisuusteoriasta on useita versioita, joissa on erilaisia oletuksia aika-avaruudesta. Yksi tutkituimpia teorioita on sellainen, missä erotetaan toisistaan se onko viiva suora ja onko sen vetämä reitti lyhin – nämä asiat eivät välttämättä liity toisiinsa. Yksinkertaisissa tapauksissa eri versioiden ennusteet ovat samat, mutta varhaisessa maailmankaikkeudessa ja muissa äärimmäisissä olosuhteissa teoriat erottuvat toisistaan.

Percacci on vanhan linjan gravitaatiotuntija, joka katsoo asioita ensisijaisesti aika-avaruuden kautta, ei miettien sovelluksia kosmologiaan tai hiukkasfysiikkaan. Tämä on katoava näkökulma, ja hänen puheensa on oli osoitus siitä, miten gravitaatiosta ja hiukkasfysiikasta voi puhua samalla kielellä yhtä aikaa laajasti ja yksityiskohtaisesti.

Seuraavana oli Verónica Errasti Díez, jonka ala on matemaattinen fysiikka, mikä on teoreettisesta fysiikasta piirun verran kohti matematiikkaa. Leikillisesti voi sanoa, että teoreettisilla fyysikoilla on ongelmia, joihin he etsivät ratkaisuja, kun taas matemaattisilla fyysikoilla on ratkaisuja, joihin he etsivät ongelmia. Toisaalta koska matemaattisessa fysiikassa pyritään samaan täsmällisyyteen kuin matematiikassa, se voi tarjota luotettavia yleisiä tuloksia teorioiden ominaisuuksista.

Diez puhui gravitaatioteorioiden vakaudesta. Vaikka yleiselle suhteellisuusteorialle on esitetty satoja erilaisia laajennuksia, suurin osa niistä ei voi kuvata todellisuutta. Tyypillisesti käy niin, että aika-avaruus ja aine eivät pysy jokseenkin samanlaisena pitkän aikaa, vaan kaikki hajoaa erittäin nopeasti, toisin kuin todellisessa maailmassa. Tämä on hyvä, koska epävakaat teoriat voi sivuuttaa ja keskittyä mahdollisesti toimiviin vaihtoehtoihin.

Diez kertoi oivaltavasti ja selkeästi miten teorian vakauden selvittäminen ei kuitenkaan ole niin helppoa kuin teoreettiset fyysikot ajattelevat. Teoria voi näyttää epävakaalta, mutta tarkemmin katsottuna osoittautua terveeksi, eikä sitä voikaan heittää romukoppaan.

Omassa puheessani hahmottelin hiukkasfysiikan merkitystä gravitaatioteorioille. Tieteenhistorioitsija Thomas Kuhn kirjoitti vuonna 1961, että 50 vuoden kuluttua yleinen suhteellisuusteoria saattaa olla kokonaan unohdettu, koska huolimatta ”epäilyttä nerokkaiden miesten” parhaista yrityksistä siitä oli saatu puristettua ulos vain kolme ennustusta.

Kuhn oli väärässä sekä menneisyydestä ja tulevaisuudesta. Venäläinen fyysikko Aleksandr Fridman oli osoittanut vuonna 1922, että yleinen suhteellisuusteoria johtaa siihen, että maailmankaikkeus laajenee tai supistuu, ja belgialainen tähtitieteilijä Georges Lemaître oli vuonna 1927 johtanut siitä täsmällisen ennustuksen galaksien etäisyyden ja etääntymisnopeuden suhteesta. Se tuli sittemmin tunnetuksi seuraavan löytäjänsä mukaisesti Hubblen lakina.

Mutta Kuhn oli oikeassa siinä, että yleisessä suhteellisuusteoriassa oli 30-50-luvuilla kuiva kausi, ja että ennustusten tekeminen ja tarkistaminen havaintojen avulla on tärkeää teorian kehitykselle. Yksi merkittävä syy siihen, että yleisen suhteellisuusteorian toinen kukoistus alkoi 1960-luvulla oli uudet havainnot kvasaareista (eli nykykielellä isoista mustista aukoista), joiden selittämiseksi Robert Oppenheimer kokosi yhteen hiukkasfyysikoita ja yleisen suhteellisuusteorian tuntijoita.

Nykyään hiukkasfysiikka ja yleinen suhteellisuuteoria kohtaavat kosmologiassa. Puhuin erityisesti siitä, että jos Higgsin kenttä on vastuussa kosmisesta inflaatiosta, niin se voi tuoda joitakin tavoittamattomana pidettyjä kvanttigravitaation piirteitä havaintojen ulottuville.

Konferenssissa oli 64 puhetta, joista suurin osa oli jaettu kahteen ohjelmavirtaan. Itse seurasin enimmäkseen esityksiä gravitaatioteorioista ja kosmologiasta, toisessa virrassa keskityttiin mustiin aukkoihin.

On tavallista, että konferenssipuheista monet ovat turhan yksityiskohtaisia ja siksi vaikeasti seurattavia. Niissä myös vaihtelee se, miten hienostunutta matematiikkaa niissä käytetään, ja miten perusteltuja niiden fysikaaliset ideat ovat. Kehittyneempien menetelmien käyttäminen ei välttämättä tarkoita sitä, että työ olisi merkittävämpää.

Konferensseissa saa muutamassa päivässä tehokkaan katsauksen yhteen fysiikan osa-alueeseen, keksii uusia ideoita ja havaitsee virheitä omassa ajattelussa. Ne myös muistuttavat siitä, miten paljon yksityiskohtaista työtä on pientenkin edistysaskeleiden takana.

Konferenssiin kuului tavalliseen tapaan sosiaalista ohjelmaa, kuten kiertue vanhalla observatoriolla. Sen tarkoitus ei ole vain viihdyttää osallistujia, vaan luoda tilaisuuksia epämuodolliselle vuorovaikutukselle. Teoreettisten fyysikoiden yhteistyö ei synny ylhäältä ohjaamalla, vaan ennustamattomasti ihmisten keskustellessa ja väitellessä.

Tarton yliopiston linjauksen mukaisesti venäläisten ja valkovenäläisten instituuttien tutkijat saivat osallistua konferenssiin vain, jos heillä oli henkilökohtainen kutsu. Euroopassa on tiukasti rajoitettu akateemista yhteistyötä venäläisissä instituuteissa työskentelevien tutkijoiden kanssa. Nämä rajoitukset ovat laajempia ja vähemmän kohdennettuja kuin palestiinalaisen kansalaisyhteiskunnan vaatimus Israelin akateemisesta boikotista, joka on suunnattu instituutioita vastaan, ei yksilöitä.

Fysiikka etenee havaintojen ja teorian yhteispelinä. Tarton tapaaminen oli painottui teoriaan, mutta joitakin siellä esitettyjä teorioita testaa ylihuomenna 1.7. kello 18.11 Suomen aikaa avaruuteen laukaistava Euclidsatelliitti.

20 kommenttia “Maanmittauksen perusteet”

  1. Eusa sanoo:

    Onko teorian ja hypoteesin raja kyllin selvä? Oliko sinulle Syksy helppoa tunnistaa, että nyt ollaan teorian kehyksessä tai että esittelyssä on hypoteesi?

    Edellä tuli puheeksi lisätty parametri. Voisiko ajatella, että niin kauan kuin teoria pysyy kasassa lisätyillä aineksilla, joita voisi olla olemassa mutta ei vielä havaittu, kysymyksessä on teorian koettelu ja kun ilmiölle esitetään systeemisesti uudenlainen selitysmalli, on se hypoteesi uudeksi teoriaksi?

    Aiheeseen liittyy mielestäni läheisesti se, että sovellettavaksi teoriaksi hyväksyttyjen oppien tulisi kai olla lopulta keskinäisesti ristiriidattomia – tai ainakin nähtävissä niiden kehittyminen sellaisiksi. Yleinen suhteellisuus ja kvattiteoriat taitavat olla natiivisti yhteensovittamattomia ilman hypoteesin kautta paradigman vaihdosta…

  2. maanmittari sanoo:

    Mielenkiintoinen otsikko, lyhimmästä matkasta kyllä puhuttiin mutta muuten otsikon yhteys tekstiin jäi itselleni epäselväksi, joka ei ole näissä yhteyksissä tietenkään kummallista.

    1. Syksy Räsänen sanoo:

      Otsikko viittaa konferenssin nimessä esiintyvään sanapariin ”geometric foundations”. Geometria tarkoittaa kirjaimellisesti maanmittausta, koska se kehittyi alun perin maanmittaukseen liittyvien ongelmien ratkaisemisesta.

      1. maanmittari sanoo:

        Kun otsikossa oli myös (- -) of Gravity, niin se vei ajatukseni pois ”perinteisestä” maanmittauksesta.

  3. Pauli Rikula sanoo:

    Jos olettaisi, että nämä koskiset säikeet ( https://www.youtube.com/watch?v=Thw43hzXlDA ) ovat totta, niin voisiko kaksi mustaa aukkoa imeä samaa kosmista täiettä kuin rakastavaiset spagethia lautaselta? Olisi ehkä sopivaa käyttää tästä testattavasta teoriasta työnimeä ’Cosmic Lady & tramp’ tuollaisessa konfrenssissa.

    1. Syksy Räsänen sanoo:

      En katsonut videota. Mutta jos kosmisiä säikeitä on olemassa, niitä on niin harvassa, että tällainen tilanne olisi hyvin epätodennäköinen.

  4. Erkki Kolehmainen sanoo:

    Geometria oli kehittynyttä jo antiikin Kreikassa. Tästä esimerkkinä on 1036 metriä pitkä Eupalinoksen tunneli Samoksen saarella.
    https://en.wikipedia.org/wiki/Tunnel_of_Eupalinos
    Se on valmistunut vesijohdoksi Kastro-vuoren läpi 6. vuosisadalla ennen ajanlaskun alkua. Tietojen mukaan tunnelin kaivajat lähtivät vuoren molemmilta puolilta liikkeelle ja osuivat yhteen. Tunneli on UNESCO:n maailmanperintökohde ja sinne pääsee. Minun kanttini kesti n. 100 m ja sitten tuli tunne, että täältä on päästävä äkkiä pois!

  5. Martti V sanoo:

    Arkinen käsitys suorasta viivasta lyhimpänä matkana ei taida päteä voimakkaassa gravitaatiossa, jossa lyhin matka käyristyy. Aikaulottuvuus vaikuttaa myös matkaan. Hiljattain uutisointiin että aika oli viisi kertaa hitaampaa maailmankaikkeuden ollessa miljardin vuoden ikäinen. Vaikka syntyvät galaksit olivat silloin lähempänä toisiaan olisiko niiden välinen matka taittunut hitaammin mitä vastaava etäisyys nykyään veisi valolta? Toinen kysymys oliko aika lähes pysähtynyt inflaation aikoihin?

    1. Syksy Räsänen sanoo:

      Asia on juuri päin vastoin.

      Yleisen suhteellisuusteorian (alkuoperäisen ja yleisimmän muotoilun) mukaan juurikin suoraa viivaa pitkin menevä reitti on (paikallisesti) lyhin. (Tämä pätee avaruudenkaltaisille viivoille – avaruuteen vedettyjen viivojen vastine suhteellisuusteoriassa. Kappaleet joihin ei vaikuta voimia liikkuvat näillä suorilla viivoilla.

      Aika kulkee samaa tahtia maailmankaikkeuden kaikkina aikoina. (Oikeastaan kysymys siitä, kulkeeko aika eri tahtia eri aikoina ei ole kovin mielekäs.)

      1. Martti V sanoo:

        Aiikaan liittyen onko tämä tutkimus sitten väärässä ? https://phys.org/news/2023-06-quasar-clocks-universe-slower-big.html

        1. Syksy Räsänen sanoo:

          Tutkimuksessa ei ole kyse siitä, että aika kulkisi hitaammin varhaisessa maailmankaikkeudessa. Kyse on siitä, että kun valo kulkee laajenevassa maailmankaikkeudessa, se venyy ja sen värähtelyjen taajuus laskee. Toisin sanoen tapahtumat näyttävät tapahtuvan hitaammin.

          Linkkaamasi uutisen otsikko on siis väärin, tutkimuksen otsikko on oikein: https://www.nature.com/articles/s41550-023-02029-2

          1. Cargo sanoo:

            Meinaako tuo sitä, että kun se muinainen valo on lähtenyt liikkeelle, niin avaruus on ollut enemmän ”rutussa” kuin nykyään, jolloin asiaa voisi verrata mustaan aukkoon putoavaan kappaleeseen ja sen lähettämään signaaliin?

          2. Syksy Räsänen sanoo:

            Kyllä.

          3. Cargo sanoo:

            Voisiko noiden havaintojen avulla tarkastella onko valon nopeus ollut lokaalisti vakio kaikkina aikoina? Voisihan sitä olettaa, että alkuaikojen tyhjiössä on ollut enemmän kuhinaa, mikä on saanut fotonit kulkemaan hitaammin verrattuna nykypäivään.

          4. Syksy Räsänen sanoo:

            Yleisessä suhteellisuusteoriassa (ja tavallisessa sähkömagnetismissa) valon nopeus tyhjössä on paikallisesti aina sama. Pitää siis ehdottaa jotakin laajennettua teoriaa, ja onhan niitä ehdotettukin. Mutta tulos riippuu siitä, millainen muunnettu teoria on, asiaa ei voi testata mallista riippumattomasti.

      2. Joksa sanoo:

        Siis olisi kyse pelkästään aika-avaruuden vaikutuksesta etäisen kellon käyntiä ilmentäviin viesteihin. Perus-Dopplerilmiössä kävisi kai niin että junan tullessa asemalle päin vihellys kuulostaa korkeammalta ja junassa kulkevan hyvin äänekkään kellon tikitys tiheämmältä, ja poispäin mennessä vihellys kuulostaa matalammalta ja sen kellon tikitys harvemmalta. Mutta kellot kävisi molemmissa tapauksissa koko ajan samaa tahtia. Etäisten maailmankaikkeuden tapahtumien nopeusmuutokset antanee viitettä sen osalta olisiko mahdollista että aika olisi kulkenut aikaisemmin esim. gravitaation vaikutuksesta hitaammin. Siinä tapauksessa _vaikuttaisi_ siltä että maailmankaikkeuden laajeneminen kiihtyisi, gravitaation aikaa hidastavan vaikutuksen heiketessä, kuten tekeekin. Mutta siis kiihtyykö oikeasti vai vaikuttaako vain silä?

        Suhtiksen mukaanhan eri- tai edes saman aikaisestikaan käyvät kellot eivät välttämättä käy samaa tasaista tahtia, joten olisi kai hyvä täsmentää mistä ajakulusta puhutaan. Suhteellisten havainnoijien mukana kulkevien kellojen mittaamien (itseis)aikojen lisäksi on siis dualistisesti olemassa myös yksi yleinen yhteinen kosminen aika. Muutoin kai ei ole edes mielekästä todeta ajan kulkeneen yhtä ja samaa tahtia maailmankaikkeuden kaikkina aikoina.

        1. Syksy Räsänen sanoo:

          Maailmankaikkeuden laajenemisen kiihtyminen ei liity näihin havaintoihin valon venymisestä.

          Kun puhutaan maailmankaikkeuden iästä, tarkoitetaan aikaa, jonka mittaa sellainen havaitsija, joka näkee aineen jakautuneen tilastollisesti homogeenisesti avaruudessa.

  6. Lentotaidoton sanoo:

    Aivan kuten Räsänen sanoo. (näitten uutisten kanssa täytyy aina olla vähän tarkkana). Otsikot heittää mutta asia on sama.

    Uutinen: ”If you were there, in this infant universe, one second would seem like one second—but from our position, more than 12 billion years into the future, that early time appears to drag.” Siis: early time APPEARS to drag.

    Tutkimus: “A fundamental prediction of relativistic cosmologies is that, owing to the expansion of space, observations of the distant cosmos should be time dilated and appear to run slower than events in the local universe”. Siis: “APPEAR to run slower”

    1. Martti V sanoo:

      Kiitos selvennyksestä. Äkkiä ajateltuna tiiviimmässä maailmakaikkeudessa gravitaatio vaikuttaisi myös ajan dilaatioon. Jännää että nopeat varhaiset vaiheet kuten massivisten mustien aukkojen syntyminen tapahtui vieläkin nopeempaa miltä se näyttää nykyään.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Kohti kaaren huippua

14.6.2023 klo 15.52, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Satelliitti Euclid laukaistaan viimein heinäkuussa kiertoradalle. Tämänhetkisen aikataulun mukaan Euclid nousee taivaaseen lauantaina 1. päivä kello 18.42 Suomen aikaa. Odottaessa voi ostaa Euclid-paitoja ja muita fanituotteita Euroopan avaruusjärjestö ESAn nettikaupasta.

Euclid on ESAn uusin kosmologiasatelliitti. Edellinen oli 14 vuotta sitten laukaistu kosmista mikroaaltotaustaa katsonut Planck, seuraava on 14 vuoden päähän suunniteltu gravitaatioaaltoja kuunteleva LISA.

Kosmologian havaintoprojekteista on tullut isoja kuin hiukkasfysiikan kokeista. Euclidissa on yli 2 000 tutkijaa 300 instituutista 13 Euroopasta, Japanista, Kanadasta ja Yhdysvalloista. Euroopasta lienee vaikeampi löytää kosmologia, joka ei olisi mukana Euclidissa kuin Euclidin jäseniä.

Suomen osuutta johtaa Hannu Kurki-Suonio Helsingin yliopistosta, ja mukana on tieteilijöitä Helsingin, Turun ja Jyväskylän yliopistoista sekä Aalto-yliopistosta (minäkin). Tieteellisen laskennan keskus CSC on tärkeä kumppani, koska yksi Euclidin datankäsittelykeskuksista tulee Suomeen.

Isojen kokeiden kaari on pitkä. ESA valitsi Euclidin 4. lokakuuta 2011, samana päivänä kun Ruotsin tiedeakatemia päätti myöntää Nobelin palkinnon maailmankaikkeuden laajenemisen kiihtymisen havaitsemisesta. Kirjoitin vuonna 2012, että ”jos kaikki tapahtuu ajallaan (mikä lienee isoissa projekteissa poikkeuksellista), satelliitti laukaistaan seitsemän vuoden kuluttua”. Yksi viimehetken syy viivästymiseen on ollut se, että Euclid oli tarkoitus laukaista venäläisellä Soyuz-raketilla, mutta Venäjän hyökättyä Ukrainaan tilalle vaihdettiin SpaceX:n raketti Falcon 9 Block 5.

Planck teki maailman tarkimmat mittaukset koko kosmisesta mikroaaltotaivaasta, ja sen dataa käytetään vielä vuosikymmeniä. Euclidilla on vastaava rooli mitä tulee ison mittakaavan rakenteeseen eli galaksien, galaksiryppäiden ja muiden kosmisten kappaleiden jakaumaan. Ison mittakaavan rakenne on kosmisen mikroaaltotaustan ohella yksi kosmologian keskeisiä havaintokohteita.

Euclid kuvaa kolmanneksen taivaasta miljardien valovuosien päähän näkyvällä ja infrapuna-aallonpituudella. Lisäksi se mittaa pienen palan taivasta syvemmälle, ja näkee sieltä muun muassa varhaisten aikojen jättimäisten mustien aukkojen ympärille kertyneiden kiekkojen säteilyä.

Koska valo kulkee äärellisellä nopeudella, kun katsoo kauas paikassa näkee pitkälle menneisyyteen. Euclid siis havaitsee, miten aineen jakauma kehittyy maailmankaikkeudessa miljardien vuosien aikana. Yksi Euclidin tavoite on mitata muun aineen läpi virtaavien neutriinoiden massat havaitsemalla niiden vaikutus rakenteiden kehitykseen. Euclid myös tekee tarkkoja mittauksia varhaisen maailmankaikkeuden ääniaaltojen jalanjäljistä.

Galaksien paikkojen lisäksi Euclid mittaa puolentoista miljardin galaksin muodot. Meidän ja galaksien välinen aine taittaa galakseista tulevaa valoa. Niinpä muotojen vääristymästä voidaan päätellä kuinka paljon pimeää ainetta maailmankaikkeudessa on näkyvän aineen lisäksi.

Euclid näkee 200 000 galaksin ja 5 000 galaksiryppään taittavan valoa niin vahvasti, että taustalla olevien galaksien kuvat venyvät kaariksi ja hajoavat osiin. Nämä harvinaiset ilmiöt ovat hyödyllisiä testikappaleita. Nykyään tällaisia hyvin mitattuja systeemejä on vain joitakin kymmeniä.

Euclidin pääasiallinen tutkimuskohde on avaruuden laajenemisen kiihtyminen, jolle suosituin selitys on pimeä energia. Satelliitti on nimetty ”geometrian isänä” tunnetun kreikkalaisen matemaatikon Eukleideen mukaan, ja sen alkuperäisessä logossa oli vanha parrakas mies mittaamassa maailmankaikkeutta. Nimi viittaa siihen, että maailmankaikkeuden laajeneminen on aika-avaruuden kaarevan geometrian ilmentymä.

Vaikka Euclid suuntaa katseensa kauas, se näkee myös lähelle. Euclidin kuvissa arvioidaan näkyvän noin 150 000 Aurinkokunnan asteroidia, ja se erottaa yksittäisiä tähtiä jopa 20 miljoonan valovuoden päästä. Yksi kiinnostava kohde on 65-135 Auringon massan painoisten tähtien hajoamisesta syntyvät supernovat, joita Euclid voi nähdä paljon kauempaa. Niitä ei ole toistaiseksi havaittu ainuttakaan, ja gravitaatioaaltohavainnot saattavat viitata siihen, että jotakin noissa tähdissä ei ymmärretä.

Euclidilla kestää kuukausi kiivetä 1.5 miljoonan kilometrin päähän Maapallosta. Käyttöönotto ja koeaika kestää kolme kuukautta, eli tieteelliset havainnot alkavat marraskuussa. Satelliitti liikkuu Maan mukana Auringon ympäri. Mittausdataa kertyy 100 GB päivässä.

Euclidin on määrä tehdä havaintoja ainakin kuusi vuotta, mutta viralliset tavoitteet ovat varovaisia ja usein satelliitit kestävät suunniteltua pidempään. Planckin arvioitu kesto oli kaksi ja puoli vuotta, mutta se teki mittauksia yli neljä vuotta, kunnes lopulta jäähdytinaine loppui.

Tavallisen käytännön mukaan Euclid-ryhmä analysoi ensin itse datan ja tekee siitä analyysin, sen jälkeen data annetaan kaikkien käyttöön. Ensimmäiset tulokset ja havainnot on tarkoitus julkistaa vuonna 2025, ja kaiken datan pitäisi olla julkista 2030. Suurimman osa Euclidin havaintoja käyttävästä tieteestä tekevät muut kuin Euclid-ryhmä. Euclidin kaari jatkuu kauan sen jälkeen kun satelliitti on sammutettu ja heitetty pois avaruuteen.

13 kommenttia “Kohti kaaren huippua”

  1. Erkki Kolehmainen sanoo:

    ”Yksi viimehetken syy viivästymiseen on ollut se, että Euclid oli tarkoitus laukaista venäläisellä Soyuz-raketilla, mutta Venäjän hyökättyä Ukrainaan tilalle vaihdettiin SpaceX:n raketti Falcon 9 Block 5.”

    Venäjä ei ole hyökännyt Ukrainaan vaan Venäjällä on sotilaallinen erikoisoperaatio venäjää puhuvien ja venäjämielisten kansalaisten suojelemiseksi Ukrainassa. Olisi toivottavaa, että tieteellinen yhteistyö voitaisiin irrottaa politiikasta!

    1. Syksy Räsänen sanoo:

      Hyökkäyksen ja sodan todellisuuden peitteleminen kielellisillä tempuilla on hyökkääjille ja miehittäjille tyypillistä.

      Tämän blogin kommentteihin se ei kuulu.

      Tiede on osa yhteiskuntaa, ja siksi tieteellisessä yhteistyössä on syytä ottaa huomioon yhteiskunnan kehitys ja tieteilijöiden vaikutus.

      Tieteilijöiden vastuusta aiemmin, ks.

      https://web.archive.org/web/20150411182551/http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/ympariston_vaikutus_olomuodon_muutoksissa

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/rajaton-tiede/

      Tämä riittäkön tästä aiheesta tällä kertaa.

  2. Martti V sanoo:

    Jänniä aikoja jos gravitaatiolinssien mittaukset vetää rajaa muokatun gravitaation ja pimeän aineen välille

    1. Syksy Räsänen sanoo:

      Niinpä.

    2. Eusa sanoo:

      Käsittääkseni Euclidin tavoitteena ei ole osoittaa, kumpi hypoteesi on parempi, vaan pikemminkin auttaa tarkemmin ymmärtämään kaikkeuden ominaisuuksia ja kehitystä.

      Gravitaatiolinssihavaintojen kartoitus saattaa antaa valoa siitä mistä suunnasta voisi pimeän gravitaation luonteeseen löytyä selitystä, mutta ennakoidun mallin ratkaisijaksi todennäköisyys on häviävän pieni. Sen voi tietysti sanoa jo etukäteen, että koska pimeä aine on luonteeltaan lisätty parametri, sitä ei saada pois ilman uutta teoriakehystä. Esim. MOND puolestaan on sovitettua matematiikkaa ilman varsinaista fysikaalista motiivia, joten se voi lähinnä tulla pois suljetuksi.

      Mielenkiintoisinta olisi tulos, joka voisi johtaa yleisen suhteellisuuden kuvauksen syventämiseen.

      1. Syksy Räsänen sanoo:

        En tiedä mitä tarkoitat termillä ”pimeä gravitaatio”.

        Euclidin pääasiallinen tehtävä on maailmankaikkeuden kiihtyvän laajenemisen luotaaminen, ja suosituin selitys sille on pimeä energia. Se on eri asia kuin pimeä aine.

        Pimeä aine ei ole ”lisätty parametri”, vaan fysikaalinen idea, jota on toteutettu monissa eri malleissa. (Eli on olemassa erilaisia ehdokkaita sille, mitä pimeä aine voi olla.)

        1. Eusa sanoo:

          Pimeällä gravitaatiolla tarkoitan tutkimuskokonaisuutta, jossa nimettyinä avoimina (pimeinä) kysymyksinä ovat pimeä energia, pimeä aine ja gravitaatioon hakusalla olevat kvantit.

          Mm. Vulcanus oli lisätty parametri, kunnes selitys löytyi Merkuriuksen eksentrisen radan aiheuttamien gravitaatiomuutosten signaaliviiveistä.

  3. Martti V sanoo:

    Voiko pimeä aine olla kupruja aika-avaruudessa ilman että varsinaista pimeän aineen hiukkasta olisikaan olemassa? Maailman kaikkeuden jäähtyessä muitakin valuvikoja syntyi.

    1. Syksy Räsänen sanoo:

      Kyllä, niitä sanotaan mustiksi aukoiksi.

      1. Martti V sanoo:

        Luin blogisi kyllä plackin mittakaavan mustista aukoista mutta onko useita vaihtoehtoja syntymekanismiksi? Mahdollisesti romahtaneita axion säikeitä?

        1. Syksy Räsänen sanoo:

          On tosiaan monia ehdotuksia mustien aukkojen tuottamiseksi, yksi niistä aksionisäikeiden romahdus.

      2. Martti V sanoo:

        MOND on toinen vaihtoehto mustille aukoille. Hiljattain julkaistu korealaistutkimus kaksoistähdistä puoltaa MOND teoriaa. Ylipäätänsä oletus että avaruus kaaretuu ainaostaa energiatensorin mukaan saattaa olla väärä suurilla etäisyyksillä.

        1. Syksy Räsänen sanoo:

          MOND ei ole vaihtoehto mustille aukoille. Se on ehdotus muokatuksi gravitaatiolaiksi, joka selittäisi aineen liikkeitä galakseissa ilman pimeää ainetta. Se ei ole kokonainen teoria, joka selittäisi kaikkia havaintoja, mutta on esitetty teorioita, joista MOND olisi approksimaatio.

          Yksikään näistä teorioista ei ole ennustanut oikein asioita, joita pimeä aine ei selittäisi, eikä pysty selittämään kaikkia asioita, mitä pimeä aine selittää.

          Ei tästä nyt sen enempää.

          Tarkemmin: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/luodin-jaljet/

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Kulta-ajan neljäs kausi

25.5.2023 klo 21.13, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Gravitaatioaalto-observatorioiden nelikko LIGO, Virgo ja KAGRA aloitti eilen neljännen kautensa. Se oli ollut poissa pelistä sen jälkeen kun kolmas havaintokausi loppui maalis-huhtikuussa 2020. Laitteita on kolmen vuoden aikana huollettu ja kehitetty.

Japanissa Ikenoyama-vuoren sisällä istuva KAGRA osallistuu tälle kaudelle entistä täysipainoisemmin. Laite otti ensimmäisen kerran dataa vuonna 2016, joskin lähinnä laitteiden testaamiseksi. KAGRA osallistui kolmannelle havaintokaudelle vain kaksi viimeistä viikkoa, ja nyt se on aluksi mukana vain kuukauden. Sen jälkeen laitetta parannellaan, ja se palaa myöhemmin mukaan. KAGRAssa on osittain kehittyneempää teknologiaa kuin LIGOssa, mutta ilmeisesti kestää odotettua kauemmin, että se saadaan toimimaan kunnolla. Italiassa oleva Virgo puolestaan aloittaa vasta myöhemmin tänä vuonna. Aluksi pääpaino on siis LIGOn kahdessa Yhdysvalloissa sijaitsevassa havaintolaitteessa, jotka tekivät myös ensimmäiset havainnot.

LIGOlla ja Virgolla on ollut onnea matkassa. Ensimmäisen kauden alussa syyskuussa 2015 LIGO näki kauniin musta aukko -parin törmäyksen ennen kuin laitteet olivat edes varsinaisesti aloittaneet tiedehavaintoja.

Toisella kaudella LIGO ja Virgo näkivät törmäyksen, jossa ainakin toinen osapuoli oli neutronitähti ja josta siksi nähtiin gravitaatioaaltojen lisäksi myös valosignaaleja monilla aallonpituuksilla. Tämä oli vastaansanomaton todiste siitä, että laitteet todella näkevät gravitaatioaaltoja, ja niiden yhdistäminen sähkömagneettisiin havaintoihin avasi uusia mahdollisuuksia. Toistaiseksi haaviin ei ole jäänyt muita tapauksia, joissa olisi nähty törmäys eri sanansaattajien kautta. Toisen kauden jälkeen lokakuussa 2017 LIGOn löydöistä myönnettiin Nobelin palkinto.

Kolmannen kauden merkittävin piirre oli laitteiden kehittymisestä seurannut havaintojen määrän kasvu. Ensimmäisellä ja toisella kaudella tehtiin yhteensä vain 11 havaintoa, kolmannella kaudella LIGO ja Virgo näkivät 79 gravitaatioaaltoa. Tämä teki mahdolliseksi yksittäisten tapausten lisäksi mustien aukkojen väestön ominaisuuksien tutkimisen. Jotkut havainnot olivat outoja, koska niissä näkyi kohteita, jotka vaikuttavat joko liian pieniltä mustaksi aukoksi mutta turhan raskaita neutronitähdiksi, tai liian keskiraskailta mustiksi aukoiksi, jotka ovat syntyneet tähden romahtaessa.

Alkuun jokainen havainto tuntui läpimurrolta, mutta kolmannella kaudella niistä tuli arkea, kun satoja miljoonia vuosia sitten törmänneiden mustien aukkojen synnyttämiä avaruuden värähtelyjä havaittiin kerran-pari viikossa. Applella on appi, jolla saa puhelimeen viestin kun gravitaatioaalto on kulkenut Maan läpi. Jos on kiinnostunut yksityiskohdista, niin LIGO-Virgo-KAGRA-ryhmällä on sivu, mistä löytyy dataa ja neuvoja.

Neljännen kauden on määrä kestää 20 kuukautta, joista 18 kuukautta on havaintoaikaa. Kolmannella kaudella tehtiin 11 kuukautta havaintoja. Lisäksi laitteet ovat nyt entistä 30% herkempiä, eli odotettavissa on yli 150 uutta havaintoa. Pitkä aika auttaa myös kaivamaan pitkäkestoisia mutta heikkoja signaaleja kohinan seasta, kuten pyörivien neutronitähtien pinnalla olevien vuorten jalanjälkiä.

Odotetaan erityisesti, että nähdään lisää neutronitähtien törmäyksiä sekä gravitaatioaaltojen että valon avulla. Koska neutronitähdet ovat kevyempiä kuin mustat aukot, niiden synnyttämät gravitaatioaallot ovat heikompia.

Tällä hetkellä LIGO näkee neutronitähtien törmäyksiä 520 miljoonan valovuoden päästä, KAGRA vain kolmen miljoonan. Virgo on siinä välissä, noin 150 miljoonalla valovuodella. Ennusteiden mukaan näillä etäisyyksillä tapahtuu yhdestä kymmeneen tällaista törmäystä vuodessa. Eri teleskoopit ja satelliitit ovat valmiina suuntaamaan katseensa sinne kohtaa taivasta mistä gravitaatioaaltoja tulee heti saatuaan LIGOlta ja kumppaneilta sanan. Mitä useampia havaintolaitteita on eri paikoissa, sitä tarkemmin saadaan määritettyä, mistä suunnasta gravitaatioaallot tulevat, ja sitä helpompi on etsiä tapahtuman lähettämää valoa.

Viime kuussa Intian hallitus antoi lopullisen luvan kolmannelle LIGO-observatoriolle, joka rakennetaan lähelle Aundhan kaupunkia Intiassa. Laite tunnetaan nimillä LIGO-India, IndIGO ja LIGO-Aundha. Alun perin puhuttiin, että se aloittaisi toiminnan jo 2024. Nyt näyttää siltä, että LIGO-India tulee mukaan vasta LIGOn ja kumppaneiden viidennelle kaudelle, jonka on määrä alkaa vuonna 2027. Tällöin myös Virgon ja KAGRAn on määrä saavuttaa lähes yhtä iso herkkyys kuin LIGOn.

Viidennen havaintokauden lopusta vuonna 2029 on alle vuosikymmen siihen, kun satelliittikolmikon LISA on määrä nousta Aurinkoa kiertävälle radalle mittaamaan törmäävien galaksien keskustojen jättimäisten mustien aukkojen lähettämiä gravitaatioaaltoja. Toistaiseksi niitä on nähty ainoastaan valolla. LISAn laukaisu on viivästynyt vielä pari vuotta sitten tavoitteena olleesta vuodesta 2034 vuoteen 2037. Tämä on isoille ja uutta teknologiaa käyttäville kokeille tavallista. Viive antaa nopeasti etenemään pyrkiville kiinalaisille satelliittihankkeille TianQin ja Taiji lisäaikaa kiriä ohi.

Jättimäisten mustien aukkojen gravitaatioaaltohavainnot saattaa kuitenkin korkata NANOGrav, joka mittaa häiriöitä pyörivien neutronitähtien lähettämissä radioaalloissa. Tästä julkaistiin kutkuttavia vihjeitä 2020, ja varmistusta odotettiin vuodelle 2021. Tänä keväänä on kuulunut huhuja siitä, että löytö julistettaisiin pian. Varmaa on se, että nyt on gravitaatioaaltojen ja mustien aukkojen kulta-aika, ja havainnot ja teoria kehittyvät koko ajan.

14 kommenttia “Kulta-ajan neljäs kausi”

  1. Antti sanoo:

    tuleeko näin tarkat mittaukset korjaamaan teorioita joltain osin ?

    1. Syksy Räsänen sanoo:

      Ne varmasti tarkentavat kuvaa ainakin neutronitöhtien koostumuksesta, ehkä myös tähtien kehityksestä ja muista aiheista. Olisi tietysti kiinnostavinta jos löydettäisiin jotain perustavanlaatuisesti uutta, kuten vaikka niin pieniä mustia aukkoja, että ne eivät ole syntyneet tähtien romahduksessa, tai jotain mitä ei ole vielö tultu ajatelleeksi, mutta tästä ei ole takeita.

      Ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaksi-kuilua/

  2. Natalya Koršunova sanoo:

    täyttä asiaa!

  3. Jyri T. sanoo:

    31.5. mennessä jo 16 mahdollista havaintoa!

    https://gracedb.ligo.org/superevents/public/#O4

    1. Syksy Räsänen sanoo:

      Monien todennäköisyys on tosin aika pieni.

  4. miguel sanoo:

    Kiitos selvennyksestä. Olen vähän ihmetellyt, että on puhuttu vain LIGO-havainnoista ja samalla kuitenkin Virgosta ja KAGRAsta aina mainitaan. Miettinyt, paljonko tässä (jenkeissä) osataan korostaa tiettyä paikkaa ja kuka mitäkin on tehnyt, mutta kirjoituksesi perusteella siihen on perusteet..

    1. Syksy Räsänen sanoo:

      Virgo on vanhempi ja vähemmän herkkä. Sen pääasiallinen merkitys on siinä, että heikkokin signaali Virgossa LIGOn signaalien lisäksi auttaa paikallistamaan gravitaatioaallon lähteen taivaalla, mikä on tärkeää sähkömagneettisten signaalien tarkkailemista varten.

      Havainnollinen kuva LIGOn, Virgon ja KAGRAn herkkyyden (mikä määrää sen, kuinka kaukaa tulevia signaaleja ne näkevät) kehityksestä ajan myötä:

      https://www.ligo.caltech.edu/news/ligo20220123

  5. miguel sanoo:

    Tähän ihan löyhästi liittyen (eli ei liity mitenkään) on yksi immunologian artikkeli Sciencessä, jonka otsikko kaduttaa, etten sitä keksinyt. ”Express yourself or die”. Liittyy siis solujen biologiaan. Taitaa liittyä nykyään moniin tieteisiin. Varmaan poikkeukset löytyvät muualta kuin luonnontieteistä, mikä olisi tärkeä oivaltaa kylläkin.

    https://www.science.org/doi/10.1126/science.7863341

  6. Martti V sanoo:

    Milloinkohan herkkyys riittää gravitaatiotaustan havaitsemiseen?

    1. Syksy Räsänen sanoo:

      Tarkoitatko inflaation aikana syntyneen gravitaatiotaustan? Sen havaitsemisessa ongelmana ei ole herkkyys inflaation synnyttämien gravitaatioaaltojen voimakkuus on noin 10^16 kertaa isompi kuin musta-aukko-parien. Mutta niiden aallonpituus on kosmologista mittaluokkaa, joten niitä ei voi havaita tällaisilla laitteilla, joiden koko on paljon pienempi kuin niiden aallonpituus.

      1. Martti V sanoo:

        Jos olisi mittauslaitteet aurinkokunnan vastapuolilla olisiko inflaatiosta lähteneet aallot vielä havaittavissa?

  7. Antti sanoo:

    eli tarvisiko olla 1000 AU (linnunradan kokoinen halkaisijaltaan oleva) hiukkakiihdytin että maailmankaikkeuden pienimmät
    asiat tulisivat näkyviin ? gravitonit ym jos semmonen on olemassa ylipäätään

    1. Syksy Räsänen sanoo:

      Emme tiedä, mikä on raskaimpien olemassa olevien hiukkasten massa. Mitä isompi massa, sitä enemmän energiaa niiden tuottamiseen tarvitaan, eli sitä isompi hiukkaskiihdytin. Mutta on toki muitakin tapoja luodata korkeita energioita, kuten inflaatio.

      Gravitoneista, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/painon-valittajasta/

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Kellojen verkko

16.5.2023 klo 17.58, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Nathaniel Sherrill Sussexin yliopistosta Iso-Britanniasta puhui toissaviikolla Helsingin yliopiston fysiikan tutkimuslaitoksen seminaarissa atomikelloista. (Tieteellinen artikkeli aiheesta täällä.)

Atomikellojen idea on yksinkertainen. Jokainen atomi värähtelee ja lähettää valoa vain tietyillä sille ominaisilla taajuuksilla. Valon taajuus osataan mitata erittäin tarkasti, atomien tapauksessa miljardisosan miljardisosan tarkkuudella. Atomien värähtely on tarkin tapa mitata aikaa: ajan yksikkö sekunti on määritelty cesium-atomin lähettämän valon taajuuden avulla. Atomikello jätättää vain noin sekunnin kymmenessä miljardissa vuodessa, toisin sanoen sekunnin kymmenesmiljardisosan vuodessa.

Koska atomin lähettämän valon taajuus on tunnettujen fysiikan lakien mukaan aina sama, sen muutos on viesti tuntemattomasta. Niinpä atomikellot ovat uuden fysiikan herkkiä mittareita.

Atomit koostuvat protonien ja neutronien muodostamasta ytimestä sekä siihen sähkömagneettisen vuorovaikutuksen sitomista elektroneista. Siksi atomin taajuudet riippuvat neutronien ja protonien massojen suhteesta elektronin massaan sekä sähkömagneettisen vuorovaikutuksen voimakkuudesta. Koska eri atomiytimissä on eri määrä protoneita ja neutroneita, niiden taajuus riippuu näistä tekijöistä eri tavoin, joten erilaisten atomien mittaaminen antaa erilaista tietoa mahdollisista muutoksista.

Sherrill on mukana verkostossa QSNET, joka tarkkailee, muuttuvatko atomien taajuudet ajan myötä. Toistaiseksi QSNET on mitannut cesium-, strontium- ja ytterbium-atomeita, ja se on laajentamassa kokeita neljään muuhun atomiin.

Protonien, neutronien ja elektronien massat ja sähkömagnetismin voimakkuus voivat muuttua, jos ne vuorovaikuttavat jonkin kentän kanssa, joka muuttuu ajassa. Kaikkialla avaruudessa on Higgsin kenttä, joka antaa massat tunnetuille hiukkasille. (Paitsi kenties neutriinoille, niiden massojen alkuperästä ei ole varmuutta.) Jos Higgsin kenttä muuttuisi ajassa, niin myös hiukkasten massat muuttuisivat. Higgsin kenttä ei kuitenkaan nykyaikoina muutu mihinkään, vaan istuu paikoillaan.

On mahdollista, että on olemassa muita samantyyppisiä kenttiä, joiden kytkentä näkyvään aineeseen on heikompi, mutta jotka muuttuvat nopeammin. Yksi motivaatio on se, että tällainen kenttä voisi olla pimeää energiaa, jolla selitetään maailmankaikkeuden laajenemisen kiihtymistä. Myös pimeän aineen ehdokas nimeltä aksioni voi vaikuttaa hiukkasten massoihin.

Cesiumiin liittyy SI-yksikköjärjestelmässä hauska yksityiskohta. Jos huomattaisiin, että sen atomien lähettämän valon taajuus pienenee ajan myötä, olisi väärin sanoa että cesium-atomit värähtelevät hitaammin. Tämä johtuu siitä, että ajan yksikkömme perustuu niiden värähtelyyn. Sen sijaan pitäisi sanoa, että aika kulkee hitaammin. Asioiden muutosta voi mitata vain suhteessa muihin asioihin: koska ei ole mitään atomikelloja tarkempaa, kaikkia muita tapahtumia mitataan suhteessa niihin.

Toistaiseksi QSNET ei ole nähnyt mitään muutosta. Tämä rajoittaa sitä, miten vahvasti joku tuntematon kenttä voi vaikuttaa tunnettuihin hiukkasiin ja miten nopeasti se voi muuttua. Tulokset perustuvat kahden viikon mittaukseen. Mittausjakson pidentäminen ja eri atomien ottaminen mukaan parantaa tarkkuutta lähivuosina kymmenentuhatkertaiseksi.

Pidemmän aikavälin muutoksia on luodattu Maassa Oklossa, missä oli kaksi miljardia vuotta sitten luonnollisesti syntynyt ydinreaktori, jonka reaktiotuotteita voidaan nyt tarkastella. Taivaalla muutosta on etsitty miljardien valovuosien päästä tulevan valon aallonpituudesta. Tällaisten mittausten tarkkuus jää kuitenkin kauas siitä, mikä laboratorio-olosuhteissa saavutetaan.

QSNETin koe on samaa hiukkasfysiikan halpalaaria, josta kirjoitin edellisessä merkinnässä, eli hinta mitataan miljoonissa. Toisaalta kokeella ei ole varmaa kohdetta, eli ei ole taetta, että mitään näkyy vaikka tarkkuus paranee. Voi sanoa, että tämä havainnollistaa sitä, miten hyvin ymmärrämme maailmankaikkeutta, ja miten suurella tarkkuudella hiukkasfysiikan Standardimalli ennustaa hyvin erilaisten havaintojen tuloksia. Tieteen edistys ei rakennu aiemman päälle kuin torni, vaan tieto muodostaa verkon, jossa yksi säie ei ratkaise, jonka osat tukevat toisiaan.

17 kommenttia “Kellojen verkko”

  1. Antti sanoo:

    ” Higgsin kenttä, joka antaa massat tunnetuille hiukkasille. (Paitsi kenties neutriinoille, niiden massojen alkuperästä ei ole varmuutta.)”

    Onko neutroonien massasta tulossa aihetta tai tai ovatko tutkijat päässeet lähemmäs selitystä mistä niiden massa
    voisi tulla.jos higgs ei sitä selitä ?

    1. Syksy Räsänen sanoo:

      Olen kirjoittanut neutriinoista hieman merkinnöissä, jotka on linkattu tuossa virkkeessä.

      Neutriinoiden massoja on tutkittu paljon. Tavallisin selitys on se, että neutriinoilla on massaa omasta takaa. Tämä ei ole mahdollista muille Standardimallin hiukkasille kuin Higgsille ja neutriinoille, ja neutriinoillekin vain jos niitä on enemmän kuin kolme tunnettua lajia, aiheesta hieman täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kauneusvirheen-korjaaminen/

      Voi olla, että palaan vielä neutriinoiden massoihin.

  2. Pauli sanoo:

    Jatketaan ajatusleikkiä atomin sisäisen värähtelyn ja pimeän energian välisestä yhteydestä:
    Jos osa massasta on sitoutuneena atomiytimen sisäiseen värähtelyyn, niin miten hyvin ja millä mekanismeilla se voisi välittyä viereisiin atomiytimiin? Onko atomin ydin täydellinen termospullo? Painavatko alkuräjähdyksestä asti yksin seilanneet vety-ytimet saman verran kuin vaikka Auringon sisällä olevat seurallisemmat sisaruksensa?

    1. Syksy Räsänen sanoo:

      En ole varma mitä massaa tarkoitat. Atomiytimien massasta joitakin prosentteja on sidosenergiaa – tämä on se osa, joka voidaan vapauttaa ydinreaktioissa. Silloin kun atomiytimet ovat lähellä, niiden sisärakenteet tosiaan puhuvat toisilleen (eli ydin ”vuotaa” jos sitä kysyt), tämä tunnetaan nimellä ydinvuorovaikutus (tai ydinvoima).

      Tämä ei kyllä liity pimeään energiaan.

      Vety-ytimien (eli protonien) massa on tunnetun fysiikan mukaan sama kaikkialla. Jos pimeän energian kenttä vaikuttaisi protonien massoihin, ne voisivat periaatteessa olla hieman erilaisia tähdissä ja vapaana avaruudessa, koska pimeän energian kenttä voisi olla erilainen. Ainakin sähkömagnetismin voimakkuuden kohdalla tällaista ilmiötä on tutkittu, kenties myös elektronin ja protonin massan suhteen kohdalla.

  3. Merry sanoo:

    Eikö atomi menetä energiaa, kun se lähettää valoa, kuten tässä kerrottiin? Mitä tapahtuu, kun atomi menettää tällä tavoin kaiken energiansa?

    1. Syksy Räsänen sanoo:

      Menettää. Atomilla on perustila, jossa se ei enää voi lähettää valoa. Sekunnin määrittely perustuukin juuri sellaisen valon aallonpituuteen, jota cesium-atomi lähettää siirtyessään perustilaan tilasta, jolla on hiukan isompi energia.

      Kysymys siitä, miten atomi voi olla stabiili, oli muuten keskeinen kehitettäessä kvanttimekaniikkaa viime vuosisadan alkupuolella.

  4. Joksa sanoo:

    Miten oikeastaan on mahdollista sanoa cesium-kellon jätättävän lainkaan, eikö olekaan niin että aika hidastuu sen verran kuin cesium-kello ’jätättää’? Onko jollain käytössään tätä parempi absoluuttinen aika vai muuttuuko cesium-atomin rakenteessa jokin ajan myötä?
    Cesium-atomien värähtelyyn perustuen varmaan voidaan määrittää mistä aikaskaalamme on alkanut, mutta voidaanko tuon ajankohdan katsoa mitenkään aidosti määrittävän ajan alkamista?

    1. Syksy Räsänen sanoo:

      Mitataan cesium-atomien lähettämän valon taajuutta tai yhtäpitävästi aallonpituutta eri aikoina. Jos se on erilainen eri aikoina, taajuus on muuttunut, eli ajan yksikkö on muuttunut. En tunne koejärjestelyjen yksityiskohtia.

      Ajan yksikön valinta ei liity ajan alkuun millään tapaa.

      1. Joksa sanoo:

        Sekunti määritellään SI:ssä tiettynä määränä (9 192 631 770) cesium 133-atomin häiritsemättömän perustilan ylihienorakennesiirtymää. Kun tuo määrä värähdyksiä tulee täyteen niin kulunut aika on sekunti. Ajanmittausjärjestelmässä on siis loogisesti mahdotonta että cesium 133-atomin värähtelytaajuus muuttuisi, aika on siis se joka joustaa jos muutosta tapahtuu.

        Cesium-kellon jätättämisasian taustaa tarkemmin tuntematta sen voisi arvailla voivan johtua vaikkapa siitä että olosuhteet maan päällä eivät aivan täysin vastaa häiritsemätöntä perustilaa. Olisiko jollain mahdollisesti tarkempaa tietoa?

        Atomikellojen taajuusmuutoksia tutkittaessa tarvittanee aikareferenssi johon hypoteesina olevat muutostekijät eivät vaikuttaisi. Ei oikein riittänyt sinni kahlata tietoa alkuperäisestä selosteesta.

  5. Joksa sanoo:

    Edelleen tarkentaen, SI sekunti määrittää standardi itseisaikaa maassa, pätee maan lähiympäristössä mittakellojen kanssa samassa liike- ja gravitaatiotilassa. UTC perustuu 260 atomikellon keskiarvoon 49 paikassa, USA:n standardiajan määrityksessä käytetään myös vetymaserkelloja (Hart-Davis 2011). Varmaan melko mielenkiintoinen prosessi tuollaisen määrän eri paikoissa sijaitsevien atomikellojen reaaliaikaisen keskiarvon muodostaminen.

    Termi ’jätättäminen’ antaa ymmärtää että virhe voi olla vain käyntiä hidastava, onko niin että cesium-kello ei voi edistää? Virheen lähteen etsimminen liittyy blogin aiheeseen, voisi kai johtua myös kvanttiepämääräisyyksistä tai satunnaisiin gravitaatiohäiriöihin tms?

    1. Syksy Räsänen sanoo:

      Kyllä cesium-kellot voisivat myös edistää. Virheiden hallinta on toki keskeinen osa mittausta. Kellojen tarkkuus on lähellä kvanttikohinan rajaa, mutta en osaa kommentoida asiaa tarkemmin. Vaikka Maan gravitaatiosta johtuva taajuuden muutos on selvästi mittaustarkkuuden rajoissa, luulen että sen muutos ajassa on niin pieni, että sillä ei ole merkitystä.

      Sivumennen muuten mainittakoon, että hiukkasfyysikot (eivät myöskään tähän tutkimukseen osallistuneet teoreeti) eivät käytä SI-järjestelmää, eli heidän yksikköjärjestelmässään cesium-atomin taajuus voi pienentyä.

      1. Eusa sanoo:

        Jos Cesiumin virityksen emission ja mittausabsorption väli on sen verran pitkä, että gravitaatio ehtii vaikuttaa, voihan mitata sekä ylös että alas suuntautuen.

        1. Syksy Räsänen sanoo:

          En ymmärrä mitä tarkoitat. Gravitaation muutos ei kuitenkaan liene mittauksessa merkittävä.

  6. Erkki Kolehmainen sanoo:

    Siis ajan mittaus perustuu stabiilin Cs-133-isotoopin värähtelytaajuuteen. Jos tähän jokin kenttä tai muu tekijä vaikuttaa, niin kuinka se voisi olla vaikuttamatta mittalaitteen atomien värähtelytaajuuksiin?

    1. Syksy Räsänen sanoo:

      Koska eri atomien koostumus on erilainen, niiden taajuus muuttuisi eri tavalla.

  7. Esa Könönen sanoo:

    Tiedän, ehkä kysymykseni Syksylle ovat ”booring” koska en ole kosmologi eikä minun kykyni ”opistoinssinä” riitä näihin juttuihin alkuunkaan. Esimerkiksi mikään syvällisempi matematiikka on minulle täysin mahdotonta. Mutta ehkä voisit vastata tavallaan ”tavisjärjellä” kahteen minua ihmetyttävään asiaan. Älä siis todellakaan vastaa liiaan monimutkaisesti. Kyssäri yksi: Josssain joku väitti että tämän universumin rajat katoavat yli valon nopeuden johtuen oudosta ”pimeästä energiasta”. Ok…univesrumi laajenee selkeästi oikeiden havaintojen kautta. Mutta eihän valon nopeutta voi mikään ylittää ? Toinen kyssäri on tämä: kun tuota tyhjyyttä syntyy tyhjyyteen ja universumi laajenee koko ajan, niin miksi väitetään että sitä tyhjyyttä tyhjyteen tulee vain galaksien väliseen avaruuteen ? Miksei minun keittiöön ?

    1. Syksy Räsänen sanoo:

      En välttämättä vastaa kysymyksiin, jotka ovat liian kaukana merkinnän aiheesta. (Tämä myös kommenttina kysymyksiin, joita ei ole julkaistu.)

      Sanon vain lyhyesti, että maailmankaikkeus laajenee eri tahdilla eri paikoissa (Linnunradan sisällä ei ollenkaan). Toisekseen, maailmankaikkeuden laajeneminen ei välitä informaatiota: olipa laajeneminen kiihtyvää tai ei, tarpeeksi kaukana olevat pisteet etääntyvät toisistaan nopeudelle, joka on valoa nopeampi.

      Ei tästä tämän enempää.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Naparetki

27.4.2023 klo 15.04, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Hiukkasfysiikan Standardimalli täyttää tänä vuonna 50 vuotta.  Vuonna 1973 Makoto Kobayashi ja Toshihide Maskawa laittoivat paikalleen viimeisen teoreettisen palan ennustaessaan, että on olemassa top-kvarkki. Top löydettiin hiukkaskiihdytinlaboratorio Fermilabissa vuonna 1995. Sen jälkeen ainoa puuttuva kokeellinen osa oli Higgsin hiukkanen, joka löydettiin CERNissä vuonna 2012.

Seuraavaksi pitää mennä Standardimallin tuolle puolen. Pitkään hiukkaskiihdyttimet johtivat uuden fysiikan etsimistä, mutta viime aikoina niissä ei ole löytynyt uutta. Mielenkiinto siirtyy yhä enemmän maan alta taivaankannelle.

Yksi iso kysymys on se, miksi maailmankaikkeudessa on enemmän ainetta kuin antiainetta. Tämä epäsuhta on voinut syntyä Higgsin hiukkasen jäätyessä paikalleen maailmankaikkeuden täyttäessä sekunnin miljardisosan sadasosan. Jos näin on, niin vuonna 2037 laukaistavaksi kaavailtu kolmen satelliitin gravitaatioaalto-observatorio LISA saattaa nähdä tuossa mullistuksessa syntyneitä gravitaatioaaltoja.

Kalliiden kiihdytinten ja satelliittien lisäksi on edullisiakin vaihtoehtoja. Yksi esimerkki on pimeää ainetta etsivät kokeet, joiden hinta on miljoonia euroja miljardien sijaan. Samaan sarjaan menee neutronin sähköisen dipolimomentin mittaaminen.

Neutroni on hiukkanen, joka koostuu kolmesta kvarkista. Näiden kolmen kvarkin sähkövarausten summa on nolla, eli neutronilla kokonaisuutena ei ole sähkövarausta. Mutta koska kvarkit eivät ole jakautuneet tasaisesti neutronin sisällä, neutronin sisällä olevia varauksia on mahdollista havaita.

Tilanne on samanlainen kuin vetyatomissa, missä protonilla ja elektronilla on yhtä suuret mutta vastakkaismerkkiset varaukset. Mutta sen sisällä olevat varaukset vuorovaikuttavat ulkomaailman kanssa, koska elektronit ovat protonia ulompana.

Yksinkertaisin epätasaisesti jakautuneiden sähkövarausten vaikutus on nimeltään dipoli, suomeksi siis kaksinapainen. Kahden yhtä ison mutta vastakkaismerkkisen varauksen dipoli on sitä suurempi mitä isompia varaukset ovat ja mitä kauempana ne ovat toisistaan. Karkeasti sanottuna varausten välimatkaa isommalla etäisyydellä dipoli näyttää nollavaraukselta, mutta tarkemmin katsoessa huomaakin, että on sähkökenttä.

Neutronissa on kolme varausta, mutta idea on sama. Koska kvarkit poukkoilevat neutronissa ympäriinsä, odottaisi, että neutronin dipolimomentti olisi suunnilleen niiden varaus kertaa neutronin koko. Ensimmäinen mittaus neutronin dipolimomentista julkaistiin vuonna 1957. Kokeen herkkyys oli kymmenentuhatta kertaa niin iso kuin tuo arvioitu suuruus, mutta mitään ei havaittu. Tämän hetken tiukimman mittauksen on tehnyt nEDM-koeryhmä, joka julkisti tuloksensa toissavuonna. Kokeiden herkkyys on kasvanut 70 vuodessa miljoonakertaiseksi, mutta vieläkään dipolimomenttia ei ole näkynyt.

Tulos oli itse asiassa molemmilla kerroilla odotettu, mutta eri syistä. Alkuperäisen kokeen tekijät eivät kuuteen vuoteen edes julkaisseet mittauksiaan, koska 1950-luvun alussa yleisesti luultiin, että fysiikan lait eivät muutu jos maailman vaihtaa peilikuvakseen. Jos tämä pitää paikkansa, neutronin dipolimomentti on nolla, koska muuten se vaihtaisi suuntaa kun avaruuden peilaa, eivätkä maailma ja sen peilikuva näyttäisi samalta.

Vuonna 1956 kuitenkin osoitettiin kokeellisesti, että maailma ja sen peilikuva käyttäytyvät eri tavalla. Niinpä dipolimomenttikokeen tekijät katsoivat tuloksensa julkaisemisen arvoiseksi. Tämä on esimerkki siitä, miten teoreettiset ideat voivat vaikuttaa sekä haitallisesti että hyödyllisesti siihen, millaisia kokeita pidetään tekemisen arvoisina.

Nyt odotetaan teoreettisten laskujen nojalla, että neutronilla tosiaan on dipolimomentti. Miksi sitä ei ole löytynyt? Tämä on yksi Standardimallin teoreettinen ongelma: miksi neutronin dipolimomentti on niin pieni?

Dipolimomenttiin vaikuttaa Standardimallissa eniten yksi vuorovaikutus, ja tuota vuorovaikutusta on vaikea havaita millään muulla tapaa kuin dipolimomenttia mittaamalla. Niinpä dipolimomentin pienuuden voi selittää vain sanomalla, että tuo vuorovaikutus onkin ainakin kymmenen miljardia kertaa heikompi kuin mitä odottaisi. Tätä selittämään on kehitetty aksioneiksi nimetyt hiukkaset. Aksioneilla haluttiin aluksi vain säätää tuo vuorovaikutus pois, mutta niistä sittemmin tuli suosittu ehdokas pimeäksi aineeksi.

Jos tuon yhden vuorovaikutuksen painaa nollaksi tavalla tai toisella, jäljelle jäävä Standardimallin ennuste neutronin dipolimomentille on miljoona kertaa nykyistä herkkyyttä pienempi. Mittausten pitäisi siis parantua huomattavasti ennen kuin olisi mitään toivoa nähdä sitä. Tämä on erinomaista, koska se tarkoittaa, että dipolimomentti on siisti tapa mitata Standardimallin tuonpuoleista fysiikkaa.

Monissa mittauksissa, kuten pimeän aineen etsinnöissä, ongelmana on se, että monet asiat voivat tuottaa samanlaisen signaalin. Kun taivaalla näkyy röntgensäteitä, tulevatko pimeän aineen hajoamisesta vai hehkuvista atomiytimistä? Mitä heikompaa on tunnettujen lähteiden kohina, sitä helpompi on havaita tuntemattoman fysiikan signaali.

Mitä tuo tuntematon fysiikka neutronin dipolimomentin kohdalla sitten olisi? Tässä vaiheessa mukaan kuvaan tulee Kobayashin ja Maskawan työ. He ennustivat, että top-kvarkki pitää olla olemassa, jotta fysiikan lait olisivat erilaisia kun maailma muuttuu peilikuvakseen ja hiukkaset ja antihiukkaset vaihdetaan toisikseen. Tämä ehto on taasen edellytys sille, että saadaan aikaan havaittava aineen ja antiaineen epäsuhta. Standardimallissa tämä epäsuhta tosin sittemmin osoittautui liian pieneksi, eli tarvitaan uutta fysiikkaa. Uusi fysiikka, joka pystyisi saamaan aikaan aineen ja antiaineen epäsuhdan Higgsin jäätymisen aikoihin myös kasvattaisi neutronin dipolimomenttia.

Yksi esimerkki on supersymmetria. Supersymmetriset laajennukset Standardimalliin ennustivat ennen LHC:n käynnistymistä, että neutronin dipolimomentti on tyypillisesti noin sata kertaa nykyistä ylärajaa isompi. Mutta se, että LHC ei ole nähnyt supersymmetriaa laski neutronin dipolimomentin ennusteen ylärajan suunnilleen nykyisen kokeellisen ylärajan kohdalle. Tässä mielessä nEDM olisi voinut nähdä jotain, mutta ei ollut yllätys, että niin ei käynyt.

nEDM-ryhmä puuhaa jatkokoetta nimeltä n2EDM, jonka on määrä ruveta pian tekemään mittauksia. (Tässä aiheesta tehty videoteos.) n2EDM parantaa herkkyyttä tekijällä kymmenen. Myös muut kokeet mittaavat sekä neutronin että muiden hiukkasten sähköisiä dipolimomentteja yhä tarkemmin.

Ei ole syytä odottaa, että juuri n2EDM:n tekijän kymmenen parannus olisi ratkaiseva. Mutta jossain vaiheessa havaintojen herkkyys voi ylittää uuden fysiikan löytämiseen tarvittavan rajan, ja tämä voi tapahtua isoissa tai pienissä kokeissa. Tutkijat ovat retkikunta, joka etenee askel askeleelta, ja matka voi kulkea pitkään halki tyhjän maaston.

12 kommenttia “Naparetki”

  1. Mika sanoo:

    Tämä ei varsinaisesti liity suoraan blogin aiheeseen, mutta jos tätä lukee joku tästä verkkosivusta vastaava, niin haluaisin nostaa esiin että sekä Chrome että Edge -selaimilla linkkien väritys on niin lähellä tekstin muuta väriä, että niitä on vaikea erottaa tekstin keskeltä.

    1. Syksy Räsänen sanoo:

      Kiitos. Kannattanee laittaa viesti vaikka osoitteeseen ursa@ursa.fi, sieltä mennee eteenpäin.

  2. Erkki Kolehmainen sanoo:

    ”Vuonna 1956 kuitenkin osoitettiin kokeellisesti, että maailma ja sen peilikuva käyttäytyvät eri tavalla. Niinpä dipolimomenttikokeen tekijät katsoivat tuloksensa julkaisemisen arvoiseksi. Tämä on esimerkki siitä, miten teoreettiset ideat voivat vaikuttaa sekä haitallisesti että hyödyllisesti siihen, millaisia kokeita pidetään tekemisen arvoisina.”

    Siis tutkimuksen tulos on julkaisemisen arvoinen, jos se on odotettu? Eli mitään uutta ei löydetty! Tätä voi kutsua myös nollatutkimukseksi. Jokaisen kokeen takana on teoreettinen idea, muutenhan koe olisi vailla mieltä. Ja oikein suunnitellun ja suoritetun kokeen pitäisi vahvistaa tai kumota sen takana oleva idea. Neutronin dipoolimomentin mittauksen vaikeus voi johtua tietenkin mitattavan pienuudesta, mutta myös siitä, että siihen liittyvä dynamiikka on liian nopeaa, jolloin nähdään vain aikakeskiarvo!

    1. Syksy Räsänen sanoo:

      Kun mittaa asiaa, josta ei ole varma teoreettista ennustetta ja jota ei ole aiemmin mitattu, niin tulos on julkaisemisen arvoinen riippumatta siitä, löytyykö jotain vai ei.

      Juurikin neutronin sähköinen dipolimomentti (kokeessa käytettävän sähkökentän voimakkuuden kanssa) määrää sen, miten nopeasti neutroni pyörii, mikä on se, mitä kokeessa mitataan. Jos pyöriminen on niin nopeaa, että sitä ei nähdä, tämä asettaa ylärajan sähköiselle dipolimomentille.

      1. Erkki Kolehmainen sanoo:

        Satunnaislukugeneraattorin tehtävä on antaa satunnaislukuja ja on siten ennustettava, mutta ei itse lukujen julkaisemisessa ole mitään järkeä. Ellei ole teoreettista ennustetta eikä edes testattua menetelmää, niin tilanne on vielä huonompi kuin satunnaislukugeneraattorin tapauksessa!

        1. Syksy Räsänen sanoo:

          Uusien havaintojen myötä löytöjä on usein tehty sieltä, mistä niitä ei ole osattu teoreettisesti odottaa.

          Neutronin dipolimomentin mittaamiseen käytetyt menetelmät ovat luotettavia.

          Tämä riittäköön tästä.

  3. A.Reynolds sanoo:

    Kiitoksia näistä blogeista, ovat erittäin mielenkiintoista luettavaa näin maallikonkin näkökulmasta!

    1. Syksy Räsänen sanoo:

      Kiitos, mukava kuulla!

  4. Lasse Reunanen sanoo:

    Luin tekstisi ja siitä mieleeni tuli muutama vertaus.
    En atomin yksityiskohdista paljon muuta tiedä kuin ne kokeiden
    tuomat nimet hiukkasista (niitäkään en ulkoa osaisi sanoa oikein).
    Kerroit neutronin hiukkasen koostuvan kolmesta kvarkista ja
    niiden summana nollana dipolimomentissa (ei mittauksin tarkennettu),
    joka dipoli kaksinapaisuutta.
    Kolmen kvarkin kooste kuitenkin yli kaksitahosta – vaikka sen muotoa
    kenties voi sinikäyrältä saada kahteen tasoonkin (plus ja miinus puolin).
    Sähköstä mieleeni siten 3-vaiheinen moottori, joissa rautasydän käämitetty
    kolmelle vaiheelle (paristoissa vain 1-vaiheisuus, plus- ja miinusnapoineen)
    ja niiden summana nolla – sähkön kiertäessä käämeissä eri vaiheissa
    siirtyy magnetismi rautasydämessä ympyrää, pyörittäen sähkömoottorissa
    roottoria liike-energiaan.
    Voisi siten ehkä ajatella, että em. neutronin kvarkit myös olisivat jossain
    vaiheistetussa kiertoliikkeessä – summanaan se tulkittu nolla.
    Kiertoliike neutronin sisällä olisi kuitenkin jakaantunut pallotasoille
    (ei tasaradalle kuten em. sähkömoottori vertauksessani),
    hieman niin kuin pallomaisissa tähtijoukoissakin useampia tähtiä kerääntynyt
    tiiviiksi paketiksi isossa mittakaavassa. Näin siis tulkitsin mielikuvanani tekstiä.

    1. Syksy Räsänen sanoo:

      Kvarkeilla on monimutkainen jakauma neutronin sisällä. Lisäksi neutronin rakenteessa pitää ottaa huomioon hiukkaset nimeltä gluoni, jotka välittävät vahvaa vuorovaikutusta, joka sitoo kvarkit neutroniksi. Nekin vaikuttavat neutronin ominaisuuksiin.

      1. Lasse Reunanen sanoo:

        Hyvä että tarkensit kvarkeille gluonin – jolla sitten sitä kaksinapaisuuttakin tasan olisi.
        Sähkömoottorin vertauksessani myös neljäs yhteys kolmelle vaiheelle – nollajohdin,
        joka käämien loppupäissä yhdistyy ja johtaa maadoituksella avoimeen kuparijohtoon
        maahan – joka nollan maadoitus sähkölaitteista rakennuksissa
        (siihen yhdistyy myös lyhyet suojamaadoitukset metallisista runko-osista vikasuojauksena).
        Ihmisetkin kemiallisesti ja hermoverkostonsa sähköyhteyksin eräänlaisia koneistuksia,
        jotka myös sähköä esim. salamaniskut johtaa maahan ja siten vastuksina kuumentuu.

        1. Syksy Räsänen sanoo:

          Neutronin sähköiseen dipolimomenttiin vaikuttavat siis neutronin osaset, eli kvarkit ja gluonit. Tämä riittäköön tästä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Vaikutusvaltaa

18.4.2023 klo 22.05, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Fysiikan tekemisen ja popularisoinnin välillä on iso kuilu. Tämä ei koske vain sitä, miten yksityiskohtaisesti puhutaan, vaan myös sitä, millä käsitteillä ajatellaan. Joistakin käsitteistä, jotka ovat fyysikoiden arjessa keskeisiä mainitaan popularisoinnissa vain harvoin.

Yksi tällainen käsite on vaikutus – englanniksi action, suomenkielisten fyysikkojen suussa yleensä aktio. Se on lyhyt, rivin tai parin mittainen, matemaattinen lauseke, joka määrittää teorian tiiviisti ja täsmällisesti. Vaikutus kertoo millaisia hiukkasia, kenttiä tai muita olioita teoria sisältää, millainen aika-avaruus siinä on, miten ne vuorovaikuttavat, ja mitä symmetrioita siinä on – kaiken mitä fyysikko tarvitsee. Vaikutus tarjoaa myös tien klassisesta fysiikasta kvanttifysiikkaan, ja sen avulla on ymmärretty klassinen fysiikan paremmin kvanttifysiikan rajatapauksena.

Lienee helpointa selittää esimerkin avulla, mistä vaikutuksessa on kysymys. Ajatellaan klassisen fysiikan hiukkasta, joka liikkuu avaruudessa vapaasti vuorovaikuttamatta minkään kanssa. Hiukkasella on liike-energia, joka on sitä isompi, mitä nopeammin se liikkuu. Tässä tapauksessa vaikutus saadaan, kun lasketaan yhteen liike-energia jokaisena ajanhetkenä.

Vaikutuksesta voidaan selvittää miten hiukkanen liikkuu. Erilaisiin liikkeisiin liittyy erilainen liike-energia, ja hiukkasen todellinen rata on sellainen, jolle vaikutus on mahdollisimman pieni. Jos hiukkanen ei ole vapaa, vaan vuorovaikuttaa toisten hiukkasten kanssa, niin vaikutus on liike-energia miinus vuorovaikutukseen liittyvä energia, laskettuna yhteen kaikkina ajanhetkinä. Hiukkasten radat saadaan taas selvittämällä, milloin vaikutus on mahdollisimman pieni.

Jokseenkin kaikilla fysikaalisilla järjestelmillä on vaikutus, joka kertoo millaisia ne ovat. James Maxwellin löytämän klassisen sähkömagnetismin vaikutuksen kirjoittaa paperille 30 sekunnissa. Siinä lasketaan yhteen sähkö- ja magneettikenttien arvoja ei vain kaikkina ajanhetkinä vaan myös kaikkialla avaruudessa, ja kentät käyttäytyvät siten, että tämä summa on pienin mahdollinen.

Vaikutuksen avulla on helppo esittää uusia teorioita: kestää 10 sekuntia kirjoittaa sähkömagnetismin vaikutukseen yksi termi lisää, joka muuttaa kenttien käytöstä. Vaikeampaa on keksiä, millaiset muutokset ovat kiinnostavia. Uudet hiukkasfysiikan teoriat määritellään juuri vaikutuksen avulla, ja Standardimallin vaikutukseen on tehty satoja erilaisia lisäyksiä, joista mitään ei ole saatu kokeellisesti varmennettua.

Vaikutus keksittiin 1700-luvulla, ja se osoittautui käteväksi laskemisen, viestinnän ja ajattelun välineeksi. Pitkään oli kuitenkin epäselvää, miksi tällainen liike-energian ja vuorovaikutusenergian erotuksen summaaminen kertoo jotain todellisuudesta. Lopulta kvanttimekaniikka selitti asian 1900-luvulla.

Kvanttimekaniikan mukaan hiukkasella ei ole määrättyä paikkaa, on vain todennäköisyys löytää se eri paikoista. Asian voi nähdä niin, että hiukkanen voi kulkea millä tahansa radalla, ja eri radoilla on eri todennäköisyys. Richard Feynman osoitti, että vaikutus kertoo kunkin radan todennäköisyyden. Mitä pienempi vaikutus, sitä todennäköisempi rata.

Kvanttifysiikan näkökulmasta kappaleet näyttävät siis liikkuvan klassisen fysiikan mukaisilla radoilla, koska sellaisten ratojen todennäköisyys on isoin. Ne voivat liikkua myös muilla radoilla, mutta mitä enemmän reitti poikkeaa klassisen fysiikan radasta, sitä pienempi on sen todennäköisyys. (Kvanttifysiikan ja klassisen fysiikan tarkka suhde on monimutkainen asia, jota ei ymmärretä tarkkaan.)

Kvanttimekaniikan muotoileminen uudelleen vaikutuksen avulla oli yksi Feynmanin merkittäviä saavutuksia. Se oli vaikutusvaltainen läpimurto, joka helpotti erilaisten järjestelmien –oli kyseessä hiukkanen tai sähkökenttä– kuvauksen yleistämistä klassisesta fysiikasta kvanttifysiikkaan.

Pitää vain kirjoittaa paperille klassisen fysiikan vaikutus, ja sen sijaan että poimittaisiin vain se hiukkasen rata tai kentän kehitys, jolla vaikutus on pienin, siitä lasketaan todennäköisyys kaikille radoille tai kentän kehityksille. Tämä oli avain ensimmäisen kvanttikenttäteorian, kvanttielektrodynamiikan, löytämiseen vuonna 1948.

Myös aika-avaruutta kuvaavan yleisen suhteellisuusteorian voi esittää vaikutuksen avulla. Jos vaatii, että yksinkertaisin aika-avaruutta kuvaava vaikutus on mahdollisimman pieni, saa juuri ne yleisen suhteellisuusteorian lait, joiden mukaan aika-avaruus todella käyttäytyy.

Vaikka kvanttigravitaatioteoriaa ei ole vielä löydetty, vaikutuksen menestys vihjaa siihen, että yleisen suhteellisuusteoriankin taustalla on kvanttiteoria, jossa aika-avaruus ei ole määrätty, vaan se on sekoitus erilaisia mahdollisuuksia, joista yleisen suhteellisuusteorian mukainen aika-avaruus on todennäköisin.

15 kommenttia “Vaikutusvaltaa”

  1. Matti Pussinen-Eloranta sanoo:

    Kiitos tosi paljon, tätä voi soveltaa muuallekkin, kaivattu tällasta tekstii.

  2. Käsittääkseni kvanttiteoriassa radat ovat keskenään yhtä todennäköisiä koska painokertoimena on vaihetekijä eli kompleksiluku, jonka pituus on yksi (ja kompleksiluvun vaihe on vaikutus). Kuitenkin jos systeemi on iso ja kun radat summataan, summan arvoon vaikuttaa lähinnä klassinen rata, kuten merkinnässä todettiin. Syynä on Riemann-Lebesguen lemma, tai se on ainakin yksi tapa ymmärtää asiaa.

    Yritin jossain vaiheessa penkoa detaljoidummin, miten tämä toimii matemaattisesti, ja erityisesti miten klassinen kaaos (eli tilanne jossa klassiset polut haarautuvat alkuarvoherkästi) nousisi esiin polkuintegraalista. En löytänyt kovin paljon – Chaichianin laaja kirja on olemassa, mutta en sieltäkään löytänyt kovin eksakteja vastauksia.

    Joka tapauksessa minusta tuntuu että tämä aihepiiri on maailmankuvallisesti fysiikan ydintä.

    1. Syksy Räsänen sanoo:

      Asia ei ole ihan noin, koska vaikutus ei painota todennäköisyyksiä, vaan todennäköisyysamplitudeja (tässä suhteessa kirjoitukseni oli ehkä liian yksinkertaistettu).

      Yhteen summattaessa joka termille tulee erilainen vaihe – vaihe on summassa merkityksetön vain jose se on kaikille termeille sama. Mitä isompi vaikutus, sitä nopeammin todennäköisyysamplitude oskilloi, joten sitä pienempi on integraalin arvo. (Vrt. deltafunktion esitys raja-arvona termistä sin(kx)/x, kun k menee äärettömään.)

      1. Radan r todennäköisyysamplitudi on verrannollinen tekijään exp(i*S[r]) missä S on vaikutusfunktionaali. Näillä kompleksiluvuilla on sama itseisarvo eli ykkönen, joten siinä mielessä jokainen rata on yhtä todennäköinen.

        Mutta vaikka kaikki radat ovat yllä olevassa mielessä yhtä todennäköisiä, vain klassisen radan lähellä olevat radat interferoivat keskenään konstruktiivisesti ja muut destruktiivisesti, jos systeemi on iso ja jos havaitsija mittaa sitä (=vuorovaikuttaa systeemin kanssa) säästeliäästi niin ettei häiritse sitä liikaa. Tällöin kyseinen havaitsija näkee klassisen fysiikan lakien toteutuvan systeemissä. Hän saattaa pohtia metafyysisesti että ovatkohan klassisen radan ulkopuolella olevat radat joiden amplitudit keskimäärin kumoavat toisensa ”olemassa” vai eivät.

        Jos havaitsija mittaa tiheästi, esim. jos hän yrittää mitata systeemin tarkan radan, silloin hän tulee häirinneeksi systeemiä paljon. Tällöin hän huomaa, jos suorittaa useita mittaussarjoja, että systeemi voi mennä mihin tahansa tilaan yhtä todennäköisesti. Syynä on että havaitsijan voimakas vuorovaikutus systeemin kanssa dominoi sen käyttäytymistä. Tällöin havaitsija ei näe klassista dynamiikkaa, vaan kokee että systeemin käytös voidaan selittää satunnaisluvuilla, jotka hän itse tuli mittauksillaan generoineeksi.

  3. Alessandro sanoo:

    Hei,
    onko sinulla suositeltava kirja, jossa nuo Feynmann oivalluksia ja teoriaa ovat selitetty perustellisesti? (olen entinen fysiikko, joten matematiikka ei pelotta 🙂 ).

    1. Syksy Räsänen sanoo:

      En osaa suositella mitään. Itse opin ensimmäisen kerran tuosta tavasta muotoilla kvanttimekaniikkaa kurssilla, missä käytettiin Cromströmin ja Montolan kirjaa Johdatus kvanttimekaniikkaan. Sen käsittely on kuitenkin aika lyhyt, eikä klassista rajaa käsitellä ollenkaan. Itse lähtisin katsomaan kvanttimekaniikan oppikirjoista, mutta sen tiedät kertomattakin.

    2. Feyman-Hibbsin kirja http://www-f1.ijs.si/~ramsak/km1/FeynmanHibbs.pdf , luvussa 2 on esitetty polkuintegraalin perusteet.

  4. Cargo sanoo:

    ”Vaikutuksesta voidaan selvittää miten hiukkanen liikkuu. Erilaisiin liikkeisiin liittyy erilainen liike-energia, ja hiukkasen todellinen rata on sellainen, jolle vaikutus on mahdollisimman pieni.”

    Voisiko tuota vaikutusperiaatetta ymmärtää yleistettynä inertian lakina, josta tässäkin blogissa on ollut puhetta? Jos siis hiukkanen kulkee matkan X, niin liikemäärä P pyrkii säilyttämään arvonsa. Kaippa tuosta voisi jotenkin päätellä, että kun lasketaan yhteen liikemäärästä riippuva liike-energia jokaisena ajanhetkenä, niin prosessi pyrkii jonkinlaiseen minimiin. Sähkömagnetismin induktioperiaatekin voisi olla jokin tuollainen vaikutuksen minimointiongelma. Noheva filosofi voisi myös todeta, että luonto pyrkii paradoksaalisesti sekä säilyttämään oman tilansa että toteuttamaan kaikki sen vaihtoehdot.

    ”Pitkään oli kuitenkin epäselvää, miksi tällainen liike-energian ja vuorovaikutusenergian erotuksen summaaminen kertoo jotain todellisuudesta. Lopulta kvanttimekaniikka selitti asian 1900-luvulla.”

    Onko tuollainen toteaminen älyllisesti rehellistä, jos polkuintegraalissa käytetään klassisia käsitteitä?Ja miten Feynmann itse asian selitti, tuskin hän vaikutusperiaatetta omasta päästään keksi? Jostain olen lukenut, että Schrödingerin yhtälön ja sitä kautta polkuintegraalin voi johtaa epätarkkuusperiaatteen sekä tilastollisen klassisen fysiikan avulla, jolloin vaikutusperiaatteen lähteenä toimisi muna-vai-kana-tyylisesti Newtonin mekaniikka, joka taas on kokeellinen mallinnus inertian laista.

    1. Syksy Räsänen sanoo:

      ”Voisiko tuota vaikutusperiaatetta ymmärtää yleistettynä inertian lakina, josta tässäkin blogissa on ollut puhetta?”

      Tarkoitat varmaan blogin kommentteja. Vastaus on ei.

      ”Onko tuollainen toteaminen älyllisesti rehellistä, jos polkuintegraalissa käytetään klassisia käsitteitä?”

      Klassisessa mekaniikassa ja kvanttimekaniikassa on joitain samoja käsitteitä (esimerkiksi aika on samanlaista), mutta kvanttimekaniikassa on käsitteitä, joita klassisessa mekaniikassa ei ole. Klassisen mekaniikan vaikutuksen minimimoimisen ymmärtäminen kvanttimekaniikan kautta perustuu jälkimmäisiin.

  5. Miguel sanoo:

    Saattaa mennä ohi aiheen. Minulla ei ole pääsyä fysiikan artikkeleihin. Mutta 2-rakokokeessa jos detektorin sijaan olisikin toinen kaksoisrako. Ihan varmaan tällainen koe on tehty . Ensimmäisessä hiukkanen ”paljastuu” ja aaltofunktio romahtaa, niin mitä tapahtuisi seuraavassa hilassa? Onko sillä edelleen aaltofunktio?. Kysyn tätä, kun ilmeisesti aaltofunktio on todettu 200+ atomilla/molekyyleillä/aineella. Mutta pakko meidän tietää tuon ”paljastuneen” aineen koostumus, jos se on valmistettu. Romahtaako tuo aaltofunktio ja epämääräisyys lopulta koskaan?

    1. Syksy Räsänen sanoo:

      Menee vähän ohi aiheen. Mutta sanottakoon sen verran, että kvanttimekaniikan mukaan ainetta kuvaa aina aaltofunktio. Kyse on vain siitä, millainen aaltofunktio on eli miten todennäköisyys on jakautunut: onko se keskittynyt yhteen vaihtoehtoon tai sen läheisyyteen, vai onko se levinnyt laajemmalle.

  6. Miguel sanoo:

    Kiitos vastauksista!. Kun puhutaan kvanttigravitaatiosta, niin mitä se oikeastaan konkreettisesti tarkoittaa?

    Toki kaiken teoriaa. Kumman pitää lähentyä toistaan. Tuntuu, että yleinen suhteellisuusteoria on enemmän kvanttifysiikkaa, kuin toisin päin. Ja silti aika-avaruutta yritetään kvantittaa.

    On olemassa Planckin aika ja Plancikin matka.. se estää äärettömyydet ja singulariteetit.. Mikään ei voi olla pienempi kuin Planckin matka eli (tilavuus). Se olisi kvantti. Kvanttifysiikasta en tiedä, jos siihen sopii kaikki ja salliiko se äärettömytdet?

    Jos yleisessä suhteellisuusteoriasta olisi yksikin poikkeava löydös, se kai pakottaisi muuttamaan jotain. Jos kvantti fyysikasta löytyy jotain outoa, niin onko jotain asioita, jotka asetaaisi sen kyseenalaiseksi?

    1. Syksy Räsänen sanoo:

      Kvanttigravitaatiolla viitataan sellaiseen kvanttiteoriaan, jonka rajatapauksena on yleinen suhteellisuusteoria. Samaan tapaan kuin kvanttielektrodynamiikka on kvanttiteoria, jonka rajatapauksena on klassinen sähkömagnetismi.

      Yleisessä suhteellisuusteoriassa ei ole mitään kvanttifysikaalista. Siinä ei esimerkiksi ole Planckin aikaa eikä Planckin pituutta. Niistä tarkemmin, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaymattomista-korpimaista-vihoviimeinen/

      Yleinen suhteellisuusteoria on yksi tismalleen määritelty teoria. Kvanttifysiikka on sen sijaan iso luokka teorioita, joilla on tietynlaisia ominaisuuksia.

      On kyllä tiettyjä kvanttifysiikalle ominaisia ennusteita, joiden toteaminen kokeellisesti virheelliksi pakottaisi miettimään kvanttifysiikan tuolle puolen. Yksi esimerkki on Bellin epäyhtälö ja sen rikkoutuminen:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/lomittuneilla-fotoneilla/

  7. Miguel sanoo:

    Kiitos vastauksista. Tämä on yksi niistä blogeista, joihin aina odotan uusia aloituksia jjs vastauksia. (Ja tykkään siitä tavasta sanoa suoraan, että tämä ei liity aiheeseen, jos se ei liity).

    1. Syksy Räsänen sanoo:

      Kiitos, mukava kuulla.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Inhimillinen komedia

29.3.2023 klo 21.09, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Luin Gary Taubesin kirjan Nobel Dreams: Power, Deceit and the Ultimate Experiment. Kirja kertoo W– ja Z-bosonien löytämisestä tutkimuslaitos CERNissä vuonna 1983 ja sen jälkeen alkaneesta supersymmetriajahdista, joka jatkuu vielä neljä vuosikymmentä myöhemmin. Löytö oli tärkeä todiste hiukkasfysiikan Standardimallin puolesta, ja se palkittiin Nobelilla heti vuonna 1984.

Fysiikan teoriat ovat kirjassa sivuosassa. Taubes kuvailee hiukkasfysiikan sisältöä niin vähän kuin mahdollista. Hänen selityksensä ovat kevyitä, yksinkertaisia ja enimmäkseen oikein.

Taubes oli aiemmin kirjoittanut nyrkkeilystä lehtiin The Atlantic ja Playboy. Tämä näkyy hänen otteessaan. Kannessa siteerataan kirja-arvostelua, jona mukaan kirja kertoo tieteestä kertoessaan inhimillisestä komediasta. Sisältö lunastaa lupauksen, vaikka ennemmin sopisi ehkä puhua tragikomediasta.

Taubes vietti yhdeksän kuukautta CERNissä kokeellisten fyysikkojen parissa, tarkkaillen heitä läheisesti päivät ja yöt toistensa perään. Taubesin lähestymistapa on journalistinen, hän keskittyy ihmisiin ja antaa havaintojen puhua puolestaan. Syvälle meneviä sosiologisia huomioita Sharon Traweekin tapaan on turha odottaa.

Kirjan vahvuus on siinä että Taubes kirjoittaa läheltä seuraamastaan käytännöstä tarkkaan ja koristelematta. Kirja lähestyy aihetta yhden henkilön kautta. Tarinan päähenkilö on Carlo Rubbia, W– ja Z-bosonit löytäneen kokeen UA1 johtaja. Olen kuullut, että Rubbia oli toivonut Taubesin kirjoittavan itsestään ylistyksen tieteen suurmiehenä. Jos tämä on totta, hän tuskin oli tyytyväinen tulokseen.

Heti alkuun Taubes kuvailee kokeellista hiukkasfysiikkaa alana, jossa poliittinen suhmurointi, fyysinen kestokyky, raha ja sisu (engl. guts – ehkä ”muna” olisi tässä tarkempi suomennos) ovat yhtä tärkeitä kuin tieteellinen näkemys.

Taubes kirjoittaa, että ei pysty löytämään Rubbiasta pienintäkään vaatimattomuuden jälkeä. Taubes kuitenkin näyttää Rubbian hyvin inhimillisenä hahmona. Rubbia aloitti elektroniikkavirtuoosina, joka pursusi ideoita ja omaksui uusia teknologioita hämmästyttävän nopeasti. Hän hyppi kunnian perässä hankkeesta toiseen ja mantereelta toiselle, ja jätti kokeet puolitiehen (ja yhteistyökumppaninsa tyhjän päälle) kun ne eivät tuottaneetkaan toivottua tulosta.

Rubbia halusi menestyä niin kovasti, että julkaisi väitettyjä läpimurtoja joita data ei tukenut. Hän sai tieteilijöiden parissa maineen klovnina, joka väittää tänään yhtä ja huomenna jotain ties mitä. Rubbian lempimääritelmä asiantuntijalle on henkilö joka on jo tehnyt kaikki virheet, ja tällä mittarilla hänen asiantuntijuutensa oli kiistaton. Rubbia kuitenkin onnistui vakuuttamaan rahoittajat ja päättäjät siitä, että hän pystyy rakentamaan aivan uudenlaisen kiihdyttimen CERNiin ja löytämään W– ja Z-bosonit ennen ketään muuta.

Rubbian ideana oli muuttaa protoneita kiihdyttävä SPS-kiihdytin niin, että se kierrättää samaan aikaan antiprotoneita vastakkaiseen suuntaan ja törmäyttää niitä protoneihin. Hän myös halusi rakentaa kolmikerroksisen talon kokoisen, ennennäkemättömän kattavan ja monimutkaisen havaintolaitteen UA1 etsimään sotkuisista protoni-antiprotoni-törmäyksistä uusia hiukkasia.

Tutkijoiden suhtautumista Rubbian suuruudenhullun hankkeen mahdollisuuksiin kuvaa se, miten yksi CERNin teoreettinen fyysikko ehdotti kokeelle nimeä Colliding Rings for Antiproton Proton, eli CRAP. (Suomeksi ehkä Protoni-Antiprotoni-Syklinen-Koe-Apparaatti.)

Rubbian kunnianhimo ja kyky kerätä rahoitusta veti kuitenkin mukaan maailman parhaita kokeellisia hiukkasfyysikoita. Monet tutkijat, jotka olivat vannoneet etteivät enää koskaan työskentele Rubbian kanssa, koska tämä on niin epämiellyttävä ihminen, palasivat kehään.

Taubesin mukaan Rubbia luki kaiken hiukkaskiihdyttimiä käsittelevän kirjallisuuden ja sisäisti niiden toiminnan paremmin kuin ammattilaiset. Hän osasi ratkaista samalta istumalta havaintolaitteiden teknisiä ongelmia, joista oli juuri kuullut ja joihin alan parhaat tuntijat olivat jääneet jumiin.

Taubes kuvailee, miten Rubbian valttina oli se, että hän ajatteli nopeammin ja huusi kovempaa kuin kukaan muu. Rubbian johtamistyylistä onkin kirjassa paljon esimerkkejä, joita ei voi pitää kovin mairittelevina. UA1-ryhmän jäsenet työskentelivät 15 tuntia päivässä 7 päivää viikossa yli kuuden vuoden ajan. Ryhmän toinen johtohahmo Bernard Sadoulet sanoi Rubbialle saavansa enemmän aikaan työskentelemällä vain 10-11 tuntia joka päivä, ei 20 tuntia. Rubbian mielestä tämä oli laiskottelua, hän itse nukkui 4-5 tuntia vuorokaudessa ja työskenteli loput.

Kirjan tyyli on letkeä, kuvailu eloisaa ja kerronta imee mukaansa. CERNin 80-luvun tupakansavuiset huoneet ja kahvintäytteiset yöt tulevat tutuksi. Taubes ei epäröi toistella 80-luvun fyysikoiden rasvaisia juttuja, mutta nostaa myös esille naisfyysikoiden vahvan osuuden. Rubbialla oli tapana tytötellä, mutta hän tunnisti naisten asiantuntemuksen ja nosti heidät korkeaan asemaan, kunhan he eivät olleet liian itsenäisiä, vaan suhtautuivat häneen hyväntahtoisena isähahmona. Kirjan perusteella tämä ei kyllä juuri eroa siitä, mitä Rubbia vaati miehiltä.

Rubbia kohteli tarvittaessa dataa samalla piittaamattomuudella kuin fyysikoita. Rubbian tyyli esittää virheellisesti tulkittua dataa oli legendaarinen, ja tarvittaessa hän keksi omasta päästään koetuloksia väitteidensä tueksi.

Lopulta valvotut yöt, riitaiset kokoukset, jatkuvat deadlinet, häikäilemättömät petokset, toisten koeryhmien hakkerointi, ja uuden teknologian rakentaminen nopeammin kuin mitä moni piti mahdollisena tuotti tulosta. Rubbia onnistui. Kiihdytin toimi, havaintolaite UA1 toimi, koeryhmä toimi, ja vuonna 1983 W– ja Z-bosonit löytyivät.

CERNin johto hoiti julkisuuden taitavasti, ja vuonna 1984 Rubbialle myönnettiin Nobelin palkinto yhdessä Simon van der Meerin kanssa. van der Meer oli kehittänyt ratkaisevan teknologian, jolla kerättiin tarpeeksi antiprotoneita. Kun kiihdyttimen idea oli aikoinaan esitelty Yhdysvalloissa kiihdytinlaboratorio Fermilabissa, yleisö oli nauranut ja huutanut pilkkaavasti ”mistä saatte antiprotoneita – toisesta galaksistako?”. Niinpä Fermilabilta meni löytö sivu suun, ja CERN sai ensimmäisen Nobelin palkintonsa. Yhdysvalloissa hiukkasfysiikan kokeita ei tuolloin myöskään juuri rahoitettu, kun taas CERNillä oli kosolti rahaa.

Vain muutamaa vuotta aiemmin yhdysvaltalaisia hiukkasfyysikkoja tutkinut antropologi Sharon Traweek oli pannut merkille, miten he eivät voineet ajatellakaan, että Yhdysvallat ei olisi aina alan johdossa. Nyt kruunu siirtyi Eurooppaan.

Alle kaksi viikkoa sen jälkeen kun W ja Z löydettiin Yhdysvalloissa reagoitiin tappioon päättämällä rakentaa Superconducting Supercolliderin (SSC), josta oli määrä tulla historian isoin ja korkeaenergisin kiihdytin. Jos Yhdysvallat oli 60-luvulla kisannut Neuvostoliiton kanssa kuumatkasta, 80-luvulla kilpailijana oli Eurooppa ja tantereena hiukkasfysiikka. CERN vastasi SSC:hen päättämällä rakentaa Large Hadron Colliderin (LHC). Lopulta SSC peruttiin vuonna 1993, ja LHC aloitti toiminnan 2008, noin 15 vuotta alkuperäisestä aikataulusta jäljessä. Rubbian UA1 oli tulevien suurprojektien malli, ja CERN säilytti paikkansa maailman johtavana hiukkasfysiikan laboratoriona.

Taubesin kolmen näytöksen moraalinäytelmässä (ehkä Hollywoodin nyrkkeilyelokuva olisi lähempi vertailukohta) Nobelin palkinto on Rubbian huippukohta. Sen jälkeen on vuorossa sarjan epäonnistuminen-menestys-rappio kolmas osa. Rubbia oli pelannut uhkapeliä ja voittanut, ja hän jatkoi kovilla panoksilla: nyt kohteena olivat skvarkit ja muut supersymmetriset hiukkaset. Ollessani CERNissä 20 vuotta myöhemmin tälle vieläkin naureskeltiin: ”Rubbia on löytänyt skvarkit – kysy vain häneltä!”.

On yllättävää, miten epäillen supersymmetriaan aluksi suhtauduttiin. Kun LHC käynnistyi 2008, supersymmetria oli sitä vastoin noussut keskeiseksi uuden fysiikan vaihtoehdoksi – vaikka siitä ei ollut 25 vuoden aikana näkynyt jälkeäkään.

Idealla oli omat vakaumukselliset tai opportunistiset kannattajansa jo varhain. Kirjassa yksi esimerkki edellisistä on John Ellis, jonka Taubes kastaa supersymmetrian evankeliumin profeetaksi (Ellis lienee tästä imarreltu). Hän löi jo vuonna 1983 vetoa, että supersymmetria löytyy heinäkuuhun mennessä. Vaikka näin ei käynyt, supersäieteorian nousu vuonna 1984 antoi idealle nostetta.

On hauska huomata muitakin tuttuja hahmoja. Ylimielinen teoreetikko Alvaro De Rújula kuulostaa aivan itseltään nauraessaan supersymmetrialle, sitten hypätessään sen kelkkaan, ja lopulta jättäessään sen taakseen ennen monia muita. Erityisen vakavana näyttäytyy Jack Steinberger, joka oli Rubbian ohjaaja ja yhteistyökumppani, ja myöhemmin ampui alas tämän perättömiä väitteitä. Toisin kuin moni muu, hän pitäytyi päätöksessään olla enää työskentelemättä Rubbian kanssa.

Kirjasta hieman loppuu puhti Taubesin seuratessa päivä päivältä miten UA1-ryhmä jatkaa hurjaa tahtia supersymmetrian perässä. Yksi Nobel ei ollut tarpeeksi, Rubbia halusi voittaa niin paljon, että näki datassa jotain mitä ei ole olemassa, ja väitti ryhmän tehneen löydön.

Rubbia oli kuitenkin haalinut kokeeseen kriittisiä ja omanarvontuntoisia tutkijoita, ja kokoonpanon vaihtuvuus takasi sen, että ulkopuolinen kritiikki siirtyi kokeen sisälle. Itsevaltiaan ote lipsui, kun tutkijat eivät suostuneet vastoin näyttöä tukemaan hänen väitteitään, eivätkä lähimmätkään yhteistyökumppanit pysyneet hänen puolellaan. Rubbiasta tosin tuli kirjan julkaisemisen jälkeen vuonna 1989 CERNin johtaja, että yhteisöllisesti hän kyllä menestyi.

Taubes maalaa tunnistettavan kuvan CERNin epämuodollisesta kulttuurista räävittömine joulunäytelmineen, missä estotta pilkataan arvostetuimpien tutkijoiden rakkaimpia ideoita ja surkeimpia floppeja. Taubes ei romantisoi tieteen tekemistä, ja antaa lukijan vetää omat johtopäätöksensä.

Nykyään työkulttuuri on erilainen ja data-analyysit ovat huolellisempia. Toisaalta ilmiöt ovat monimutkaisempia ja kokeita tehdään enemmän, joten mahdollisuus tilastollisille sattumille on isompi. Kokeiden OPERA ja BICEP2 esimerkki osoittaa, että kiihdytinten ulkopuolella kunnianhimo vie tutkijoita vieläkin harhaan.

Kirja monelta osin näyttää, miten tieteen tekeminen on joskus kaukana ihanteesta, ja miten tutkimusta tehdessä on epävarmaa mikä toimii ja ketkä jäävät tyhjin käsin. Samalla Taubesin kertomus kuitenkin osoittaa, että tiedeyhteisön kriittinen lähestymistapa toimii: signaali suodatetaan kohinasta, ja oikeat tulokset erotetaan vääristä.

7 kommenttia “Inhimillinen komedia”

  1. Cargo sanoo:

    Mikä siitä supersymmetriasta tekee tai on tehnyt niin houkuttelevan idean, että niin monet tutkijat ovat heittäneet työuransa sen varaan? Jos von Neumann vitsaili ylimääräisistä parametreista ja kokeellisten mallien sovittamisesta, niin vastaavalla tavalla voitaisiin vitsailla ylimääräisistä symmetrioista ja teoreettisista yhtenäisteoriosta. Ellei Eusa ole vielä varannut nimeä, niin seuraava teoreettinen muoti-ilmiö lienee sateenkaarisiltadualismi 🙂

  2. Lentotaidoton sanoo:

    Yritin etsiä manittua opusta kirjaston (Vaski) repertuaarista, mutta ei löytynyt. Sen sijaan löytyisi skribentin ao opuksia kirjastosta. Kaveri näyttääkin tosiaan olevan aika monipuolinen ”huuliveikko”. Mm tällaisia on Taubes väsännyt:

    Miksi lihomme ja mitä voimme asialle tehdä
    Good calories, bad calories : fats, carbs, and the controversial science of diet and health
    The case against sugar
    The case for Keto : the truth about low-carb, high-fat eating
    The case against sugar

    Mitä tämä Nobel Dreams kustantaa kirjakaupassa?

    1. Syksy Räsänen sanoo:

      Ostan tällaiset vanhat kirjat yleensä Ebaystä. Näyttää olevan Nobel Dreamsia vielä vajaan 30 punnan hintaan.

  3. Erkki Kolehmainen sanoo:

    Tieteen suurnimien joukossa on originelleja, jotka lähipiirilleen saattavat olla hankalia. Heidän motivaationsa voi olla ehtymätön kunnianhimo ja ongelmansa neuvottelukyvyttömyys. Itse ihailen Bruno Pontecorvoa, joka teki radikaalin ratkaisun loikkaamalla NL:on v. 1950 Stalinin vielä eläessä! BP oli kiinnostunut neutriinoista ja ennusti neutriinoiden oskillaation. Venäjällä jaetaan edelleen BP-palkintoa alan huippututkimuksesta. Olen tavannut kolme nobelistia: Herbert C. Brown, Richard R. Ernst ja Kurt Wuethrich. Heistä jenkki Brown oli ”omalaatuisin”!

  4. Kari Saarinen sanoo:

    Kiinnostuin niin paljon kirjoituksesta että tilasin kirjan.

    Onnistuin löytämään sen tietokirja välittävästä Finn-Scholar nettidivarin valikoimista eikä se maksanut kuin 12 €.

    Itselleni on vielä elävästi jäänyt mieleen kuva jossa välibosonien löytäjät, Carlo Rubbia yhdessä Simon van der Meerin kanssa nostavat maljoja Cernin parvella saatuaan tiedon vuoden 1984 Nobelin fysiikanpalkinnon myöntämisestä.

    Nyt pääsen mukaan myötäelämään noita kiihkeitä hetkiä Gary Taubesin kirjaa lukemalla.

    1. Syksy Räsänen sanoo:

      Mukava kuulla.

      Itse tilaan kirjoja myös sivustolta https://www.antikvaari.fi/ .

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Schrödingerin raketti

21.3.2023 klo 22.57, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Toisinaan kysytään, miksi pitäisi löytää teoria, joka yhdistää yleisen suhteellisuusteorian ja kvanttifysiikan, viimeksi edellisen merkinnän kommenteissa. Syy on se, että teoriat ovat ristiriidassa keskenään.

Kvanttifysiikassa hiukkaset (ja siten kaikki aine) ovat epämääräisiä. Tämä tarkoittaa sitä, että hiukkasella ei ole tiettyä paikkaa, on vain todennäköisyysjakauma sille, mistä hiukkanen löytyy.

Tunnettu esimerkki on Erwin Shrödingerin ajatuskoe kissasta, joka on suljettu laatikkoon myrkkykapselin kanssa. Jos kapselin vieressä oleva radioaktiivinen hiukkanen hajoaa, kapseli rikkoutuu ja kissa kuolee. Hiukkasen hajoamista kuvaa kvanttifysiikka: hiukkanen ei ole hajonnut eikä ollut hajoamatta, on vain todennäköisyys sille, että se olisi hajonnut. Niinpä kissakaan ei ole elossa eikä kuollut, vaan sillä on todennäköisyys kumpaankin.

Yleisen suhteellisuusteorian mukaan gravitaation lähteenä toimii aine. Jos aineen tila on epämääräinen, siten myös gravitaatio on epämääräinen. Yleisessä suhteellisuusteoriassa kuitenkin sekä aine että gravitaatio eivät ole epämääräisiä vaan määrättyjä, kuten Newtonin klassisessa mekaniikassa.

Yksi yritys ratkoa tätä gravitaation ja kvanttifysiikan ristiriitaa tunnetaan nimellä semiklassinen gravitaatio.  Sana semiklassinen viittaa siihen, että ainetta tarkastellaan kvanttimekaanisesti mutta aika-avaruutta ei. Gravitaation lähteenä ei ole suoraan aineen ominaisuudet (jotka ovat epämääräisiä), vaan keskiarvo aineen ominaisuuksien todennäköisyysjakaumasta. Asiaa voi havainnollistaa raketilla.

Ajatellaan avaruudessa kulkevaa rakettia, jonka ohjaamossa on radioaktiivinen hiukkanen. Kun hiukkanen hajoaa, siitä lähtevä valo menee 50% todennäköisyydellä oikealle ja 50% todennäköisyydellä vasemmalle. Jos ohjausjärjestelmä on kytketty siten, että se kääntää raketin sen mukaan minne hajoamisessa syntyvä valo menee, niin raketin rata on epämääräinen kuin kissan elämä. Myös raketin synnyttämä gravitaatiokenttä on epämääräinen: se on 50% todennäköisyydellä kallellaan vasemmalle ja 50% todennäköisyydellä oikealle.

Tässä tapauksessa keskiarvo on hyvin erilainen kuin mikään toteutunut vaihtoehto. Keskiarvo on se, että raketti menee suoraan, mutta kun raketti havaitaan, se löytyy joko oikealta tai vasemmalta. Vastaako gravitaatio keskiarvoa vai näkemäämme vaihtoehtoa? Vuonna 1981 Don Page ja Charles Don Geilker testasivat asiaa kokeellisesti.

Page ja Geilker rakensivat systeemin, joka synnyttää satunnaislukuja kvanttimekaanisesti, sijoittivat kappaleita lukujen mukaan, ja mittasivat kappaleiden gravitaatiota. Tuloksena oli, että gravitaatio vastasi vain havaittua vaihtoehtoa, ei vaihtoehtojen keskiarvoa. He päättelivät, että semiklassinen gravitaatio ei kuvaa todellisuutta, vaan gravitaatiota pitää käsitellä kvanttifysikaalisesti.

Tutkimuksen heikko kohta on se, että Page ja Geilker olettivat, että kaikki vaihtoehdot toteutuvat, vaikka näemme vain yhden. Tämä tunnetaan kvanttimekaniikan monimaailmatulkintana. Ei tiedetä onko tulkinta oikein: se miten kvanttimekaniikan todennäköisyydet pitäisi ymmärtää on yksi fysiikan isoimpia avoimia kysymyksiä (lisää aiheesta täällä, täällä ja täällä).

Voi olla, että monimaailmatulkinta on väärin, ja näkemämme vaihtoehto on ainoa mikä toteutuu: kun systeemiä havaitaan, todennäköisyys tiivistyy sen ympärille. Tätä kutsutaan romahdukseksi. Silloin Pagen ja Geilkerin kokeessa satunnaislukugeneraattori tuottaa vain yhden tuloksen, jonka mukaan massat asetetaan vain yhteen paikkaan. Ei ole toista maailmaa, jossa Page ja Geilker pistävätkin ne eri asentoon. Tässä tapauksessa mittaus ei kerro semiklassisesta gravitaatiosta mitään, tarvitaan erilainen koe.

Jos vain yksi vaihtoehto toteutuu, niin todennäköisyysjakauma muuttuu äkillisesti romahduksessa. Ensin raketti on keskimäärin keskellä, mutta kun todennäköisyys tiivistyy, keskiarvo hyppää nopeasti joko oikealle tai vasemmalle. Jos kaikki vaihtoehdot ovat kaukana keskiarvosta, kuten raketin tapauksessa, muutos gravitaatiokentässä on iso.

Nykyään laboratoriossa osataan tehdä kvanttisysteemejä, joissa on kaksi vaihtoehtoa, jotka ovat kaukana toisistaan.  Esimerkiksi valonsäde voidaan lähettää siten, että sillä on 50% todennäköisyys mennä jommastakummasta putkesta, joiden väli on yli puoli metriä. Jos pystyttäisiin seuraamaan valon aiheuttamaa gravitaatiota, voitaisiin katsoa muuttuuko se valon tilan romahtaessa ja keskiarvon siirtyessä keskeltä toiseen putkeen.

Ajatuskokeen rakettiin verrattuna tämän todellisen koejärjestelyn ongelma on se, että valonsäteen gravitaatio on erittäin heikko, koska siinä on niin vähän energiaa. Rakettia –tai edes Pagen ja Geilkerin käyttämiä puolentoista kilon painoja– on taasen vaikea eristää ympäristöstä niin, että todennäköisyys ei heti romahtaisi. On ehdotettu kokeita, missä saadaan kompromissi ison massan ja hyvän eristyksen välillä. Toistaiseksi teknologia ei ole riittänyt niiden toteuttamiseen.

Idea on kuitenkin kiinnostava esimerkki siitä, miten kvanttifysiikan ja gravitaation yhdistäminen voi liittyä kvanttimekaniikan todennäköisyyden ymmärtämiseen. Yleensä niitä käsitellään erillisinä ongelmina.

Toistaiseksi ainoa fysiikan osa-alue, missä minkäänlaisen kvanttigravitaation ennusteita on onnistuneesti testattu ja saatu uutta tietoa on kosminen inflaatio. Siinä ei käytetä semiklassista gravitaatiota. Sen sijaan sekä aineen että aika-avaruuden pieniä epätasaisuuksia käsitellään kvanttifysikaalisesti. Näiden epätasaisuuksien kvanttivärähtelyistä syntyvät rakenteen siemenet, jotka näkyvät nykyään galaksien jakaumassa ja kosmisessa mikroaaltotaustassa. Vielä ei kuitenkaan ole nähty suoria merkkejä siitä, että rakenteen siemenet ovat todella syntyneet kvanttifysikaalisesti, ja gravitaation ja kvanttifysiikan tutkiminen eri näkökulmista saattaa tuottaa yllätyksiä.

21 kommenttia “Schrödingerin raketti”

  1. kalmukki99 sanoo:

    Valon aiheuttamaan painovoimaan liittyen; mitä mieltä olette tästä tutkimuksesta?www.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0375960100002607%3Fvia%253Dihub&key=e462d95c044c7c2ed195b64332cc28a45a9f5ef0

    1. Syksy Räsänen sanoo:

      Linkki ei toimi.

        1. Syksy Räsänen sanoo:

          Tämä on rutiinilasku yleisessä suhteellisuusteoriassa. Ei siitä sen enempää.

          1. kalmukki99 sanoo:

            kiitos!

            entä näkemyksenne; tästä aiheesta?

            https://ntrs.nasa.gov/api/citations/20110015936/downloads/20110015936.pdf

            en kysele enempää.

          2. Syksy Räsänen sanoo:

            En rupea lukemaan. Alcubierren poimuajo on 29 vuotta vanha, tunnettu ja kiinnostava teoreettinen tapa matkata yleisen suhteellisuusteorian puitteissa nopeasti aika-avaruudessa. Se on kuitenkin kaukana nykyteknologian tuolla puolen (jos on ylipäänsä edes käytännössä mahdollinen).

            Olen käyttänyt Alcubierren poimuajoa harjoitustehtävänä yleisen suhteellisuusteorian kurssillani:
            https://www.mv.helsinki.fi/home/syrasane/gr2022/gr22hw10.pdf

  2. Eusa sanoo:

    Kaukana käymättömien maisemien takana asustelee tieteellinen väestö, joka juuri ja juuri havaitsee meidän tähtemme ja päättelee eksoplaneetoiksi muutamia. Tiiviin seurannan päätteksi he tulevat johtopäätökseen, että kyseessä on 6…10 planeetan järjestelmä saaden tilastollisen todennäköisyysjakauman planeettajärjestelmän paikka-liikemääräavaruudelle simuloiden hermiittisten operaattorien avulla tilavektorien pistetuloja.

    Miten tämä todennäköisyysjakauma planeettojen löytymisestä eroaa fundamentaalisti kvanttimekaniikan epämääräisyyden todennäköisyysjakaumasta?

  3. Cargo sanoo:

    ”Voi olla, että monimaailmatulkinta on väärin, ja näkemämme vaihtoehto on ainoa mikä toteutuu: kun systeemiä havaitaan, todennäköisyys tiivistyy sen ympärille.”

    Eikö tuollainen tiivistymäkin ole vain jokin todennäköisyysjakauma, joka sitten on se ”joka toteutuu”? Populaarikirjallisuudesta saa sellaisen käsityksen, että havaitseminen tuottaa jonkin idealisoidun täsmällisen tulosen, mutta onko sellainen edes fysikaalisesti mahdollista? Herääkin kysymys, että miten monimaailmatulkinta tulkitsee mittaustarkkuutta? Meinaan vaan, että jos ideaalit mittaukset jäävät jo periaatteessa epämääräisyyden verhon taakse, niin eikö tämä psykologisesti vetoava monimaailmatulkinta lennä oikopäätä semiklassisten ideoiden roskakoriin?

    ”Jos pystyttäisiin seuraamaan valon aiheuttamaa gravitaatiota, voitaisiin katsoa muuttuuko se valon tilan romahtaessa ja keskiarvon siirtyessä keskeltä toiseen putkeen.”

    Mutta eikö se ole jo etukäteen selvää, ilman kalliita kokeitakin, että avaruuden kaarevuus on siellä, missä hiukkanen on määrätyssä/tiivistyneessä tilassa? Ja jos aika-avaruus on määrätyissä tiloissa olevien suurten massojen seuraus, niin hentoiset fotonit todennököisesti aiheuttavat epämääräisyydellään alta kaiken mittaustarkkuuden olevan muutoksen paikalliseen kaarevuuteen. Vielä jos oletetaan, että mahdollisimman tasaiseksi oletettu aika-avaruus jotenkin elää kaukaisten massojen kaoottisten liikkeiden mukaan, niin eivätkö tuollaiset kokeet ole ns. hölmöläisten hommaa?

    1. Syksy Räsänen sanoo:

      Epämääräisyys ei estä ideaalisia mittauksia, missä todennäköisyys romahtaa vain yhteen pisteeseen, eli suureen arvo määritetään äärettömällä tarkkuudella. Kvanttimekaniikan ominaisuudet tosin estävät sen, että mittauksessa ei voida määrittää tiettyjä suureita (kuten hiukkasen paikkaa ja nopeutta) samaan aikaan mielivaltaisen tarkasti.

      Monimaailmatulkinnasta on erilaisia versioita, mutta yksinkertaisimmillaan kyse on siitä, että todennäköisyys ei koskaan romahda mihinkään. Selitettävänä on silloin se, miksi meistä näyttää kuin niin kävisi. Tätä ongelmaa ei ole onnistuttu ratkaisemaan – havaitsijan ja havaitsemisen kuvaaminen on monimutkaista.

      ”Mutta eikö se ole jo etukäteen selvää, ilman kalliita kokeitakin, että avaruuden kaarevuus on siellä, missä hiukkanen on määrätyssä/tiivistyneessä tilassa?”

      Ei. Näin ei ole sen enempää inflaatiossa (missä aika-avaruuden kaarevuus on epämääräinen kuten ainekin) kuin semiklassisessa gravitaatiossa (missä aika-avaruuden kaarevuus seuraa keskiarvoa riippumatta siitä millainen aineen tila on).

      1. Cargo sanoo:

        Jos kvanttigravitaatio on olemassa, niin mitkä mahtavat olla aika-avaruuden konjugaattimuuttujat? Tai ylipäätään, onko yleisessä suhteellisuusteoriassa klassisen mekaniikan tilamuuttujiin X ja P verrattavia muuttujapareja, jotka voitaisiin kvantisoinnissa kytkeä toisiinsa?

        1. Syksy Räsänen sanoo:

          Yleisen suhteellisuusteorian tällainen muotoilu esitettiin vuonna 1959, ja tunnetaan nimellä ADM-formalismi, Arnowittin, Deserin ja Misnerin mukaan. Muitakin ehdotuksia sopiviksi muuttujiksi on esitetty. Esim. silmukkakvanttigravitaation lähtökohtana on eri kanonisten muuttujien valinta.

  4. Syksy Räsänen sanoo:

    Huomiona joihinkin kommentteihin, joita ei ole julkaistu: valon gravitaatiota on käsitelty monissa tieteellisissä artikkeleissa noin sadan vuoden ajan. Tämän blogin kommenttiosio ei ole paikka postata linkkejä noihin artikkeleihin.

  5. Lentotaidoton sanoo:

    Olen joskus esittänyt David Deutschin monimaailmatulkinnan kokeen:

    Hommaan tarvitaan ensinnäkin täyden tietoisuuden omaava tietokone, mikä jo yksinään on suhteellisen mahdoton vaatimus. Tietokone tekee mittauksia koetilanteesta. Mutta kvanttimekaniikan sääntöjen mukaan sen on osattava pyyhkiä muististaan näkemänsä (kuten kaksoisrakokokeissakin tieto hiukkasen reitistä pilaa interferenssin). Tämän jälkeen tehdään maailmojen välillä interferenssikoe. Jos tulos on (useiden kokeiden jälkeen) 50/50 1 tai 0, niin köpistulkinta on oikea, jos tulos on aina 1 on monimaailmatulkinta oikea.

  6. Miguel sanoo:

    ”Yleisen suhteellisuusteorian mukaan gravitaation lähteenä toimii aine. ”

    Joskus muistan, että olet maininnut blogissasi, että energia muovaa aika-avaruutta siinä kuin aine. (Pimeä energia?) Ja toisaalta kerroit, että energia ja massa eivät ole sama asia. Ja alkeishiukkaten massa taidetaan ilmoitta energiana. Jotenkin tuntuu, että niillä pitäisi olla yhteinen nimittäjä

    1. Syksy Räsänen sanoo:

      Aine tarkoittaa tuossa virkkeessä kaikkea mikä ei ole aika-avaruutta. Se siis pitää sisällään kaikki hiukkaset ja kentät: elektronit, valon, pimeän aineen, pimeän energian jne..

      (Hämmentävää kyllä, joskus kosmologiassa sana aine viittaa vain massiivista hiukkasista koostuvaan aineeseen, ei valoon eikä pimeään energiaan.)

  7. Kari Ojala sanoo:

    Hyvä puoli näissä kvanttimekaniikan eksoottisia ilmiöitä koskevissa laboratoriokokeissa on se, että vaikka ollaan tieteen eturintamalla, koelaitteistot ovat monta kertaluokkaa halvempia kuin massiiviset hiukkaskiihdyttimet tai avaruusteleskoopit. Tämä antaa mahdollisuuden myös pienempien yliopistojen laitoksille tehdä Nobel-tason löytöjä, jos rohkeutta ja osaamista sellaiseen kokeelliseen tutkimukseen löytyy. Teorioita voidaan aina kehitellä, mutta aika ajoin ne on hyvä ankkuroida myös kokeelliseen (reaali)maailmaan. Hyvänä esimerkkinä Otaniemessä tehtävä kvanttitietokoneita koskeva perus(?)tutkimus.

    Tämän päälle vielä yksi kysymys koskien tyhjiöstä syntyviä hiukkas-antihiukkaspareja, jotka ”annihiloituvat välittömästi”. Oletan että ne ovat olemassa nollaa pidemmän ajanjakson. Tällöin pitäisi olla mahdollista, että esim. hiukkaskiihdyttimen hiukkassuihkun yksittäinen hiukkanen osuu syntyvän parin toiseen osapuoleen ja sysää sen pois annihilaation ulottuvilta. Tällaisen törmäyksen ns. vaikutusala on varmaan hyvin pieni, mutta oletan että ilmiö olisi havaittavissa ja yleisempi tapahtuma kuin esim. Higgsin hiukkasen tuottaminen. Käytännön hankaluus lienee siinä, että tällaisia törmäyksiä tapahtuisi koko kiihdytinrenkaassa mutta harvoin siellä missä kiihdyttimen detektoriasemat voisivat niitä havaita. Onko tätä aihetta jossain jo pohdittu tai tutkittu?

    1. Syksy Räsänen sanoo:

      Tosiaan: hyvä esimerkki tästä on viime vuonna Nobelilla palkittu tutkimus.

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/lomittuneilla-fotoneilla/

      Virtuaalisten hiukkasten vaikutuksen huomioon ottaminen on monimutkaisin osa ennusteiden tekemistä kiihdyttimille, ja siinä pitää laskea tuhansia erilaisia mahdollisuuksia. Tällaiset tyhjästä syntyvät hiukkas-antihiukkasparit eivät kuitenkaan käyttäydy samalla tavalla kuin oikeat hiukkaset. Erityisesti oikea hiukkanen ei voi törmätä niihin ja singota eri suuntaan, koska sen liikemäärä ja energia säilyy vuorovaikutuksissa virtuaalisten hiukkasten kanssa.

      Virtuaalisia hiukkasia voikin olla havainnollisempaa ajatella siten, että ne ovat tapa kuvata oikeiden hiukkasten vuorovaikutuksia keskenään.

      Vanha kirjoitus virtuaalisista hiukkasista:

      https://web.archive.org/web/20160415121751/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/naennainen_todellisuus

  8. Lentotaidoton sanoo:

    Itse käsitän näin: säilymislakeja tulee aina noudattaa. Virtuaalihiukkaset: niiden energioiden summan tulee olla nolla. Feynmannin diagrammit eivät edusta fysiikalista todellisuutta. Tyhjössä ei synny eikä tuhoudu mitään ”pallukoita”. Ne ovat vain tyhjön kirjanpitovälineitä. Virtuaalipartikkeleita ei ”oikeesti” esiinny, kenttiä esiintyy.

    Vaikka fotonit ovat toistensa antipartikkeleita, niiden täytyy ilmaantua pareissa, koska niillä on impulssimomentti. Yksittäisellä fotonilla ei ole koskaan nolla impulssimomenttia (eli niiden on ilmestyttävä pareittain vastakkaisin impulssimomentein). Fotoneilla ei ole itseisvuorovaikutusta.

    Mielestäni koko sana ”virtuaalihiukkanen” oli aikoinaan suuri kömmähdys (kuten oli sanahirviö: the God particle). Useimmat (ainakin diletantit) käsittävät tosiaan kyseessä olevan ”jonkinlaiset” hiukkaset, ja Feynmannin (sinänsä kätevät) diagrammit vielä lisäävät tavisten väärinymmärrystä.

    1. Syksy Räsänen sanoo:

      Näinhän se on.

  9. Martti V sanoo:

    Yhden hiukkaen gravitatiovaikutus on mitätön , joten mitattavissa olevat ilmiöt ovat käytännössä aina keskiarvoistumia suuremmista hiukkasklimpeistä. Kvanttimekaniikan mukaan olisi loogista, että mittaushetki määrää yksittäisen hiukkasen aiheuttaman gravitaation. Einstein olisi tästä varmaan eri mieltä – aika-avaruus ei ole epämääräinen.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

Mikä menee pieleen

28.2.2023 klo 11.54, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Edellisessä merkinnässä kirjoitin siitä, että fyysikot eivät usein viitsi ruveta julkisesti arvostelemaan väärinä pitämiään ideoita. Poikkeuksiakin on. Kommenteissa minulta kysyttiin teoreetikko Sabine Hossenfelderin videosta What’s Going Wrong in Particle Physics? (This is why I lost faith in science.). Koska Hossenfelderista on tullut näkyvä hiukkasfysiikan kriitikko, voi olla aiheellista kommentoida missä hänen arvostelunsa osuu oikeaan ja miten se menee harhaan.

Hossenfelderin mukaan hiukkasfysiikka ei enää ole tiedettä, ja hän vertaa hiukkasfyysikoita nigerialaisten huijauskirjeiden lähettäjiin. Hossenfelder on vuosia arvostellut hiukkasfysiikkaa, ja hän on kirjoittanut aiheesta kirjan Lost in Math: How Beauty Leads Physics Astray.

Hossenfelderin mukaan hiukkasfysiikka alkoi mennä raiteilta 1970-luvulla, kun Standardimalli oli saatu kasaan. Sen jälkeen hiukkasfyysikot ehdottivat Standardimallin laajentamista supersymmetrialla, suurella yhtenäisteorialla, aksioneilla ja muilla teoreettisilla ideoilla, kuten oikeakätisillä neutriinoilla ja toisilla pimeän aineen ehdokkailla.

Sittemmin Standardimalli on 50 vuoden ajan kuvannut oikein kaikkia hiukkaskiihdyttimissä tehtyjä kokeita. Koska laajennusten ennustamia uusia hiukkasia ei ole löytynyt, Hossenfelder vertaa niitä isojalkaan, pohjoisamerikkalaisen kansanperinteen kuvitteelliseen eläimeen, jonka olemassaoloa on yritetty todistaa erilaisilla huijauksilla.

Hossenfelder sanoo, että hiukkasfyysikot eivät opi virheistään: kun kokeet osoittavat jonkun hiukkasfysiikan mallin ennusteet vääriksi, he vain muuttavat mallia siten, että sen ennusteet ovat juuri nykyisten kokeiden ulottumattomissa, mutta seuraavien tavoitettavissa.

Hänen mukaansa syy hiukkasfysiikan surkeaan tilaan on se, että hiukkasfyysikot yrittävät ratkaista ongelmia, jotka eivät oikeasti ole ongelmia. Hossenfelder listaa videossa ja blogissaan, mitkä ongelmat ovat hänen mielestään oikeita ja mitkä keksittyjä. Hossenfelderin mukaan fysiikassa tapahtuu edistystä ainoastaan kahta reittiä: joko teoria ja havainnot ovat ristiriidassa, tai teoriassa on sisäinen ristiriita. Vain ristiriitojen tutkiminen vie tiedettä eteenpäin.

Hossenfelder on oikeassa, että hiukkasfyysikot tuottavat paljon malleja, joiden ainoa motivaatio on se, että niitä voidaan testata lähitulevaisuuden kokeissa. Samoja malleja käytetään sitten osoituksena siitä, että noilla kokeilla on kiinnostavaa tutkittavaa, mikä on harhaanjohtavaa mainontaa. On myös totta, että hiukkasfysiikka on kriisissä koska CERNin Large Hadron Collider (LHC) ei ole nähnyt merkkiäkään Standardimallin tuonpuoleisesta fysiikasta, eivätkä fyysikot ole aina reagoineet tähän rehellisesti. Olen esimerkiksi kuullut erään hyvin tunnetun tutkijan puolustautuvan väittämällä, että LHC:n ei odotettukaan näkevän mitään uutta, mikä on räikeää historian vääristelyä.

Hossenfelder kuitenkin pistää ideoita kasaan liian suurella lapiolla, eivätkä hänen sääntönsä siitä, miten tiedettä pitäisi tehdä vastaa sitä, miten tiede on todellisuudessa edistynyt. (Ennen LHC:n käynnistymistä Hossenfelder esitti, että LHC ei löydä edes Higgsin hiukkasta.)

Kun Standardimalli 1970-luvulla kehitettiin, oli erilaisia ideoita siitä, millaisia hiukkasia ja vuorovaikutuksia on olemassa. Etukäteen ei tiedetty, että juuri sittemmin Standardimallina tunnetuksi tullut teoria olisi oikea, tai että sen pätevyysalue on niin laaja. Ei siis ollut syytä olla esittämättä vaihtoehtoja ja laajennuksia.

Hossenfelder niputtaa yhteen eri laajennukset, mutta esimerkiksi pimeän aineen ja supersymmetrian tilanne on hyvin erilainen. Supersymmetria on teoreettinen idea, jolle ei ole löytynyt tukea havainnoista. Pimeä aine on havaintoihin perustuva idea, joka on 90 vuotta selittänyt ja ennustanut lukuisia havaintoja.

Hossenfelder on monissa yhteyksissä arvostellut pimeää ainetta, ja hänen mukaansa havainnot voisi yhtä hyvin selittää muuttamalla gravitaatiolakia. Kukaan ei kuitenkaan ole pystynyt esittämään tällaista teoriaa, joka selittäisi kaikki havainnot, jotka pimeä aine selittää, saati ennustaisi oikein uusia havaintoja. Hänen mukaansa on myös turha tutkia teoreettisia pimeän aineen malleja, koska havaintojen selittämiseksi ei tarvitse tietää millainen hiukkanen on kyseessä.

Fysiikan tavoitteena ei kuitenkaan ole vain selittää havaintoja, vaan käyttää havaintoja apuna maailman ymmärtämiseen. On aiheellista arvostella (kuten olen itsekin tehnyt) sitä, että vaikka pimeän aineen hiukkasiksi ehdotettuja nynnyjä ei ole nähty kokeissa kuten olisi pitänyt, ei ole silti todettu, että idea oli väärin. Mutta on muita kelpoisia pimeän aineen ehdokkaita, esimerkiksi oikeakätiset neutriinot. Kun havainnot osoittavat, että on olemassa uusia hiukkasia (tai mustia aukkoja), on mielekästä tutkia, mitä ne voivat olla ja miten niitä voisi havaita.

Hossenfelder arvostelee kokeiden perustelemista sillä, että ne saattavat löytää jotain odottamatonta, koska hänen mukaansa niin ei tapahdu. Tämä ei ole totta. Fysiikan historiassa on lukuisia esimerkkejä siitä, miten kokeet ovat tuottaneet tärkeää tietoa asioista, mitä niitä ei ole suunniteltu tutkimaan.

Hyvä esimerkki on Hossenfelderin arvostelemien suurten yhtenäisteorioiden etsiminen. Niiden ennustaman protonin hajoamisen havaitsemiseksi rakennettiin kokeet Kamiokande ja Super-Kamiokande. Kokeet eivät nähneet protonin hajoamista, mutta niiden havainnot neutriinoista olivat keskeisiä sen osoittamisessa, että neutriinoilla on massa. Neutriinoiden massat olivat ensimmäinen Maan päällä havaittu todiste fysiikasta Standardimallin tuolta puolen, ja niistä on myönnetty kaksi Nobelin palkintoa.

Kokeen lisäksi myös neutriinoiden massojen teoreettinen pohdinta olisi Hossenfelderin kriteereillä ollut turhaa, koska niitä ei ennen Kamiokanden ja Super-Kamiokanden havaintoja tarvittu ratkaisemaan mitään selvää ristiriitaa. Todellisuudessa neutriinojen massojen teorian tunteminen etukäteen oli avain kokeen tulosten ymmärtämiseen.

Myös teoreettisella puolella edistystä on saatu myös keskittymällä asioihin, jotka eivät ole ristiriitoja. Yksi esimerkki on yleisen suhteellisuusteorian löytäminen 1900-luvun alkupuolella. Tutkimuksen ongelmana oli kyllä se, että Newtonin gravitaatioteoria ja suppea suhteellisuusteoria ovat ristiriidassa keskenään. Ratkaisu kuitenkin löytyi keskittymällä asioihin, jotka eivät ole ristiriitoja.

Yksinkertaisin tapa rakentaa suhteellisuusteorian kanssa sopusoinnussa oleva gravitaatioteoria on ottaa mukaan gravitaatiota kuvaava kenttä, samaan tapaan kuin sähkömagnetismia kuvaa sähkömagneettinen kenttä. Suomalainen fyysikko Gunnar Nordström ensimmäisenä ehdottikin tällaista teoriaa, joka kuitenkin osoittautui vääräksi. Sen sijaan Albert Einstein pääsi oikealle reitille yrittämällä ratkaista sen, miksi kaikki kappaleet putoavat samaa tahtia. Hossenfelderin kriteereillä tätä ei olisi pitänyt miettiä, koska siihen ei liity ristiriitaa.

Hossenfelder on tietoinen siitä, että tiede on edistynyt muutenkin kuin ristiriitojen kautta. Hän mainitsee esimerkkinä sen, että charm-kvarkin olemassaolo ennustettiin symmetrian ja kauneuden perusteella. Hän kuitenkin toteaa, että koska myöhemmin ymmärrettiin, että teorian matemaattinen rakenne vaatii charmin olemassaoloa, kyse oli ristiriidan ratkaisemisesta.

Tällainen argumentointi on ristiriidassa sen kanssa, että tarkoituksena on arvioida, millainen työ johtaa edistykseen. On mahdollista, että lopulta osoittautuu, että kaiken teorian mukaan oikeiden fysiikan teorioiden kaikki piirteet ovat välttämättömiä. Tämä ei kuitenkaan kerro mitään siitä, millä tavalla noita piirteitä kannattaa etsiä ennen kuin teoria on kädessä.

Olen aiemmin maininnut kosmisen inflaation esimerkkinä siitä, miten empiirisyydessä on kyse laajemmasta asiasta kuin ennustusten vertaamisesta havaintoihin. Hossenfelder listaa blogimerkinnässään kaksi kosmisen inflaation löytämiseen johtanutta ongelmaa esimerkkeinä asioista, joita ei kannata miettiä. Tämä havainnollistaa hänen lähestymistapansa puutteita.

Inflaatio on ollut hiukkasfysiikan hedelmällisin alue 1980-luvulta alkaen, ja tuonut sen yhteen kosmologian kanssa. Inflaatio on ennustanut havaintoja erinomaisesti ja johtanut teoreettiseen kehitykseen. Sen kautta on ensimmäistä kertaa onnistuneesti kokeellisesti testattu yleisen suhteellisuusteorian ja kvanttifysiikan yhteisiä ennusteita eli kvanttigravitaatiota. On muitakin hiukkasfysiikan alueita, kuten neutronitähtien rakenteen tutkiminen, joissa teoria ja havainnot ovat edistyneet yhdessä.

On tervettä että hiukkasfysiikan, kuten minkä tahansa tieteenalan, käytäntöjä arvostellaan yksittäistä artikkelia tai tutkimussuuntaa laajemmasta näkökulmasta, ja Hossenfelderin jotkut huomiot hiukkasfyysikoiden yhteisön ongelmista pitävät paikkansa. Hiukkasfysiikan ongelmat näkyvät siinäkin, että viiden vuoden kuluttua käynnistyvän LHC:n päivityksen HL-LHC jälkeisistä kiihdyttimistä ei ole tehty vielä päätöksiä. Muotivirtauksilla on myös hiukkasfysiikassa turhan iso merkitys, ja alan kauneuskäsityksiä on syytä arvioida uudelleen, kuten tapahtuukin.

Ei kuitenkaan ole taattua reseptiä siitä, mikä on hedelmällisin tapa tehdä tutkimusta. Tieteenfilosofit ovat tutkineet asiaa, ja Imre Lakatoksen jako edistyviin ja degeneroituviin tutkimusohjelmiin on hyödyllinen hiukkasfysiikankin osalta. Se ei kuitenkaan anna yksiselitteisiä vastauksia, ja edistys tulee usein yllättävistä suunnista.

44 kommenttia “Mikä menee pieleen”

  1. Eusa sanoo:

    Mitä mieltä olet sumeasta pimeästä aineesta? Selitysmallina se vaikuttaisi asettuvan ainehiukkasten ja muunnellun gravitaatiomallinnuksen ”puoliväliin”.

    Pohjimmiltaan sumea ainekenttä on kuin kuin kylmät itsevuorovaikuttamattomat hiukkaset, mutta niiden merkityksellinen identiteetti gravitaation kannalta ei ole pistemäinen vaan on levinnyt esim. fraktaalisesti muutamista valovuosista tuhansiin valovuosiin sumeina 4-eksitaatioina, (tensori-)skalaarikenttänä. Vaikutusta olisi pimeän aineen inervallien kokonaismäärällä aika-avaruusotoksessa – ei perinteisellä paikallistuvuudella.

    1. Syksy Räsänen sanoo:

      Kuvauksesi sumeasta pimeästä aineesta (fuzzy dark matter) ei ole oikein, eikä se vaihtoehtona asetu hiukkasten ja muokatun gravitaation puoliväliin. Kyse on hiukkasista siinä missä muussakin pimeässä aineessa, niiden energia vain on hyvin pieni ja siksi aallonpituus hyvin iso.

      Ei ole mitään erityistä syytä sille, että pimeän aineen hiukkasten massa olisi niin vähäinen kuin mitä sumea pimeä aine edellyttää, mutta se on yksi mahdollisuus. Olen kirjoittanut siitä hieman täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/totalitaristinen-periaate-ja-vanhan-ajan-romantiikka/

      Kun tämä liittyy vain heikosti blogimerkinnän aiheeseen, niin ei siitä tässä sen enempää.

  2. Jari Toivanen sanoo:

    ” On mahdollista, että lopulta osoittautuu, että kaiken teorian mukaan oikeiden fysiikan teorioiden kaikki piirteet ovat välttämättömiä.”
    Mitä näyttöä/vihjettä on siitä, että kaiken teoria on oikeasti olemassa? Kauneuden tavoittelu ei kelvanne vihjeeksi? Onko yhtä lailla mahdollista, että tarvitaankin kaksi tai useampi teorioita? Mitä vaikuituksia sillä olisi, jos osoittautuisi, että kaiken teoriaa ei ole olemassa?

    1. Syksy Räsänen sanoo:

      Joko on olemassa kaikkein perustavanlaatuisin fysiikan teoria, joka ei palaudu mihinkään muuhun ja josta kaikki muut teoriat ovat periaatteessa johdettavissa – eli kaiken teoria.

      Toinen mahdollisuus on se, että on äärettömästi aina vain tarkempia teorioita, eikä ole mitään lopullista teoriaa. Suurin osa fyysikoista (jotka asiaa edes pohtivat, mikä lienee pieni osa fyysikoista) ei pidä tätä luultavana, vaan ajattelee, että on olemassa kaiken teoria. Mitään todisteita kummankaan vaihtoehdon puolesta ei ole.

      Lisää kaiken teorioista:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/miksi-kaiken-teorialla-on-merkitysta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/aika-avaruuden-atomit/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaikenlaisia-selityksia/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaikki-tai-ei-mitaan/

  3. Kari Ojala sanoo:

    Melkoisen analyysin teitkin!
    Itselleni jäi Sabinen videosta mieleen kuva, joka yksinkertaisella tavalla havainnollistaa sen miten voidaan tuottaa jokseenkin ääretön määrä erilaisia teorioita, jotka ovat täysin yhteensopivia tähänastisten havaintojen kanssa, mutta tähänastisen havaintoalueen ulkopuolella teorioiden ennusteet voivat sitten divergoida kaikkiin mahdollisiin suuntiin.
    (Muistaakseni jossain Ursan lehdessä tai kirjassa mainittiin kerran eräs (kosmologiaan liittyvä?) teoreetikon ennuste, joka meni pieleen suunnilleen kertoimella 10 potenssiin 120. Liekö maailmanennätys ekstrapolointivirheessä?)

    Mahdollisista faasimuutosista puhumattakaan.

    Tarvitaan ehkä jotain enemmän kuin pelkkiä uusia matemaattinen teorioita, joita voidaan tosiaan muodostaa ääretön määrä.
    Teoreettiset fyysikot ovat tunnetusti erittäin taitavia matematiikassa ja alan koulutus myös edellyttää sitä.
    Einstein ei tiettävästi ollut kovin hyvä matematiikassa, mutta hän oli taitava tekemään ajatuskokeita, jotka olivat melkoinen yhdistelmä lennokasta mielikuvitusta ja rationaalista ajattelua. Esimerkkinä Einsteinin ajatusleikki siitä, millaista olisi ”ratsastaa” valonsäteellä. (Lukija on vapaa kokeilemaan. Mites se aikadilataatio toimikaan? Pysähtyykö aika? Tapahtuuko koko maailmankaikkeuden historia yhdessä silmänräpäyksessä (tai silmänräpäys ainakin siihen hetkeen asti kunnes fotonihevonen absorboituu johonkin)?)

    Hiukkaskiihdyttimet tuovat joskus mieleen tunnetun amerikkalaisen sananlaskun: ”if all you have is a hammer, everything looks like a nail”. Vastaavasti voidaan kysyä, tuleeko se mahdollinen ’Kaiken teoria’ sittenkään aivan kaikkea selittämään ja ennustamaan.

    1. Syksy Räsänen sanoo:

      Einsteinin oli taitava matematiikassa siten kuin fyysikot sitä käyttävät. Hänen asenteensa matematiikkaa kohtaan oli väheksyvä ennen kuin hän lähti kehittämään yleistä suhteellisuusteoriaa, joka on matemaattisesti hienostunut.

      Tuo mainitsemasi ”ennuste” viitannee tyhjön energiatiheyteen. Usein sanotaan, että hiukkasfysiikan teorioiden mukaan sen pitäisi olla 10^120 kertaa isompi kuin se arvo, mikä selittää havaitun maailmankaikkeuden kiihtyvän laajenemisen. Mitään tällaista ennustusta ei kuitenkaan ole. Nykyiset realistiset kvanttikenttäteoriat eivät pysty ennustamaan tyhjön energian arvoa ollenkaan.

      Kyseessä on retorinen liioittelu, jonka tarkoituksena on havainnollistaa sitä, miten yllättävältä laajenemisen kiihtymisen selittävä pieni tyhjän energian arvo tuntuu.

  4. Kari Ojala sanoo:

    Kiitokset vastauksista ja täsmennyksestä koskien tuota tyhjön energiatiheyttä.
    Ymmärrän pointin ”matematiikka siten kuin fyysikot sitä käyttävät”. 😀

  5. Miguel sanoo:

    Olitpa perusteellisesti perustellut! Tätä on varmaan kysytty jo monesti, mutta mikä on se fundamentaali asia, joka ”pakottaisi” gravitaation ja kvanttifysiikan yhteen. Esim. gravitaatio taitaa olla hyvin deterministinen yhtälö, se ei (kai) sisällä kvanttifluktuaatioita ja muuta.

    Toisaalta atomiytimen massasta suurin osa lienee vahvavuorovaikutusvoimia, mutta vaikka sillä ei ole mitään käytännön vaikutusta, niin se vaikutus ei ole nolla. Energia liittäisi gravitaation siihen?

    Ja kolmas kysymys, kun gravitaatioaaltoja on löydetty, ja puhutaan kentästä, niin mikä siellä oikein aaltoilee. Jos on aaltoja, niin kai pitäisi olla jotain, joka aaltoilee?

    1. Syksy Räsänen sanoo:

      Koska kvanttifysiikka ja gravitaatio ovat ristiriidassa keskenään (mm. mainitsemastasi syystä: yleinen suhteellisuusteoria on deterministinen, kvanttifysiikka ei). Niinpä jompikumpi tai molemmat ovat väärin – tai tarkemmin sanottuna niiden pätevyysalue ei ole rajaton. On siis olemassa teoria, josta ne molemmat ovat rajatapauksia.

      Gravitaatio ja kvanttifysiikka on jo onnistuneesti yhdistetty kosmisessa inflaatiossa, mutta vain hyvin rajoittuneessa tapauksessa.

      En ymmärrä kysymystä atomiytimestä.

      Gravitaatioaallot ovat aika-avaruuden värähtelyä. Ks. https://web.archive.org/web/20190505041031/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/nakymattomia_kuvia_vakivallasta

      1. Miguel sanoo:

        Tarkoitin, että jos energia ja massa ovat ekvivalentteja suhteellisuusteoriassa, niillä pitäisi olla joku yhteys tavalla tai toisella.

        1. Syksy Räsänen sanoo:

          Massa ja energia eivät ole sama asia, tilanne on hieman monimutkaisempi, tässä aiheesta ja gravitaatiosta hieman: https://web.archive.org/web/20170626090103/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/sidottujen_kimppujen_vetovoima

      2. Miguel sanoo:

        Ja tuo aika-avaruuden värähtely on kieltämättä vaikea ymmärtää. Helpompi ymmärtää jotain sähkömagneettisen kentän värähtelyä ja tunnettuja hiukkasia. Jos vesi väreilee, se palautuu vesimolekyyleihin jne. Mutta jos sanotaan, että aika-avaruus väreilee ilman ”hiukkasia” tai muuta ”värähtelijää”, niin onko se lopulta ”ajan väreilyä”, josta –
        siis ajan kulusta – on kosolti näyttöä. Joku kaksoisrakokoe gravitaatiosta lienee 100 000 vuoden päässä.

        1. Syksy Räsänen sanoo:

          Aika-avaruuden värähtelyssä on kyse ajan ja avaruuden värähtelystä. Toistaiseksi gravitaation mahdollisesta kvanttiluonteesta on tosiaan todisteena vain kosminen inflaatio, ja se on hyvin epäsuora todiste.

          Täällä hieman mietteitä aiheen tiimoilta: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kissan-kanssa-laatikossa/

          1. Miguel sanoo:

            Kiitos kärsivällisistä vastauksista ja tästä blogista!. En halua mitään omia teorioita, vaan kysyn asioita. Lapsena musta piti tulla tähtitieteilijä. Mutta ajattelin, ettei sillä elä. Tämän päivän huippuhetki, jos sää sallii, on Jupiter+Venus. Jotenkin kaunista, että juuri noi kaksi kohtaa. 🙌

          2. Syksy Räsänen sanoo:

            Kiitos kiitoksista.

  6. Lentotaidoton sanoo:

    Räsänen: ”Gravitaatio ja kvanttifysiikka on jo onnistuneesti yhdistetty kosmisessa inflaatiossa, mutta vain hyvin rajoittuneessa tapauksessa.”

    Tämän lausahduksen olemme kuulleet monasti aiemminkin vastauksissasi. En epäile asiaa ollenkaan (olen samaa referoinut itsekin). Mutta mikä on tämä ”vain hyvin rajoittunut tapaus”? Onko esim kysymys siitä, että inflaation aikuiset kvanttifluktuaatiot näkyvät kosmoksen tulevassa kehityksessä (esim taustasätelyn ominaisuudet)? Jos tämä vaatii pidemmän selityksen (oman osionsa) niin please.

    1. Syksy Räsänen sanoo:

      Inflaatiossa on kvantitettu vain aika-avaruuden pienet poikkeamat (joista tulee kosmisen taustasäteilyn siemeniä ja gravitaatioaaltoja), ei aika-avaruutta kokonaisuutena. Tämä vastaa vähän sitä miten kiinteän olomuodon fysiikassa kvantitetaan pieniä värähtelyjä aineessa ja saadaan fononeita.

      1. Lentotaidoton sanoo:

        Sen verran asia kiinnostaa, että tein haun seuraavalla: phonons in quantum inflation
        https://scholar.google.fi/scholar?q=phonons+in+quantum+inflation&hl=en&as_sdt=0&as_vis=1&oi=scholart

        Siellä on liuta tutkimuksia. Diketanttina ei aio käydä kaikkia läpi, mutta voitko suositella jotan määrättyä tutkimusta? Tai löytyykö mitään muuta ”vähemmän akateemista” eli helpommin nieltävää esitystä?

        1. Syksy Räsänen sanoo:

          En osaa suositella tutkimusta inflaation ja fononien täsmällisestä analogiasta. Yleisen suhteellisuusteorian analogiamallit (mallit jotka kuvaavat esim. helium-3:a ja joiden rakenne on joissain suhteessa samanlainen kuin yleisen suhteellisuusteorian) ovat kyllä kiinnostavia, mutta ne eivät ole paras tapa ymmärtää inflaatiota. Viittasin vain siihen, että sekä inflaation aikaisissa perturbaatioissa että fononeissa kyseessä on vain pienten värähtelyjen kvantittamisesta.

  7. Jernau Gurgeh sanoo:

    Jotenkuten aiheeseen liittyen kysyisin Syksyltä ja muiltakin blogin lukijoilta, kumpaa veikkaatte intuition pohjalta oikeaksi: pimeää ainetta on olemassa, vai gravitaatioteoria on väärin?

    En tiedä kumpi olisi fysiikan kehityksen kannalta ja ihmiskunnan tulevaisuuden kannalta parempi. Eli kumpi voisi tarjota jotain mullistavaa avaruusmatkailun, viestintätekniikan ym. teknologioiden suhteen (tai sitten kumpikaan ei toisi mitään uutta).

    Minulla ei ole mitään suosikkia tämän suhteen. Se kumpi on oikein on oikein ja sillä siisti. Mutta tämä tietämättömyys ja kysymyksen avoimuus saa maallikon pääni pyörälle. Populaaria kirjallisuutta olen toki lukenut paljonkin ja jonkin verran tutkimuspapereita (niistä juuri mitään ymmärtäen), mutta silti minulla ei ole mielenrauhaa asian suhteen. Vaikka kaikki viittaa enemmän pimeään aineeseen, niin jostain sisältäni kumpuaa aina uudelleen vahva tunne, että sitä ei ole olemassa. Gravitaatioteoria on vain virheellinen. Olen kuitenkin kovan luokan Einstein-fani, joten en tällaista sano vain provosoidakseni. Yleinen suhteellisuusteoria ja kaikki muut Einsteinin saavutukset ovat vertaansa vailla, riippumatta siitä mikä osoittautuu lopulta oikeaksi.

    Eli onko sinulla, Syksy, jotain tällaista sisäistä tunnetta (fyysikon ymmärryksesi ja loogisen ajattelun ulkopuolella) ja haluatko kertoa siitä tässä, jos on?

    Loppuun Sabine Hossenfelderistä, että olen varmaan hyvin paljon samaa mieltä hänen kritiikistään kuin Syksykin. Tykkään siitä, että hän haastaa valtavirtaa ja jaksaa niitä asioita maallikoillekin selittää. Mutta jopa minun (”ihan miten vaan mutta mieluummin päinvastoin” -tyypin) on vaikea sietää kaikkea hänen sanomaansa, juurikin Syksyn kuvailemista syistä. Mutta suotakoon se Sabinelle, koska sensaatiohakuisuus (tai miksi sitä sanoisikaan) myy paremmin kuin laimeat nönnönnöö -videot (ja blogit ym.). Hän kuitenkin yrittänee tehdä osittaista elantoa tubettamisella, tosin en tiedä minkälaisista summista hänen katsojamäärillään puhutaan (mutta niitä katsojiahan hän yrittää näillä raflaavilla väitteillään saada).

    1. Syksy Räsänen sanoo:

      Pimeä aine on onnistunut ja yksinkertainen hypoteesi, joka on selittänyt ja ennustanut havaintoja oikein. Ehdotukset muokatuksi gravitaatiolaiksi eivät ole pystyneet selittämään kaikkia samoja havaintoja kuin pimeä aine, eivätkä ne ole myöskään ennustaneet asioita yhtä oikein. Ei ole myöskään mitään teoreettista syytä sille, että kyseessä olisi muokattu gravitaatiolaki eikä pimeä aine. Pimeä aine on siis luultavammin oikea selitys.

      1. Erkki Kolehmainen sanoo:

        ”Pimeä aine on onnistunut ja yksinkertainen hypoteesi, joka on selittänyt ja ennustanut havaintoja oikein.”

        Pimeästä aineen hiukkasista ei ole yhtään suoraa havaintoa. Vain sen vaikutuksesta on. Näin ollen täysin tuntematon pimeä aine on räätälöity selittämään koetulosta eikä päinvastoin kuten tulisi olla.

        1. Syksy Räsänen sanoo:

          Pimeä aine on onnistuneesti ennustanut muun muassa aineen liikkeitä galakseissa, galaksiryppäissä ja isommassa mittakaavassa, sekä galaksien synnyn, galaksien rakenteen, kosmisen mikroaaltotaustan epätasaisuudet (jos olisi vain tavallista ainetta, ne olisivat täysin erilaiset) ja gravitaatiolinssejä.

          Yksi esimerkki: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/luodin-jaljet/

          1. Eusa sanoo:

            http://backreaction.blogspot.com/2017/01/the-bullet-cluster-as-evidence-against.html?m=1

            Meneekö siis Hossenfelderillä pieleen Bullet Cluster -tulkinnassaan?

          2. Syksy Räsänen sanoo:

            Hänen siteeraamansa tulokset Bullet Clusterin todennäköisyydestä ovat väärin, koska niissä on laskettu ehdollisia todennäköisyyksiä tavalla, jota ei voi suoraan verrata havaintojen todennäköisyyteen.

            Kun laskun tekee oikein, Bullet Cluster ei ole kovin epätodennäköinen. Artikkeli aiheesta: https://arxiv.org/abs/1412.7719

    2. Minusta kiinnostavia ovat kolmannet selitysyritykset, kuten J.S. Farnesin ajatus galaksien väliin repulsion ajamista negatiivisen massan hiukkasista, jotka selittäisivät galaksien rotaatiokäyrät ja bonuksena myös kiihtyvän laajenemisen, https://www.aanda.org/articles/aa/pdf/2018/12/aa32898-18.pdf . Negatiivisen massan hiukkaset voisivat mahdollistaa lähes valon nopeudella tapahtuvat tähtienväliset matkat ilman energiaa, koska jos sama määrä positiivista ja negatiivista massaa liikkuu yhdessä, kokonaiskineettinen energia ja liikemäärä ovat nollia. Avaruuslaivan varustaminen matkaan päinvastoin tuottaisi energiaa, kun sen ruumassa oleva negatiivinen massa luodaan. Robert Forward aikoinaan mietiskeli tällaisiakin.

  8. Martti V sanoo:

    Voi olla turhaa yrittää yhdistää hiukkasfysiikkaa gravtaation kanssa. Aika-avaruuden kuvaamiseen ei tarvita gravitonia eikä muutakaan hiukkasta. Sen sijaan vahva ja sähköheikko voivat olla paremminkin yhdistettävissä kosmoksen syntyajan lämpötilassa, mutta oikeaa teoriaa ei ole vielä keksitty. Toki uteliaisuus ja kokeileminen vie tiedettä eteenpäin.

  9. Eusa sanoo:

    Selvitin Hossenfelderin väitettä Bullet Cluster -havainnosta Syksyn linkkaaman tutkimuksen (Kraljic & Sarkar) valossa.

    Tutkimuksessa kuvataan avoimesti kuinka menetelmää vaihdetaan, kylläkin perustellusti (ääriarvoteorian toisen lauseen sovelma), sovittumaan lähemmäs yhteen ΛCDM-kaikkeuden pimeän aineen halodynamiikkaa. Lopuksi annetaan aika vahva disclaimer omaan tutkimukseen simulaation törmäysnopeuden herkkyystarkastelusta sekä myöntö sille odottamalle, että vastaavan uuden löydön kohdalla standardikosmologia on todellisissa vaikeuksissa.

    Saatu todennäköisyys luodatun punasiirtymän syvyydessä saadaan 10% luokkaan. Tämä yltää riittävään luotettavuuteen siitä, että todennettu Bullet Cluster mahtuisi kosmologiaparadigman sisään.

    En löytänyt artikkelista mainintaa, että olisi huomioitu Bullet Cluster -löydön tulleen havaituksi luotauksessa, joka kattoi alle 6% taivaasta. Kun tämä huomioidaan, ääriarvotarkastelulta putoaa pohja pois – ei ole olemassa läpikotaisia tarkasteluotoksien jaksoja, joita vaaditaan ääriarvojen hyödyntämiseen silloin, kun varsinainen jakauma on saavuttamattomissa.

    Tulosta voisi selitellä kaikkeuden isotropialla ja homogeenisuudella niin, että sellaisia otosjaksoja mahtuisi havainto-otokseen muutama ja että ääriarvojen käyttö olisi sallittua.

    Kuitenkin, vaikka laskentamenetelmä hyväksyttäisiin, todennäköisyys moiselle nopealle halotörmäykselle massamittaluokassa putoaa promilleluokkaan ja ei ole luotettavasti sovitettavissa ΛCDM-kaikkeuteen.

    Nähdäkseni Hossenfelderillä on pointtinsa ja samoin kuin satelliittigalaksien puute bulletclusterien esiintymä langettaa järkevän epäilyn pimeän hiukkasaineen mahdollisuudelle. Mainittu sumea pimeä massa levittynein pitkäaaltoisin eksitaatioin voisi paremmin soveltua ainekentän skalaariosioksi TAI muunnetun gravitaation kentän skalaariosioksi (scalar-vector-tensor).

    1. Syksy Räsänen sanoo:

      Kommentti siitä, että pitäisi ottaa huomioon myös se, kuinka suuri osa taivasta on mitattu siten, että vastaava systeemi voisi löytyä pitää paikkansa.

      Toisaalta pitää ottaa huomioon, että todennäköisyys sille, että satunnaisen prosessin tuloksena syntynyt asia X on sitä pienempi, mitä tarkemmin asia X määritellään. Jos heittää kasan kolikoita ympäri huonetta ja näkee osan niistä asettuvan suunnilleen kaareen ja kysyy mikä on todennäköisyys näin pitkälle, näin ohuelle ja näin kaartuneelle kaarelle, se voi olla hyvin pieni. Ongelmana on se, että määrittelee sen mitä etsitään vasta sen jälkeen kun on nähnyt tuloksen, eikä ota huomioon, että olisi ollut yhtä hämmästyneitä jostain aivan toisenlaisesta tuloksesta (vaikka suorasta kaaren sijaan).

      Tämä tunnetaan nimellä ”look elsewhere effect”.

      Käsittääkseni kaikkiaan Bullet Cluster ei ole kovin epätyypillinen. Satelliittigalaksien lukumäärä on kiinnostava kysymys (en ole varma mihin satelliitteihin viittaat), mutta se ei ole todiste pimeää ainetta vastaan.

      Vaikka Bullet Cluster olisi hyvin epätodennäköinen yksinkertaisimmassa mallissa pimeälle aineelle ja rakenteiden siementen synnylle, tämä ei olisi todiste muokatun gravitaatioteorian puolesta, koska ei ole ainuttakaan muokattua gravitaatioteoriaa, joka pystyisi selittämään kaikki edes galaksien ja galaksiryppäiden liikkeisiin liittyvät havainnot (saati kaikkia havaintoja).

      1. Eusa sanoo:

        ”Käsittääkseni kaikkiaan Bullet Cluster ei ole kovin epätyypillinen.”

        Noin ollen concordance-ΛCDM-kosmologian mallinnuksessa on oltava jotain pielessä tai vähintään puutteita, jos kuitenkin pimeän aineen halot voisivat saavuttaa paikalliseen joukkoon noin suuria galaksijoukkojen kohtaamisnopeuksia. Sitäkö tarkoitat?

        Look elsewhere effect ei mielestäni suoraan sovi tapaukseen. Kohtaamisen vastakkainen vauhtikomponentti on hahmoton suure.

        1. Syksy Räsänen sanoo:

          Todennäköisyys nopeudelle on otettu huomioon artikkelissa, johon linkkasin yllä.

      2. Lentotaidoton sanoo:

        Räsänen: Tämä tunnetaan nimellä ”look elsewhere effect”. Käsittääkseni kaikkiaan Bullet Cluster ei ole kovin epätyypillinen

        Kirjoitin 23.8.2018: Räsäsen mukaan tapaus on harvinainen, mutta näin tuleekin olla. Tämän Räsäsen antaman linkin (https://arxiv.org/abs/1412.7719) mukaan Bullet Cluster on vain marginaalisesti sovitettavissa ΛCDM-kosmologiaan . Itseasiassa niin että jos (juuri) tällaisia systeemejä löytyisi lisää, niin se haastaisi standardin kosmologisen mallin.

        “We find that only about 0.1 systems like the Bullet Cluster 1E 0657-56 (where the collision has occurred already) can be expected up to z = 0.3. Increasing the relative velocity to 4500 km/s — the shock front velocity deduced from X-ray observations of 1E 0657-56 — no candidate systems are found in the simulation. Thus the existence of 1E 0657-56 is only marginally compatible with the ΛCDM cosmology, provided the relative velocity of the two colliding clusters is indeed as low as suggested by hydrodynamical simulations. Hence if more such systems are found this would challenge the standard cosmological model.”

        1. Eusa sanoo:

          Niinpä. Syksyn sanailussa on ristiriitaa tai ymmärrän jotenkin väärin…

          1. Syksy Räsänen sanoo:

            On tyypillistä, että taivaalla on Bullet Clusterin kaltaisia galaksiryppäiden törmäyksiä. Se ei siis ole epätyypillinen piirre maailmankaikkeudessa. Niitä ei kuitenkaan ole tyypillisesti monta, eli ne ovat harvinaisia taivaalla.

          2. Lentotaidoton sanoo:

            Eusa; ”Niinpä. Syksyn sanailussa on ristiriitaa tai ymmärrän jotenkin väärin…”

            Jos tämä Eusan ”niinpä” on lausahdusvastaus kirjoittamaani, niin tosiaan olet hyvä Eusa käsittänyt väärin. Siis miten niin niinpä??? En minä (eikä Räsäsen ilmoittama linkki) arvostellut/poikennut Syksyn kirjoittamaa, päinvastoin. Syksyn sanailussa ei ole ristiriitaa.

            Kirjoitin aiemmin: Räsäsen mukaan tapaus on harvinainen, MUTTA NÄIN TULEEKIN OLLA. Ja kuitenkin se on vielä ΛCDM kosmologian raameissa, eli jos niitä näkyisi monia, niin SITTEN olisi vaara hypätä standardikosmologian kyydistä.

          3. Eusa sanoo:

            Tiede on epäonnistumisella leikkimisen rakastamista.

  10. Mika Kovin sanoo:

    Inflaatioteoria on fysiikan surkein adhoc satu,, jota ei voi yhdistää mihinkään fysiikan ns alkuhypoteesehin.
    Pimeä energia on toinen vastaava. Olen ko. Hossenfeldetin kannalla myös siinä, että on teorian heikkoutta, ettei tapahdu edistystä, ei puuttuvien jättilaitteiden.

    1. Syksy Räsänen sanoo:

      En tiedä mitä tarkoitat ”alkuhypoteeseilla”. Inflaatio on suoraviivainen osa yleistä suhteellisuusteoriaa ja hiukkasfysiikkaa. Mikä tärkeämpää, se on onnistuneesti selittänyt jo tehtyjä havaintoja ja ennustanut oikein uusia.

      Lisätietoja siitä, miten fysiikan teoriat etenevät: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/edistys-ja-rappio/

      Lisätietoja inflaatiosta:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/vastavuoroinen-suhde/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/muistinmenetykset-ennustusten-takana/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/potkut-ylospain/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/ylos-pohjalta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/seitseman-ennustusta-menneisyydesta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kuin-putoava-kivi/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/eilispaivan-rohkeutta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/jokin-sanoo-poks/

      http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/taivaallinen_ilmoitus

      https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/littean_maailman_selitys

      https://web.archive.org/web/20200807084406/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/kosmoksen_ja_laboratorion_avioliitto

      https://web.archive.org/web/20220812062847/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/syntymiskipuja

      Jos pimeä energia on kosmologinen vakio tai tyhjön energiaa, se on myös osa yleisen suhteellisuusteorian ja hiukkasfysiikan tunnettua perustavanlaatuista rakennetta. Albert Einstein otti kosmologisen vakion mukaan yleiseen suhteellisuusteoriaan jo 105 vuotta sitten. Ennen kuin kiihtyvää laajenemista oli havaittu, ongelmana oli se, miksi kosmologista vakiota ei ole nähty, vaikka sen sen odottaisi olevan olemassa.

      On kyllä outoa, miksi kosmologisen vakion arvo on niin pieni kuin mitä tarvitaan selittämään havainnot, ja voi hyvin olla, että oikea selitys on jokin toinen.

      Lisätietoa pimeästä energiasta:

      https://web.archive.org/web/20221204061453/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/kirkkaudesta_pimeyteen

      https://web.archive.org/web/20160415122117/http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/kolmen_vaihtoehdon_mysteeri

      https://web.archive.org/web/20220812055009/http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/valoa_kaukaa

  11. Käsittääkseni, jos olen ymmärtänyt oikein ja jos oletetaan yksinkertaisuuden vuoksi Higgs-inflaatio, niin reheatingissä Higgsin kenttä muutti arvoaan, ja tästä vapautunut energia ilmeni tyhjästä syntyneinä Higgsin hiukkasina (eli inflatonikentän värähtelymoodeina), jotka pian hajosivat lähinnä hiukkas-antihiukkaspareiksi.

    Mietin että jos samanlainen tapahtumasarja olisi käynnissä tälläkin hetkellä mutta paljon pienemmässä energiaskaalassa, niin miltä se näyttäisi. Tyhjästä syntyisi jotain skalaarihiukkasia, jotka sitten joko hajoaisivat tai eivät, riippuen niiden vuorovaikutuksista? Siinä tapauksessa että ne eivät hajoaisi nopeasti, niin esimerkiksi pimeä aine saattaisi olla tällaisia pimeän energian reheating-tuotteena syntyneitä hiukkasia(?)

    1. Syksy Räsänen sanoo:

      Tyypillisesti inflaatiota ajanut kenttä tosiaan hajoaa hiukkasiksi. (Muitakin vaihtoehtoja on.)

      Pimeää ainetta on ollut ainakin kosmisen mikroaaltotaustan synnyn aikaan 14 miljardia vuotta sitten, eli jos se olisi syntynyt pimeän energian kentästä, tämän olisi pitänyt tapahtua varhaisina aikoina. Sitä ei voisi enää sen jälkeen tapahtua merkittävässä määrin, koska sellainen olisi havaittu. Pimeän energian ja pimeän aineen toisiinsa kytkeviä malleja on tutkittu, mutta ei tiedetä mitään syytä, miksi näillä erilaisilla ilmiöillä olisi mitään tekemistä keskenään. Pimeän aineen tuottaminen pimeän energian kentästä (jos sellainen on) on varmaan mahdollista, mutta ei erityisen luontevaa.

      1. Kumpaan suuntaan ns. Hubblen tensio vaikuttaa? Tahtoisiko tensio että pimeää ainetta olisi tullut lisää vai hävinnyt mikroaaltotaustan syntymisen jälkeen?

        1. Syksy Räsänen sanoo:

          Eroilla Hubblen parametrissa eri havaintojen välillä ei ole selvää yhteyttä pimeän aineen tiheyteen.

  12. Kimmo Lappalainen sanoo:

    Onko kvanttigravitaation ymmärtämisessä kyse vain siitä, että sitä mittaava koeasetelma ei ole (lähellekään) toteutettavissa tai liittyykö kokeelliseen mittaamiseen myös teoreettisia ongelmia?

    Esim gravitaatioaaltojen osalta teoria oli jo vuosikymmeniä tiedossa, mutta vasta mittalaitteiden tarkkuuden parantuminen mahdollisti asian tutkimisen.

    Jos teoreettista estettä ei ole, niin kuinka kaukana ollaan ollaan ensimmäisestä kokeellisesta mittauksesta? Ja mikä koeasetelma tämä olisi?

    1. Syksy Räsänen sanoo:

      Meillä ei ole kvanttigravitaatioteoriaa, eivätkä ehdokkaat (kuten säieteoria) ole niin hyvässä kunnossa, että ne niistä voisi laskea ennusteita.

      Ensimmäinen kvanttigravitaatiomittaus oli jossain mielessä COBE-satelliitin vuonna 1992 julkaistu mittaus kosmisen mikroaaltotaustan epätasaisuuksista. Paras selitys niille on kosminen inflaatio, josta oli ennustettu mitattu signaali käsittelemällä aika-avaruuden ja aineen epätasaisuuksia kvanttifysiikan keinoin.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *